Хиральность правой и левой руки. Хиральные молекулы. Хиральность молекул, лишенных хиральных центров

Энциклопедичный YouTube

    1 / 5

    ✪ Примеры хиральности, часть 1

    ✪ Введение в хиральность

    ✪ Асимметрия биологических молекул - Максим Франк-Каменецкий

    ✪ Центры хиральности и стереоизомеры

    ✪ Тривиальные и систематические названия. Приставки «изо-», «втор-» и «трет-»

    Субтитры

    В прошлом видео мы узнали, что такое хиральная молекула, хиральный углерод или хиральный атом. В этом видео я хотел бы проработать ряд примеров и посмотреть, сможем ли мы определить хиральные атомы и распознать хиральные молекулы. Давайте посмотрим на наши примеры. Что у нас здесь? Это хлороциклопентан. Первый вопрос: видим ли мы здесь хиральные атомы? Давайте посмотрим на определение, которое мы дали хиральным атомам. Оно исходит из ситуации с направленностью рук и невозможностью их совмещения в зеркальном отражении. Мы также сказали, что обычно это атомы углерода, связанные с четырьмя разными группами. Посмотрим, есть ли у нас атомы углерода, связанные с четырьмя разными группами. Все CH2 соединены с другими CH2, а Н2 можно представить как H и H. Таким образом, они соединены с двумя H из той же группы, поэтому ни один из углеродов в CH2 не подходит на роль хирального центра или хирального углерода. Все они связаны с двумя водородами и двумя другими очень похожими группами CH2, даже если взглянуть на всю группу, с которой связан каждый углерод. Все они определённо связаны с двумя водородами, поэтому тут точно не может быть четырёх разных групп. Если мы посмотрим на CH, то увидим, что можем разделить его таким образом. Мы можем отделить от него H вот так. Помимо того что связан с водородом, этот углерод связан ещё и с хлором, а также с... Не совсем понятно, отличается ли эта группа от вот этой, если смотреть на схему с такой стороны. Но если подойти сбоку, если наполовину перевернуть её вот так. Или, может быть, лучше будет повернуть молекулу в этом направлении, против часовой стрелки. Тогда у нас есть группа CH2 и теперь ещё одна группа CH2. Затем третья такая группа и, наконец, четвёртая группа CH2. Возвращаемся, где были раньше. Итак, у нас есть 4 CH2, и мы можем вернуться. Что случится, если мы пойдём этим путём? У вас есть 1, 2, 3, 4 группы CH2, и вы возвращаетесь, откуда начали. Таким образом, это нижняя группа, ну, в зависимости от того, как далеко вы захотите её растянуть, и эта верхняя группа являются одинаковыми группами. Поэтому это не хиральный центр, не хиральный центр, или хиральный углерод. Он не связан с четырьмя различными группами. Также это не хиральная молекула, потому что у неё нет хирального центра. Как можно увидеть, что это не хиральная молекула? Посмотрим, что было написано ранее. Можно увидеть, что это не хиральная молекула. Существует несколько способов это понять. Простейший способ - это представить себе зеркальное отражение. Выглядеть оно будет примерно так. Здесь у нас зеркало, вот тут у нас хлор. Затем CH, CH2, CH2, потом CH2, CH2. Так мы завершаем наш циклопентан. Существует ли в такой ситуации способ повернуть это изображение, чтобы получить такое же? На что станет похожа молекула, если мы возьмём и просто перевернём её на 180 градусов? Ну может быть, немного меньше, чем 180 градусов, Да, не совсем 180, но если мы перевернём её так, чтобы хлор оказался вот здесь, у нас получится точно такая же молекула. Вот что у нас получилось. Выглядит немного по-другому. Вот так это будет выглядеть. Давайте попробуем сделать похоже. Примерно так. Здесь у нас CH2. Давайте лучше нарисуем здесь, тут у нас есть немного больше места. Если мы ее вот так переворачиваем, то здесь у нас CH. Здесь у нас хлор, затем - CH2 и все другие CH2, CH2. И, наконец, CH2 ещё вот тут сверху. Если мы перевернём её наоборот, точнее почти на 180 градусов, она будет выглядеть вот так. Единственная разница между этой и вот этой молекулой в том, как мы нарисовали эту связь. Вместо того чтобы рисовать её вниз мы можем нарисовать её вверх вот так, и у нас получится абсолютно такая же молекула. Так что эта молекула также не хиральная. Давайте перейдём к следующей молекуле. Что это такое? Это бромфторхлорметан - просто чтобы попрактиковаться немного в названиях. Совершенно очевидно, что здесь мы имеем дело с четырьмя разными группами. Каждая из этих групп, в данном случае атомов, которые связаны с углеродом, различны, поэтому углерод является хиральным центром. Хиральный центр. Также должно быть очевидно, что это хиральная молекула. Если мы сделаем её зеркальное отражение, очень похожее на пример из первого видео по хиральности, то зеркальное отражение будет выглядеть так. Теперь бром справа, водород будет по-прежнему снизу, а фтор наверху. Не имеет значения, как вы будете вращать эту молекулу. Если вы попробуете перенести бром сюда, на это место, тогда водород окажется в этом положении, а хлор будет вот в таком положении. Не имеет значения, как вы попытаетесь поворачивать её, вращать или перемещать, вы никогда не сможете совместить эту молекулу вот с этой молекулой. Так что это хиральный центр, и это хиральная молекула. Существует название для этих двух версий. Мы дадим им названия позже. Это другая тема. Будет отдельное видео на эту тему. Но вот эти 2 версии бромфторхлорметана, они иногда имеют различное химическое применение. Они называются энантиомерами. Энантиомеры - это зеркальные изображения. Каждая пара энантиомеров - это зеркальное отображение друг друга. Они являются стереоизомерами. Ну это просто терминология. Стереоизомеры. Вам знакомо слово «изомер», оно обозначает, что в нашей молекуле есть одинаковые атомы. Но существуют различные типы изомеров. Существуют структурные изомеры. Это означает, что разные элементы соединяются с разными элементами. Стереоизомеры - это когда каждый элемент соединён только с одним элементом. Углерод, соединяется только с фтором, хлор с углеродом, водород соединяется с углеродом, и бром соединяется с углеродом, то есть каждый элемент соединён с одним элементом, но они представлены в трёхмерной организации. Мы имеем дело со стереочастью. Стереохимия изучает трёхмерную химию как понимание сути реальной трёхмерной конфигурации вещей. Стереоизомеры подразумевают, что есть одинаковые компоненты, одинаковые атомы. Они одинаково связаны друг с другом. Бром связан с углеродом, который связан с водородом. Это все действительно так. Но их трёхмерное положение отличается. В данном случае, когда они являются зеркальным отражением друг друга, мы их называем энантиомерами. Здесь, наверное, стоит кое-что прояснить. В нескольких предыдущих видео мы употребляли слово «конфигурация», а иногда использовали слово «конформация». В некоторых случаях мы будем использовать «конфигурация», а в некоторых - «конформация». Этот момент следовало бы немного прояснить. Когда мы говорим о конфигурации, мы на самом деле говорим об иной структуре. Переходя от одной конфигурации к другой, мы разрушаем связи и в некотором роде пересобираем их. Вот что такое разные конфигурации. Для того чтобы они могли стать одинаковыми, нам, возможно, придётся поменять бром и водород там, где они связаны с углеродом. Вот это разные конфигурации. Конформации - это просто разные формы или разные ориентации одной и той же молекулы. Когда мы говорили о конформации ванны у циклогексана, то этот циклогексан в конформации ванны и этот же циклогексан в конформации кресла - это одна и та же молекула с одними и теми же связями. Мы не нарушали и не меняли никаких связей. Они просто оказались немного повёрнутыми. Так получились 2 разные конформации. А вот это -2 разные конфигурации. Чтобы перейти от одной к другой, нам придётся перестроить связи. Давайте посмотрим на эту молекулу. Можем ли мы увидеть здесь стереоцентры или хиральные углероды, или хиральные атомы? Вот здесь у нас есть углерод. Посмотрим: здесь углерод соединяется с хлором, водородом и бромом, а это другой углерод. Здесь есть соединения с четырьмя различными элементами, поэтому это хиральный углерод. Иногда здесь пишут маленькую звёздочку. Если посмотрим на этот углерод, то увидим, что он соединён с фтором и другим углеродом, но он также соединен с 2-мя водородами. поэтому он не хиральный. 2 из элементов, с которыми он соединён, - одинаковые. Здесь даже можно заметить небольшую ось симметрии, проходящую через него. Вы можете перевернуть его, и получится то же самое. Это хиральный центр. Хиральный центр, или хиральный углерод, или хиральный атом, или ассиметричный углерод. Мы увидим, что можно называть его по-разному. Благодаря тому что молекула имеет хиральный центр, это видно, если мы попробуем сделать зеркальное отражение, то получится энантиомер. Она не совмещаема со своим зеркальным отображением. Можно попробовать нарисовать её. Нет необходимости каждый раз рисовать зеркальное изображение справа. Мы можем нарисовать слева. Зеркальное отображение будет выглядеть так. Здесь фтор, углерод, углерод, хлор. Здесь получаются 2 водорода, затем ещё 1 водород здесь, и вот здесь у нас будет бром. Неважно, будете вы переворачивать молекулы или делать что-то еще, вы никогда не сможете ее совместить вот с этой, поэтому здесь у нас 2 энантиомера. Они оба являются стереоизомерами по отношению друг к другу. И каждый из них является хиральной молекулой. Сейчас у нас уже заканчивается время, которое обычно отводится на видео, поэтому мы продолжим в следующем видео и постараемся успеть больше.

История

Хиральность молекул была открыта Л. Пастером в 1848 году. Пастер обратил внимание на то, что кристаллы, выпадающие из раствора рацемического тартрата натрия -аммония , имеют две формы, представляющие собой зеркальные отражения, которые не совмещаются друг с другом в пространстве. Напротив, кристаллы индивидуального правовращающего тартрата натрия-аммония имели одинаковую форму с малыми плоскостями, направленными в одну сторону. Пастер провёл подобные кристаллизации с тринадцатью энантиомерно чистыми соединениями (различными тартратами и винной кислотой), а также с шестью рацемическими тартратами и сделал вывод о существовании хиральности молекул и объяснил ранее неизвестный вид изомерии винных кислот - энантиомерию .

Структурная трактовка хиральности стала возможной после введения в 1874 году Я. Вант-Гоффом и Ж. Ле Белем концепции асимметрического атома углерода, то есть тетраэдрического атома углерода с четырьмя различными заместителями .

Понятие хиральности было введено лордом Кельвином в конце XIX в.

Я называю какую-либо геометрическую фигуру, или группу точек, хиральной и говорю, что она обладает хиральностью, если её изображение в идеальном плоском зеркале не может быть с ней совмещено.

Оригинальный текст (англ.)

I call any geometrical figure, or group of points, chiral, and say it has chirality, if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself.

У. Т. Кельвин. Балтиморские лекции по молекулярной динамике и волновой теории света, 1904

Симметрия хиральных молекул

Виды хиральности

В зависимости от элемента молекулы, наличие которого приводит к возникновению хиральности, различают следующие виды хиральности:

Центральная хиральность

Основная статья: Центральная хиральность

Центральная хиральность возникает в результате наличия в молекуле центра хиральности (хирального центра), которым, как правило, является асимметрический атом углерода , имеющий 4 различных заместителя. Хиральными центрами могут быть также атомы , , , реже - . В хиральных производных адамантана центр хиральности находится в середине углеродного каркаса, где атомов нет вовсе .

Аксиальная (осевая) хиральность

Основная статья: Аксиальная хиральность

Аксиальная хиральность возникает в результате неплоского расположения заместителей относительно некоторой оси - оси хиральности . Ось хиральности существует в несимметрично замещённых алленах. sp -гибридный атом углерода в аллене имеет две взаимно перпендикулярные p -орбитали. Их перекрывание с p -орбиталями соседних атомов углерода приводит к тому, что заместители в аллене лежат во взаимно перпендикулярных плоскостях. Подобная ситуация наблюдается также в замещённых бифенилах , в которых вращение вокруг связи, соединяющей ароматические кольца , затруднено, а также в спироциклических соединениях.

Планарная хиральность

Основная статья: Планарная хиральность

Плоскость хиральности присутствует в производных ферроцена , замещённых парациклофанах и др. При помощи данного термина описывают хиральное расположение внеплоскостных элементов молекулы относительно плоскости хиральности .

Спиральная хиральность

Спиральная хиральность характерна для соединений, имеющих элементы в форме спирали, пропеллера или винта, например для гелиценов . Шесть ароматических колец в гексагелицене не могут уложиться в одной плоскости, поэтому образовывают спираль, которая может быть закручена влево или вправо. Данный вид хиральности наблюдается также в белках и нуклеиновых кислотах .

Топологическая хиральность

Топологическая хиральность связана с наличием структурной несимметричности, характерной для супрамолекул , например, катенанов , ротаксанов , молекулярных узлов .

Хиральность соединений со стереогенной парой электронов

Хиральность в биологии

Многие биологически активные молекулы обладают хиральностью, причём природные аминокислоты и сахара представлены в природе преимущественно в виде одного из энантиомеров : аминокислоты, в основном, имеют l -конфигурацию, а сахара - d -конфигурацию .

Две энантиомерные формы одной молекулы обычно имеют различную биологическую активность. Это связано с тем, что рецепторы , ферменты , антитела и другие элементы организма также обладают хиральностью, и структурное несоответствие между этими элементами и хиральными молекулами препятствует их взаимодействию. Например, ферменты , являющиеся хиральными молекулами, часто проявляют специфическую реакционную способность по отношению к одному из энантиомеров. Подобные примеры характерны и для лекарственных соединений. Так, биологической активностью обладает лишь один энантиомер ибупрофена - (S )-(+)-ибупрофен, в то время как его оптический антипод (R )-(−)-ибупрофен в организме неактивен .

Гомохиральность

Основная статья: Гомохиральность

За редкими исключениями, природные хиральные аминокислоты и моносахариды представлены в виде единственного изомера из двух возможных. Так, в состав белков входят практически исключительно l -аминокислоты, а ДНК и РНК построены только на основе d -углеводов . Данное свойство химических соединений называется гомохиральностью (хиральной чистотой). Происхождение и назначение данного явления до конца не установлены, однако его часто связывают с проблемой происхождения жизни .

) — геометрическое свойство жесткого объекта (пространственной структуры) быть не совместимым со своим зеркальным отображением в идеальном плоском зеркале.

Описание

Хиральный объект не имеет элементов симметрии 2-го рода, таких, как плоскости симметрии, центры симметрии и зеркально-поворотные оси. Если хотя бы один из этих элементов симметрии присутствует, объект является ахиральным. Хиральными бывают молекулы, кристаллы, (например, ).

Хиральные молекулы могут существовать в виде двух оптических изомеров (энантиомеров), являющихся зеркальными отражениями друг друга и различающихся в способности вращать плоскость поляризации света по часовой (D-изомеры) или против часовой стрелки (L-изомеры) (рис.). Энантиомеры характеризуются совпадающими физическими свойствами, а также одинаковыми химическими свойствами при взаимодействии с ахиральными веществами. В то же время, на различиях во взаимодействии энантиомеров данного вещества с конкретным оптическим изомером другого вещества может быть основано разделение энантиомеров, например, метод хиральной . В химии хиральность чаще всего связана с наличием асимметрического углеродного центра, несущего четыре различных заместителя.

При наличии в молекуле нескольких асимметрических центров говорят о диастереоизомерии. В этом случае могут существовать несколько пар энантиомеров (пара энантиомеров должна характеризоваться взаимно противоположной конфигурацией всех асимметрических центров), а свойства диастереомеров из разных энантиомерных пар могут сильно отличаться.

Почти все биомолекулы хиральны, включая аминокислоты природного происхождения и сахара. В природе большинство этих веществ обладают определенной пространственной конфигурацией: например, большинство аминокислот относится к пространственной конфигурации L, а сахара - к D. В связи с этим, энантиомерная чистота является необходимым требованием к биологически активным препаратам.

Иллюстрации


Автор

  • Еремин Вадим Владимирович

Источники

  1. Химическая энциклопедия. Т. 5. - М.: Большая Российская энциклопедия, 1998. С. 538.
  2. Compendium of Chemical Technology. IUPAC Recommendations. - Blackwell, 1997.

Хиральность (химия)

Хиральность (молекулярная хиральность) - в химии свойство молекулы быть несовместимой со своим зеркальным отражением любой комбинацией вращений и перемещений в трёхмерном пространстве.

Энзимы (а они хиральны) часто различаются между двумя энантиомерами хирального субстрата. Представьте, что у энзима впадина в форме перчатки, которая связывает субстрат. Если перчатка как для правой руки, тогда один энантиомер войдёт вовнутрь и свяжется, в то время как другой энантиомер плохо войдёт, и мало шансов, что свяжется. D-форма аминокислот обычно сладкая на вкус, а L-форма обычно вкуса не имеет. Листья перечной мяты и семена тмина содержат L-карвон и D-карвон соответственно – энантиомеры карвона . Они пахнут по-разному, поскольку обонятельные рецепторы большинства людей также содержат хиральные молекулы, которые ведут себя по-разному в присутствии разных энантиомеров.

Хиральность в фармакологии

Множество хиральных лекарств сделаны с высокой энантиометрической чистотой в связи с побочными эффектами другого энантиомера (который может быть даже терапевтически неактивным).

  • Талидомид : талидомид рацемичен. Один энантиомер эффективен против тошноты, а другой тератогеничен. В этом случае назначение одного из энантиомеров беременному пациенту не поможет, поскольку оба энантиомера легко преобразуются друг в друга в организме. А если дать человеку другой энантиомер, то и D-, и L-изомеры будут присутствовать в плазме пациента.
  • Этамбутол : один энантиомер используется при лечении туберкулёза, другой вызывает слепоту.
  • Напроксен : один энантиомер лечит артрит, но другой вызывает отравление печени без анальгетического эффекта.
  • Расположение рецепторов стероидов также показывает специфичность стереоизомеров.
  • Активность пенициллина стереозависима. Антибиотик должен подражать D-аланиновым цепям, которые присутствуют в клеточных стенках бактерий, чтобы реагировать с энзимом транспептидазой и постепенно поглощать её.
  • Только L-анаприлин является мощным адренорецептором, а D-анаприлин – нет. Тем не менее, у обоих изомеров анаприлина есть местный анестезиальный эффект.
  • L-меторфан (левометорфан) – мощный опиоид-анальгетик, а D-изомер, декстрометорфан – диссоциативное средство для облегчения кашля.
  • S-карведилол , средство, реагирующее с адренорецепторами, в 100 раз сильнее блокирует β-рецепторы, чем R(+) изомер. Но оба изомера примерно одинаково блокируют α-рецепторы.
  • D-изомеры первитина и амфетамина – сильные стимуляторы ЦНС, а L-изомеры обоих средств лишены больших стимулирующих ЦНС свойств, но вместо этого стимулируют ПНС (периферическую нервную систему). Поэтому L-изомер первитина доступен как средство для применения в нос, а декстроизомер запрещён для использования в медицинских целях почти во всех (за редким исключением) странах мира и строго контролируется там, где он разрешён.
  • S-амлодипин, чистый оптически активный изомер амлодипина, отвечающий за блокаду кальциевых каналов и вазодилятацию.
  • левоцитиризин, RR-цитиризин, антигистаминный препарат, активный блокатор гистаминовых рецепторов в составе цитиризина.
  • S-пантапрозол, чистый оптически активный изомер пантапрозола, избирательно блокирующий протонную помпу париетальных клеток слизистой желудка.
  • R-рабепрозол, чистый оптически активный изомер рабепрозола, избирательно блокирующий протонную помпу париетальных клеток слизистой желудка.
  • дексибупрофен, чистый оптически активный изомер ибупрофена, избирательно блокирующий циклооксигеназу.
  • декскетопрофен, чистый оптически активный изомер кетопрофена, избирательно блокирующий циклооксигеназу.
  • эсэтодолак, чистый оптически активный изомер иэтодолака, избирательно и селективно блокирующий циклооксигеназу.
  • эзомепразол, чистый оптически активный изомер омепрозола, избирательно блокирующий протонную помпу париетальных клеток слизистой желудка.
  • S-метопролол, селективный блокатор бетта-адренорецепторов сердца и сосудов, выделенный из рацемического метопролола
  • левомицетин.
  • хинин.
  • хинидин.
  • L-лизин.
  • L-тироксин.
  • L-допа.
  • левотирацетам.
  • R-сибутрамин. Не применяется широко (вероятно, только в Индии), из за запрета FDA на использование рацемического сибутрамина для лечения ожирения из-за побочных эффектов. По данным индийских исследователей R-сибутрамин максимально лишён этих побочных эффектов, однако не доказана эффективность R-сибутрамина безопасно снижать вес.
  • L-карнитин. Используется в пищевых добавках.

Хиральность в неорганической химии

Многие комплексные соединения хиральны, например, хорошо известный комплекс 2+ , в котором три лиганда бипиридина принимают хиральное расположение в виде пропеллера. В этом случае атом рутения может считаться стереогеничным центром в комплексе с точечной хиральностью. Два энантиомера комплексов, таких как 2+ , могут обозначаться как Λ (левоповоротная закрутка пропеллера, описанного лигандами) и Δ (правоповоротная закрутка). Гексол – это хиральный кобальтосодержащий комплекс, открытый впервые Альфредом Вернером. Твёрдый гексол важен как первое вещество без углерода, отражающее оптическую активность.

Хиральность аминов

Третичные амины хиральны по принципу, схожему с углеродосодержащими веществами: атом азота несёт четыре разных замещающих группы, включаю одинокую пару. Тем не менее, энергетический барьер инверсии стереоцентра в общем равен около 30 кДж/моль, что значит, что два стереоизомера быстро превращаются друг в друга при комнатной температуре. В результате амины, такие, как NHRR’, не могут быть распознаны по виду, а NRR’R’’ могут быть распознаны, когда R, R’ и R’’ заключены в циклические структуры.

Хиральность в литературе

Хотя во времена Льюиса Кэрролла мало было известно о хиральности, его работа «Алиса в Зазеркалье » содержит предугадывающую отсылку к различным видам биологической деятельности энантиометрических лекарств: «Может, зазеркальное молоко непригодно для питья» - сказала Алиса своей кошке. В романе Джеймса Блиша «Спок должен умереть!» из серии «Звёздный путь» тахион, зеркальный мистеру Споку, как выяснится, украдёт химические реактивы из медицинского отсека и будет использовать их для преобразования определённых аминокислот и противоположно хиральные изомеры.

Ахиральность и прохиральность

Отсутствие хиральности обозначается термином «ахиральность». Ахиральные молекулы могут проявлять индуцированную оптическую активность. Молекулу называют прохиральной, если она может быть превращена в хиральную заменой единственного атома, например, атома водорода в СН 2 BrCl на фтор. При совмещении в одной молекуле хирального и прохирального фрагментов возникает явление диастереотопии ядер, которое наблюдается в спектрах ядерного магнитного резонанса . На этом основан один из методов обнаружения хиральности молекул.

См. также

Примечания

Ссылки

  • А. Борисова Химики сплющили углерод . Gazeta.ru (30.07.2010). - Содержит описание некоторых особенностей хиральности. Архивировано из первоисточника 22 августа 2011. Проверено 22 августа 2010.

Хиральность - несовместимость объекта со своим зеркальным отражением любой комбинацией вращений и перемещений в трехмерном пространстве. Речь идет только об идеальном плоском зеркале. В нем правша превращается в левшу и наоборот.

Хиральность типична для растений и животных, и сам термин происходит от греч. χείρ - рука.

Есть правые и левые ракушки и даже правые и левые клювы у клестов (рис. 1).

1. ru.wikipedia.org/wiki/Клёст-еловик#

«Зеркальность» распространена и в неживой природе (рис. 2).


2. http://scienceblogs.com

В последнее время стали модны «хиральные», т. е. зеркальные часы (обратите внимание на надпись на циферблате) (рис. 3).

3. www.bookofjoe.com

И даже в лингвистике есть место хиральности! Это палиндромы: слова и предложения-перевертыши, например: Я УДАРЮ ДЯДЮ, ТЁТЮ РАДУЯ, Я УДАРЮ ТЁТЮ, ДЯДЮ РАДУЯ или ЛЕЕНСОН - УДАВ, НО ОН В АДУ НОС НЕ ЕЛ!

Очень важна хиральность для химиков и фармацевтов. Химия занимается объектами в наномасштабе (модное слово «нано» происходит от греч. νάννος - карлик). Хиральности в химии посвящена монография, на обложке которой () - хиральные колонны и две хиральные молекулы гексагелицена (от helix - спираль).

А важность хиральности для медицины символизирует обложка июньского номера американского журнала Journal of Chemical Education за 1996 год (рис. 4).

4. http://pubs.acs.org

На боку добродушно виляющего хвостом пса изображена структурная формула пеницилламина. Пес смотрит в зеркало, а оттуда на него глядит страшный зверь с оскаленной клыкастой пастью, горящими огнем глазами и вставшей дыбом шерстью. На боку зверя изображена та же самая структурная формула в виде зеркального отображения первой. Название опубликованной в этом номере статьи о лекарственных хиральных средствах было не менее красноречивым: «Когда молекулы лекарств смотрятся в зеркало». Почему же «зеркальное отражение» так драматически изменяет облик молекулы? И как узнали, что две молекулы являются «зеркальными антиподами»?

Поляризация света и оптическая активность

Со времен Ньютона в науке шли споры о том, представляет ли свет собой волны или частицы. Ньютон полагал, что свет состоит из частиц с двумя полюсами - «северным» и «южным». Французский физик Этьен Луи Малюс, ввел понятие о поляризованном свете, с одним направлением «полюсов». Теория Малюса не подтвердилась, однако название осталось.

В 1816 году французский физик Огюстен Жан Френель высказал необычную для того времени идею о том, что световые волны - поперечные, как волны на поверхности воды.

Френель объяснил и явление поляризации света: в обычном свете колебания происходят хаотично, во всех направлениях, перпендикулярных направлению луча. Но, пройдя через некоторые кристаллы, например исландского шпата или турмалина, свет приобретает особые свойства: волны в нем колеблются только в одной плоскости. Образно говоря, луч такого света подобен шерстяной нитке, которую продернули через узкую щель между двумя острыми лезвиями бритвы. Если второй такой же кристалл поставить перпендикулярно первому, поляризованный свет через него не пройдет.

Отличить обычный свет от поляризованного можно с помощью оптических приборов - поляриметров; ими пользуются, например, фотографы: поляризационные фильтры помогают избавиться от бликов на фотографии, которые возникают при отражении света от поверхности воды.

Оказалось, что при прохождении поляризованного света через некоторые вещества плоскость поляризации поворачивается. Впервые это явление обнаружил в 1811 году французский физик Франсуа Доминик Араго у кристаллов кварца. Это связано со строением кристалла. Природные кристаллы кварца асимметричны, причем они бывают двух типов, которые отличаются по своей форме, как предмет от своего зеркального изображения. Эти кристаллы вращают плоскость поляризации света в противоположных направлениях; их назвали право- и левовращающими.


В 1815 году французский физик Жан Батист Био и немецкий физик Томас Иоганн Зеебек выяснили, что некоторые органические вещества, например сахар и скипидар, также обладают способностью вращать плоскость поляризации, причем не только в кристаллическом, но и в жидком, растворенном и даже газообразном состояниях. Оказалось, что каждый «цветовой луч» белого света поворачивается на разный угол. Сильнее всего поворачивается плоскость поляризации для фиолетовых лучей, меньше всего - для красных. Поэтому бесцветное вещество в поляризованном свете может стать окрашенным.

Как и в случае кристаллов, некоторые химические соединения могли существовать в виде как право-, так и левовращающих разновидностей. Однако оставалось неясным, с каким свойством молекул связано это явление: самый тщательный химический анализ не мог обнаружить между ними никаких различий! Такие разновидности веществ назвали оптическими изомерами, а сами соединения - оптически активными. Оказалось, что у оптически активных веществ есть и третий тип изомеров - оптически неактивные. Это обнаружил в 1830 году знаменитый шведский химик Йёнс Якоб Берцелиус: виноградная кислота С 4 Н 6 О 6 оптически неактивна, а винная кислота точно такого же состава обладает в растворе правым вращением. Но никто не знал, существует ли не встречающаяся в природе «левая» винная кислота - антипод правовращающей.

Открытие Пастера

Луи Пастер (https://ru.wikipedia.org)

Оптическую активность кристаллов физики связывали с их асимметричностью; полностью симметричные кристаллы, например кубические кристаллы поваренной соли, оптически неактивны. Причина же оптической активности молекул долгое время оставалась совершенно загадочной. Первое открытие, проливавшее свет на это явление, сделал в 1848 году никому тогда не известный французский ученый Луи Пастер. Еще в студенческие годы он заинтересовался химией и кристаллографией, работая под руководством вышеупомянутого Жана Батиста Био и видного французского химика-органика Жана Батиста Дюма. После окончания Высшей нормальной школы в Париже молодой (ему было всего 26 лет) Пастер работал лаборантом у Антуана Балара. Балар был уже известным химиком, который за 22 года до этого прославился открытием нового элемента - брома. Своему ассистенту он дал тему по кристаллографии, не предполагая, что это приведет к выдающемуся открытию.

В ходе исследования Пастер приготовил раствор натриево-аммониевой соли оптически неактивной виноградной кислоты и медленным выпариванием воды получил красивые призматические кристаллы этой соли. Кристаллы эти, в отличие от кристаллов виноградной кислоты, оказались асимметричными. У части кристалликов одна характерная грань находилась справа, а у других - слева, причем по форме два типа кристаллов были как бы зеркальным отражением друг друга.

Тех и других кристаллов получилось поровну. Зная, что в подобных случаях кристаллы кварца вращают в разные стороны, Пастер решил проверить, не будет ли наблюдаться это явление и на полученной им соли. Вооружившись увеличительным стеклом и пинцетом, Пастер аккуратно разделил кристаллы на две кучки. Их растворы, как и следовало ожидать, обладали противоположным оптическим вращением, а смесь растворов была оптически неактивной (правая и левая поляризации взаимно компенсировались). Пастер на этом не остановился. Из каждого из двух растворов с помощью сильной серной кислоты он вытеснил более слабую органическую кислоту. Можно было предположить, что в обоих случаях получится исходная виноградная кислота, которая оптически неактивна. Однако оказалось, что из одного раствора образовалась вовсе не виноградная, а известная правовращающая винная кислота, а из другого раствора получилась тоже винная кислота, но вращающая влево! Эти кислоты получили название d -винной (от лат. dexter - правый) и l -винной (от лат. laevus - левый). В дальнейшем направление оптического вращения стали обозначать знаками (+) и (-), а абсолютную конфигурацию молекулы в пространстве - буквами R и S. Итак, неактивная виноградная кислота оказалась смесью равных количеств известной «правой» винной кислоты и ранее неизвестной «левой». Именно поэтому равная смесь их молекул в кристалле или в растворе не обладает оптической активностью. Для такой смеси стали применять название «рацемат», от лат. racemus - виноград. Два антипода, дающие при смешении в равных количествах оптически неактивную смесь, получили название энантиомеров (от греч. έναντίος - противоположный).

Поняв значение своего эксперимента, Пастер выбежал из лаборатории и, встретив лаборанта физического кабинета, бросился к нему и воскликнул: «Я только что сделал великое открытие!» Кстати, Пастеру очень повезло с веществом: в дальнейшем химики обнаружили всего несколько подобных случаев кристаллизации при определенной температуре смеси оптически различных кристалликов, достаточно крупных, чтобы их можно было под лупой разделить пинцетом.

Пастер открыл еще два метода разделения рацемата на два антипода. Биохимический метод основан на избирательной способности некоторых микроорганизмов усваивать только один из изомеров. Во время посещения Германии один из аптекарей дал ему давно стоявшую склянку с виноградной кислотой, в которой завелась зеленая плесень. В своей лаборатории Пастер обнаружил, что бывшая когда-то неактивной кислота стала левовращающей. Оказалась, что зеленый плесневой грибок Penicillum glaucum «поедает» только правый изомер, оставляя левый без изменения. Такое же действие оказывает эта плесень на рацемат миндальной кислоты, только в данном случае она «поедает» левовращающий изомер, не трогая правовращающий.

Третий способ разделения рацематов был чисто химическим. Для него нужно было иметь оптически активное вещество, которое при взаимодействии с рацемической смесью по-разному связывалось бы к каждым из энантиомеров. В результате два вещества в смеси не будут антиподами (энантиомерами) и их можно будет разделить как два разных вещества. Это можно пояснить такой моделью на плоскости. Возьмем смесь двух антиподов - Я и R. Их химические свойства одинаковые. Внесем в смесь несимметричный (хиральный) компонент, например Z, который может реагировать с каким-либо участком в этих энантиомерах. Получим два вещества: ЯZ и ZR (или ЯZ и RZ). Эти структуры не являются зеркально симметричными, поэтому такие вещества будут чисто физически различаться (температурой плавления, растворимостью, еще чем-нибудь) и их можно разделить.

Пастер сделал еще много открытий, в числе которых прививки против сибирской язвы и бешенства, ввел методы асептики и антисептики.

Исследование Пастера, доказывающее возможность «расщепления» оптически неактивного соединения на антиподы - энантиомеры, первоначально вызвало у многих химиков недоверие, однако, как и последующие его работы, привлекло самое пристальное внимание ученых. Вскоре французский химик Жозеф Ашиль Ле Бель с помощью третьего пастеровского метода расщепил несколько спиртов на оптически активные антиподы. Немецкий химик Иоганн Вислиценус установил, что существуют две молочные кислоты: оптически неактивная, образующаяся в скисшем молоке (молочная кислота брожения), и правовращающая, которая появляется в работающей мышце (мясомолочная кислота). Подобных примеров становилось всё больше, и требовалась теория, объясняющая, чем же отличаются друг от друга молекулы антиподов.

Теория Вант-Гоффа

Якоб Хендрик Вант-Гофф (https://ru.wikipedia.org)

Такую теорию создал молодой голландский ученый Якоб Хендрик Вант-Гофф, который в 1901 году получил первую в истории Нобелевскую премию по химии. Согласно его теории, молекулы, как и кристаллы, могут быть хиральными - «правыми» и «левыми», являясь зеркальным отражением друг друга. Простейший пример - молекулы, в которых имеется так называемый асимметрический атом углерода, окруженный четырьмя разными группами. Это можно продемонстрировать на примере простейшей аминокислоты аланина. Две изображенные молекулы невозможно совместить в пространстве никакими поворотами.

Многие ученые отнеслись к теории Вант-Гоффа недоверчиво. А известный немецкий химик-органик, выдающийся экспериментатор, профессор Лейпцигского университета Адольф Кольбе разразился резкой до неприличия статьей в Journal für praktische Chemie с ехидным названием «Zeiche der Zeit» («Приметы времени»). Он сравнивал теорию Вант-Гоффа с «отбросами человеческого ума», с «кокоткой, наряженной в модные одежды и покрывшей лицо белилами и румянами, чтобы попасть в порядочное общество, в котором для нее нет места». Кольбе писал, что «некоему доктору Вант-Гоффу, занимающему должность в Утрехтском ветеринарном училище, очевидно, не по вкусу точные химические исследования. Он счел более приятным сесть на Пегаса (вероятно, взятого напрокат из ветеринарного училища) и поведать миру то, что узрел с химического Парнаса… Настоящих исследователей поражает, как почти неизвестные химики берутся так уверенно судить о высочайшей проблеме химии - вопросе о пространственном положении атомов, который, пожалуй, никогда не будет решен… Такой подход к научным вопросам недалек от веры в ведьм и духов. А таких химиков следовало бы исключить из рядов настоящих ученых и причислить к лагерю натурфилософов, совсем немногим отличающихся от спиритов ».

Со временем теория Вант-Гоффа получила полное признание. Каждый химик знает, что, если в смеси поровну «правых» и «левых» молекул, вещество в целом будет оптически неактивным. Именно такие вещества и получаются в колбе в результате обычного химического синтеза. И только в живых организмах, при участии асимметричных агентов, например ферментов, образуются асимметричные соединения. Так, в природе преобладают аминокислоты и сахара́ только одной конфигурации, а образование их антиподов подавлено. В некоторых случаях разные энантиомеры можно различить и без всяких приборов - когда они по-разному взаимодействуют с асимметрическими рецепторами в нашем организме. Яркий пример - аминокислота лейцин: ее правовращающий изомер сладкий, а левовращающий - горький.

Конечно, тут же возникает вопрос о том, как же появились на Земле первые оптически активные химические соединения, например та же природная правовращающая винная кислота, или как возникли «асимметричные» микроорганизмы, питающиеся только одним из энантиомеров. Ведь в отсутствие человека некому было осуществлять направленный синтез оптически активных веществ, некому было разделять кристаллы на правые и левые! Однако подобные вопросы оказались настолько сложными, что однозначного ответа на них нет и поныне. Ученые сходятся лишь в том, что существуют асимметричные неорганические или физические агенты (асимметричные катализаторы, поляризованный солнечный свет, поляризованное магнитное поле), которые могли дать начальный толчок асимметрическому синтезу органических веществ. Похожее явление мы наблюдаем и в случае асимметрии «вещество - антивещество», поскольку все космические тела состоят только из вещества, а отбор произошел на самых ранних стадиях образования Вселенной.

Хиральные лекарства

Химики часто относятся к энантиомерам как к одному соединению, поскольку их химические свойства идентичны. Однако их биологическая активность может быть совершенно различной. Человек - существо хиральное. И это относится не только к его внешнему виду. «Правые» и «левые» лекарства, взаимодействуя с хиральными молекулами в организме, например с ферментами, могут действовать по-разному. «Правильное» лекарство подходит к своему рецептору как ключ к замку и запускает желаемую биохимическую реакцию. Действие же «неправильного» антипода можно уподобить попытке пожать правой рукой левую руку своего гостя. Необходимость в оптически чистых энантиомерах объясняется также тем, что часто только один из них обладает требуемым терапевтическим эффектом, тогда каквторой антипод может в лучшем случае быть бесполезным, а в худшем - вызвать нежелательные побочные
эффекты или даже быть токсичным. Это стало очевидным после нашумевшей трагической истории с талидомидом - лекарственным средством, которое назначали в 1960-е годы беременным женщинам как эффективное снотворное и успокаивающее. Однако со временем проявилось его побочное тератогенное (от греч. τέρας - чудовище) действие, и
на свет появилась масса младенцев с врожденными уродствами. Лишь в конце 1980-х годов выяснилось, что причиной несчастий был только один из энантиомеров талидомида - правовращающий - и только левовращающий изомер является мощным транквилизатором. К сожалению, такое различие в действии лекарственных форм раньше не было известно, поэтому продаваемый талидомид был рацемической смесью обоих антиподов. Они отличаются взаимным расположением в пространстве двух фрагментов молекулы.

Еще один пример. Пеницилламин, структура которого была нарисована на собаке и волке на об-ложке журнала, - довольно простое производное аминокислоты цистеина. Это вещество применяют при острых и хронических отравлениях медью, ртутью, свинцом, другими тяжелыми металлами, так как оно обладает способностью давать прочные комплексы с ионами этих металлов; образующиеся комплексы удаляются почками. Применяют пеницилламин также при различных формах ревматоидного артрита, в ряде других случаев. При этом применяют только «левую» форму препарата, так как «правая» токсична и может привести к слепоте.

Бывает и так, что каждый энантиомер обладает своим специфическим действием. Так, левовращающий S-тироксин (лекарственный препарат левотроид) - это природный гормон щитовидной железы. А право-вращающий R-тироксин (декстроид) понижает содержание холестерина в крови. Некоторые производители придумывают для подобных случаев торговые названия-палиндромы, например, darvon и novrad для синтетического наркотического анальгетика и препарата от кашля соответственно.


В настоящее время многие лекарственные средства выпускаются в виде оптически чистых соединений. Их получают тремя методами: разделением рацемических смесей, модификацией природных оптически активных соединений и прямым синтезом. Последний также требует хиральных источников, поскольку любые другие традиционные методы синтеза дают рацемат. Это, кстати, одна из причин очень высокой стоимости некоторых лекарств, поскольку направленный синтез только одного из них - сложная задача. Поэтому не удивительно, что из множества синтетических хиральных препаратов, выпускаемых во всем мире, лишь небольшая часть является оптически чистой, остальные - рацематы.

Илья Леенсон,
канд. хим. наук, ст. науч. сотр. химического факультета МГУ

Множество важных и необходимых для жизни молекул существуют в двух формах. Эти две формы хиральны, так как их отображения в идеальном плоском зеркале не могут быть совмещены. Они соотносятся между собой как левая и правая рука. Поэтому это свойстсво называется хиральность (от греческого cheir - рука).

Две формы молекул называются энантиомерами или оптическими изомерами . Энантиомеры имеют противоположный смысл хиральности, т.е. противоположную конфигурацию. Один из энантиомеров вращает плоскость поляризации плоскополяризованного света вправо, а другой энантиомер - на точно такой же угол влево.

Хиральность кристалла или молекулы определяется их симметрией . Молекула ахиральна (нехиральна) , если и только если она имеет ось несобственного вращения , то есть n-кратное вращение (вращение на 360°/n) с последующим отражением в плоскости перпендикулярной к этой оси отражает молекулу на себя. Таким образом, молекула хиральна , если у нее нет такой оси, т.е. если не существует операций симметрии, кроме тождественного преобразования, которые отразили бы молекулу на саму себя. Так как у хиральных молекул нет такого рода симметрии, они называются дисимметричными . Они не обязательно асимметричны (то есть без симметрии), так как они могут иметь другие виды симметрии . Однако все аминокислоты (кроме глицина) и множество сахаров и в самом деле являются как асимметричными, так и дисимметричными.

Хиральность и жизнь

Практически все биологические полимеры должны быть гомохиральными, чтобы функционировать (все их составляющие мономеры имеют одинаковую направленность. Еще один используемый термин – оптически чистые или 100 % оптически активные). Все аминокислоты в протеинах - "левосторонние" в то время как все сахара в ДНК, РНК и в метаболических путях - "правосторонние".

Смесь, состоящая из 50% правых и 50% левых форм, называется рацематом или рацемической смесью . Рацемические полипептиды не могут образовывать специальные формы, необходимые энзимам, так как в этом случае у них боковые цепи торчат беспорядочно. Также аминокислота с неправильной хиральностью разрушает стабилизирующую α-спираль в протеинах. ДНК не могла бы быть стабильной в форме спирали, если бы присутствовал хоть один мономер с неверной хиральностью – невозможно было бы для нее образовывать длинные цепи. Это означает, что ДНК не смогла бы хранить много информации и поддерживать жизнь.

Обычная химия производит рацематы

Уважаемый учебник по органической химии смело приводит универсальное химическое правило:

«Синтез хиральных соединений из ахиральных реактивов всегда приводит к рацемической модификации». «Оптически неактивные реактивы производят оптически неактивные продукты»

Это следствие Законов Термодинамики. Правые и левые формы имеют одинаковую свободную энергию (G), так что разница свободной энергии (ΔG) равна нулю. Константа химического равновесия (K) - величина, выражающая взаимную зависимость между концентрациями веществ в системе при достижении химического равновесия. Постоянная равновесия для любой реакции (К) является равновесным соотношением концентрации продуктов к действующему веществу. Реакция между этими двумя элементами при любой температуре Кельвина (Т) представляется с помощью стандартной формулы:

K = exp (–ΔG/RT)

Где R является абсолютной газовой константой (=число Авогадро* постоянную Больцмана к) = 8.314 дж./K.моль

Для реакции изменения "левых" аминокислот на "правые" (L →R), или обратно (R →L), ΔG = 0, так что K = 1. Таким образом, реакция достигает равновесия, когда концентрация "левых" форм и "правых" форм молекул одинаковая, т.е. производится рацемат. Это объясняет вышеприведенное правило учебника.

Отделяя левые формы от правых

Чтобы разрешить рацемат (то есть отделить два энантиомера), должно быть введено другое гомохиральное вещество. Процедура объясняется в учебнике по органической химии. Идея заключается в том, что "левые" и "правые" формы вещества имеют одинаковые свойства, кроме того случая, когда имеют дело с хиральным феноменом. Аналогия: наша левая и правая рука хватают одинаково ахиральный объект типа бейсбольной биты, но подходят по разному для хиральных объектов, как, например, для перчатки левой руки. Таким образом, для решения рацемата, химик обычно использует готовое гомохиральное вещество из живых организмов. Продукты реакции R и L энантиомеров с исключительно правосторонним веществом R´, то есть R-R´ и L-R´ (называемые диастереоизомерами), не являются зеркальным отражением друг друга. Таким образом, они имеют разные физические свойства, например, растворимость в воде, и это значит, что они могут быть отделены.

Однако это не решает загадку изначального происхождения оптической активности в живых организмах. Недавняя международная конференция "Происхождение Гомохиральности и Жизнь" четко показала, что происхождение этой хиральности – полная загадка для эволюционистов. Вероятность случайного образования одного гомохиралньго полимера из N мономеров равна 2 –N . Для маленького протеина из 100 аминокислот эта вероятность равна = 2 –100 = 10 –30 . Заметьте, что это - вероятность образования любого гомохирального полипептида. Вероятность же образования функционального гомохирального полимера чрезвычайно низка, так как необходима точная последовательность аминокислот во многих местах. Конечно, много гомохиральных полимеров необходимы для жизни, так что вероятности должны быть умножены. Случай, таким образом, не является альтернативой.

Еще одна проблема заключается в том, что гомохиральные биологические вещества рацемизируются со временем. Это лежит в основе метода датирования по рацемизации аминокислот. Как метод датирования, он не очень надежен, так как степень рацемизации сильно зависит от температуры и pH, и зависит от вида аминокислоты. Рацемизация – это также огромная проблема при синтезе и гидролизе пептидов. Это показывает, что тенденция неживой химии – к смерти, а не к жизни.

Трагическим напоминанием о важности хиральности есть талидомид. В начале 1960-х это лекарство было прописано беременным женщинам, страдающим от утренней тошноты и рвоты. Однако в то время как левые формы являются сильным транквилизатором, правые формы могут сорвать развитие зародыша, что приводит к серьезным врожденным дефектам. К сожалению, синтез лекарства произвел рацемат, как и можно было ожидать, и неправильный энантимомер не был удален до продажи лекарства.

Во время моего собственного образования по химии один из требуемых экспериментов продемонстрировал эти концепции. Мы синтезировали диссиметричный сложный ион 3+ 9 из ахиральных реактивов, так что был произведен рацемат. Мы разрешили его посредством реакции с гомохиральной кислотой из растительного источника, образуя диастереоизомеры, которые могли быть разрешены фракционированной кристаллизацией. Когда получившиеся гомохиральные кристаллы были растворены и был добавлен растворенный активированный уголь (катализатор), вещество быстро рацемизировалось, так как катализатор ускорил наступление равновесия.

Исследователи в области происхождения жизни пытались придумать другие средства получения необходимой гомохиральсноти. Были неудачные попытки решить рацематы другими способами.

Ультрафиолетовый свет с круговой поляризацией

При свете с круговой поляризацией направление электрического поля вращается вдоль луча, так что это представляет собой хиральный феномен. Гомохиральные вещества обладают разными интенсивностями поглощения левого и правого КП света - это называется круговым дихроизмом (КД) . Похожим образом, КП свет поглощается по разному левыми и правыми энантиомерами. Так как фотолиз (разрушение светом) происходит только тогда, когда фотоны света поглощаются, КП свет разрушает один энантиомер более быстро и охотней, чем другой. Однако из-за того, что свет также разрушает "правильную" форму в определенной степени, это не произвело бы 100% гомохиральность, необходимую для жизни. Одним из лучших результатов было получение 20% оптически чистой камфары, но это произошло после того, как 99% начального материала было разрушено. 35.5% оптической чистоты вышло бы после 99.99% разрушения. "Почти оптически чистая смесь (99.99%) … достигается в асимптотическом месте, когда не остается абсолютно никакого материала. "

Еще одна проблема заключается в том, что величина и знак (то есть, поощряющие левые или правые формы) КД зависит от частоты КП света.Это означает, что разрешение может происходить только с КП светом на узкой полоске частоты. На широкой же полосе энантиоселективные эффекты уничтожают его.

Недавно идея света с круговой поляризацией, как решение проблемы хиральности, была возвращена к жизни в статье Австралийского астронома Джереми Бэйли, напечатанной в Science , и получила огласку в средствах массовой информации. Его команда обнаружила инфракрасное излучение с круговой поляризацией в туманности. Они соглашаются в статье с тем, что не обнаружили ни необходимого ультрафиолетового света с круговой поляризацией, ни свидетельств того, что аминокислоты образуются в туманности. Они также в курсе о чрезвычайно ограниченной энантиоселективности КП света и о том факте, что эффект равен нулю на всем спектре. Однако, их вера в химическую эволюцию влияет на то, как они интерпретируют данные.

Не все эволюционисты убеждены предложением команды Бэйли. Например, Джефри Бада сказал: «Это просто последовательность шагов под названием "может быть". Для меня, это делает всю большую картинку большим "может быть"»

Еще один предложенный источник света с круговой поляризацией - синхротрон из нейтроновой звезды, но это спекуляции и они не решает химических проблем.

Бета-распад и сила слабого ядерного взаимодействия

Бета-распад – одна из форм радиоактивного распада, и управляется одной из четырех фундаментальных сил в природе - силой слабого ядерного взаимодействия. Эта сила обладает небольшой хиральностью, называемой несохранение четности, так что некоторые теоретики подумали, что β-распад мог быть ответственным за хиральность в живых организмах. Однако сила слабого ядерного взаимодействия названа подходяще – еффект очень маленький – очень далеко до производства необходимой 100% гомохиральности. Один специалист по проблеме хиральности, химик-органик Вильям Бонне, заслуженный профессор Стэндфоского Университета, сказал: «ни одна из этих работ на предоставила убедительных выводов» . Еще один исследователь сделал вывод:

«необходимые исключительные добиологические условия не поддерживают идею β-радиолиза как отборочного фактора свойства оптической активности в живой природе»

Еще одним аспектом несохранения четности есть то, что L-аминокислоты и D-сахара имеют теоретически энергию немного ниже, чем их энантиомеры. Но разница энергий неизмерима -всего около 10 –17 kT. Это означает, что будет всего лишь один избыточный L-энантиомер на каждые 6x10 17 молекул рацемической смеси аминокислот!

Оптически активные кварцевые порошки

Кварц – широко распространенный минерал, самая распространенная форма кремнезема (SiO 2) на Земле. Его кристаллы шестиугольные и диссиметричные. Некоторые исследователи пытались использовать оптически активные кварцевые порошки для того, чтобы поглотить одного энантиомера больше, чем другого. Но их попытки не увенчались успехом. Кроме того, существует равное количество правых и левых кварцевых кристаллов на Земле.

Самоотбор

Некоторые хиральные вещества кристаллизируются в гомохиральные кристаллы. Луи Пастер был не только основателем микробной теории болезней, но также разрушителем идей о "спонтанном зарождении" жизни и креационистом. Он также был первым человеком в истории, который решил рацемат. Он использовал пинцет, чтобы отделить левые и правые кристаллы такого вещества, тартрата алюмината натрия.

Это разделение случилось благодаря внешнему вмешательству разумного исследователя, который мог распознавать разные модели. На предполагаемой примитивной Земле не было такого исследователя. Поэтому две формы, даже если бы они могли быть разделенными случаем, снова растворились бы вместе и снова образовали бы рацемат.

Также Пастеру посчастливилось выбрать одно из немногих веществ, которое самораспадается в кристаллическую форму. И даже это вещество обладает этим свойством только при температуре ниже 23°C, так что повезло, что лаборатории в 19 веке не очень хорошо обогревались!

Удачное затравливание

Некоторые теоретики предположили, что удачное затравливание раствора, перенасыщенного гомохиральным кристаллом, кристализировало бы такой же энантиомер. Однако, «первичный суп», если он существовал, был бы чрезвычайно разжиженным и сильно загрязненным, как было отмечено многими исследователями. Также, ничего нельзя было бы сделать с растущим гомохиральным кристаллом, так как он был бы погружен в раствор из оставшегося неверного энантиомера. Концентрирование раствора кристализировало бы неверный энантиомер. Разбавление раствора растворило бы кристалл, так что предполагаемый процесс должен был бы начаться сначала.

Гомохиральный шаблон

Некоторые исследователи предложили, что гомохиральный полимер возник случайно и послужил шаблоном. Однако это предположение сталкивается с серьезными проблемами. Шаблон из 100% правой полицитидиловой кислоты (РНК, содержащая только мономеры цитозина) был синтезирован (разумными химиками!). Это могло направлять олигомеризацию (формирование маленьких цепей) из (активированного) G (гуанина) нуклеотидов. Действительно, чистые правые G были олигомеризированы намного эффективнее, чем чистые левосторонние G. Но рацемические G не олегомеризиловались, потому что:

«мономеры противоположной хиральности инкорпорируются в шаблон как ограничители цепочки… Это подавление представляет собой серьезную проблему для многих теорий происхождения жизни»

т-РНК выбирали правильные энантиомеры

Одна из попыток решения проблемы хиральности была предпринята Расселом Дуллитлом, профессором биохимии в Университете Калифорнии в Сан Диего. Он утверждал: «С самого начала их [т-РНК синтазы] существования, они, вероятно, связывали только L-аминокислоты» Он никогда не объясняет, как такие сложные энзимы могли функционировать, если сами не были гомохиральными, или как они оперировали до того, как РНК было составлено из гомохиральной рибозы. "Решение" Дуллитла - не более чем отмашка от проблемы. Оно едва ли достойно опровержения, если бы не тот факт, что оно появилось в известной антикреационной книге, что говорит кое-что о качестве их редактирования или о качестве антикреационных аргументов.

Кажется, Дуллитл пытался объяснить его предыдущие телевизионные дебаты на тему сотворение/эволюция с биохимиком Дуэйном Гишом, которые состоялись в присутствии 5000 человек в Университете Либерти 13 Октября 1981. Проэволюционный журнал Science описал дебаты как "разгром" в пользу Гиша. На следующий день проэволюционная Washington Post сообщала о дебатах под заголовком "Наука проиграла один ноль Креационизму". Статья цитировала высказывание Дуллитла "Как я встречу мою жену?", что говорит о том, что Дуллитл сам знал, что проиграл.

Магнитные поля

Несколько немецких химиков под руководством Эдхарда Брэмайера из Института Органической Химии и Биохимии в Бонне заявили о том, что очень сильное магнитное поле (1.2–2.1 T) произвело 98% гомохиральные продукты из ахиральных реактивов. Это дало возможность химикам, как, например, Филипп Косиенски, из Университета Саутгемптона, спекулировать о том, что магнитное поле Земли могло вызвать гомохиральность жизни. Хотя магнитное поле Земли почти в 10 000 раз слабее того, которое было использовано в эксперименте, Косиенски предположил, что огромные промежутки времени привели бы к гомохиральности, которую мы видим сегодня. Он, вероятно, забыл о реверсиях палеомагнетного поля!

Другие химики, как Тони Баррет из Лондонского Империал Колледжа, посчитали, что немецкий эксперимент "кажется слишком хорошим, чтобы быть правдой". Эта осторожность оправдалась около шести недель назад. Никто более не смог воспроизвести результаты немецкой команды. Оказывается, что один исследователь из команды, Гуйдо Задель, на чьей диссертации основывалась работа, смешал реагенты с гомохиральной добавкой.

[Магнетохиральный дихроизм - post script]

Вывод

Учебник, цитируемый ранее, говорит:

«Мы едим оптически активные хлеб и мясо, живем в домах, носим одежду и читаем книги, сделанные из оптически активной целлюлозы. Протеины, составляющие наши мускулы, гликоген в нашей печени и крови, энзимы и гормоны … все оптически активные. Естественные вещества – оптически активные, так как энзимы, их образующие, … оптически активные. Что касается происхождения оптически активных энзимов, то мы можем всего лишь спекулировать»

Если мы можем только "спекулировать" о происхождении жизни, почему столько людей говорят, что эволюция это "факт"? Повторяйте сплетню достаточно часто и люди проглотят ее.

Ссылки и примечания