Принцип ле шателье применим к. Принцип, закон, правило ле шателье. Химическое равновесие. Смещение химического равновесия. Принцип Ле Шателье

Реакции, которые протекают в одном направлении и идут до конца, называются необратимыми. Их не так много. Большинство реакций являются обратимыми, т.е. они протекают в противоположных направлениях и не идут до конца. Например, реакция J 2 + H 2 D 2HJ при 350°С является типичной обратимой реакцией. В этом случае устанавливается подвижное химическое равновесие и скорости прямого процесса и обратного делаются равными.

Химическое равновесие – такое состояние системы реагирующих веществ, при котором скорости прямой и обратной реакций равны между собой.

Химическое равновесие называют динамическим равновесием. При равновесии протекают и прямая, и обратная реакции, их скорости одинаковы, вследствие чего изменений в системе не заметно.

Концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, называются равновесными концентрациями. Обычно их обозначают при помощи квадратных скобок, например, , , .

Количественной характеристикой химического равновесия служит величина, называемая константной химического равновесия. Для реакции в общем виде: mA + nB = pC + qD

Константа химического равновесия имеет вид:

Она зависит от температуры и природы реагирующих веществ, но не зависит от их концентрации. Константа равновесия показывает, во сколько раз скорость прямой реакции больше скорости обратной реакции, если концентрации каждого из реагирующих веществ равна 1 моль/л. В этом физический смысл К.

Направление смещения химического равновесия при изменениях концентрации реагирующих веществ, температуры и давления (в случае газовых реакций) определяется общим положением, известным под названием принципа подвижного равновесия или принципа Ле Шателье : если на систему, находящуюся в равновесии, производится какое-либо внешнее воздействие (изменяется концентрация, температура, давление), то оно благоприятствует протеканию одной из двух противоположных реакций, которая ослабляет воздействие.

Следует отметить, что все катализаторы одинаково ускоряют как прямую, так и обратную реакции и поэтому на смещение равновесия влияние не оказывают, а только способствуют более быстрому его достижению.



Примеры решения задач

Пример 1.

Рассчитайте температурный коэффициент скорости реакции, зная, что с повышением температуры на 70 °С скорость возрастает в 128 раз.

Решение:

Для расчета используем правило Вант-Гоффа:

Ответ: 2

Пример 2.

При какой температуре закончится некоторая реакция за 0,5 мин, если при 70°С она заканчивается за 40 мин? Температурный коэффициент реакции равен 2,3.

Решение:

Для расчета используем правило Вант-Гоффа. Находим t 2:

Ответ: 122,6 0 С

Пример 3.

Во сколько раз изменится скорость прямой реакции N 2 (г)+3Н 2 (г)=NH 3 (г), если давление в системе увеличить в 2 раза?

Решение:

Увеличение давления в системе в 2 раза равносильно уменьшению объема системы в 2 раза. При этом концентрации реагирующих веществ возрастут в 2 раза. Согласно закону действия масс, начальная скорость реакции равна V н = k·· 3 .

После увеличения давления в 2 раза концентрации азота и водорода увеличатся в 2 раза, и скорость реакции станет равна V к = k·2·2 3 3 = k·32· 3 . Отношение V к /V н показывает, как изменится скорость реакции после изменения давления. Следовательно, V к /V н = k·32· 3 /(k·· 3) = 32.

Ответ: скорость реакции увеличится в 32 раза.

Пример 4.

Эндотермическая реакция разложения пентахлорида фосфора протекает по уравнению РС1 5 (г) ↔ РС1 3 (г) + С1 2 (г) ; ∆Н = +92,59 кДж. Как надо изменить: а) температуру; б) давление; в) концент­рацию, чтобы сместить равновесие в сторону прямой реакции - разложения РС1 5 ?

Решение:

Смещением или сдвигом химического равновесия называют изменение равновесных концентраций реагирующих веществ в результате изменения одного из условий реакции. Направление, в котором сместилось равновесие, определяется по принципу Ле Шателье: а) так как реакция разложения РС1 5 эндотермическая ( H > 0), то для смещения равновесия в сторону прямой реакции нужно повысить температуру: б) так как в данной системе разложение РС1 5 ведет к увеличению объема (из одной молекулы газа образуются две газообразные молекулы), то для смещения равновесия в сторону прямой реакции надо уменьшить давление; в) смещения равновесия в указанном направлении можно достигнуть как увеличением концентрации РС1 5 , так и уменьшением концентрации РС1 3 или Сl 2 .

Состояние химического равновесия сохраняется при данных неизменных условиях любое время. При изменении же условий состояние равновесия нарушается, так как при этом скорости противоположных процессов изменяются в разной степени. Однако спустя некоторое время система снова приходит в состояние равновесия, но уже отвечающее новым изменившимся условиям.

Смещение равновесия в зависимости от изменения условий в общем виде определяется принципом Ле-Шателье (или принципом подвижного равновесия): если на систему, находящуюся в равновесии, оказывать воздействие извне путем изменения какого-либо из условий, определяющих положение равновесия, то оно смещается в направлении того процесса, протекание которого ослабляет эффект произведенного воздействия.

Так, повышение температуры вызывает смещение равновесия в направлении того из процессов, течение которого сопровождается поглощением тепла, а понижение температуры действует в противоположном направлении. Подобно этому повышение давления смещает равновесие в направлении процесса, сопровождающегося уменьшением объема, а понижение давления действует в противоположную сторону. Например, в равновесной системе 3Н 2 +N 2 2H 3 N, ∆H o = -46,2 кДж повышение температуры усиливает разложение H 3 N на водород и азот, так как этот процесс эндотермический. Повышение давления смещает равновесие в сторону образования H 3 N, ибо при этом уменьшается объем.

Если в систему, находящуюся в состоянии равновесия, добавить некоторое количество какого-либо из веществ, участвующих в реакции (или наоборот, удалить из системы), то скорости прямой и обратной реакций изменяются, но постепенно снова уравниваются. Иными словами, система снова приходит к состоянию химического равновесия. В этом новом состоянии равновесные концентрации всех веществ, присутствующих в системе, будут отличаться от первоначальных равновесных концентраций, но соотношение между ними останется прежним. Таким образом, в системе, находящейся в состоянии равновесия, нельзя изменить концентрацию одного из веществ, не вызвав изменения концентраций всех остальных.

В соответствии с принципом Ле Шателье введение в равновесную систему дополнительных количеств какого-либо реагента вызывает сдвиг равновесия в том направлении, при котором концентрация этого вещества уменьшается и соответственно увеличивается концентрация продуктов его взаимодействия.

Изучение химического равновесия имеет большое значение как для теоретических исследований, так и для решения практических задач. Определяя положение равновесия для различных температур и давлений, можно выбрать наиболее благоприятные условия проведения химического процесса. При окончательном выборе условий проведения процесса учитывают также их влияние на скорость процесса.

Пример 1. Вычисление константы равновесия реакции по равновесным концентрациям реагирующих веществ.

Вычислите константу равновесия реакции А+В 2С, если равновесные концентрации [А]=0,3моль∙л -1 ; [В]=1,1моль∙л -1 ; [С]=2,1моль∙л -1 .

Решение. Выражение константы равновесия для данной реакции имеет вид: . Подставим сюда указанные в условии задачи равновесные концентрации: =5,79.

Пример 2 . Вычисление равновесных концентраций реагирующих веществ. Реакция протекает по уравнению А+2В С.

Определите равновесные концентрации реагирующих веществ, если исходные концентрации веществ А и В соответственно равны 0,5 и 0,7 моль∙л -1 , а константа равновесия реакции К р =50.

Решение. На каждый моль веществ А и В образуется 2 моль вещества С. Если понижение концентрации веществ А и В обозначить через Х моль, то увеличение концентрации вещества будет равно 2Х моль. Равновесные концентрации реагирующих веществ будут:

С А =(о,5-х)моль∙л -1 ; С В =(0,7-х)моль∙л -1 ; С С =2х моль∙л -1

х 1 =0,86; х 2 =0,44

По условию задачи справедливо значение х 2 . Отсюда равновесные концентрации реагирующих веществ равны:

С А =0,5-0,44=0,06моль∙л -1 ; С В =0,7-0,44=0,26моль∙л -1 ; С С =0,44∙2=0,88моль∙л -1 .

Пример 3. Определение изменения энергии Гиббса ∆G o реакции по значению константы равновесия К р. Рассчитайте энергию Гиббса и определите возможность протекания реакции СО+Cl 2 =COCl 2 при 700К, если константа равновесия равна Кр=1,0685∙10 -4 . Парциальное давление всех реагирующих веществ одинаково и равно 101325Па.

Решение. ∆G 700 =2,303∙RT .

Для данного процесса:

Так как ∆Gо<0, то реакция СО+Cl 2 COCl 2 при 700К возможна.

Пример 4 . Смещение химического равновесия. В каком направлении сместится равновесие в системе N 2 +3H 2 2NH 3 -22ккал:

а) при увеличении концентрации N 2 ;

б) при увеличении концентрации Н 2 ;

в) при повышении температуры;

г)при уменьшении давления?

Решение. Увеличение концентрации веществ, стоящих в левой части уравнения реакции, по правилу Ле-Шателье должно вызвать процесс, стремящийся ослабить оказанное воздействие, привести к уменьшению концентраций, т.е. равновесие сместится вправо (случаи а и б).

Реакция синтеза аммиака – экзотермическая. Повышение температуры вызывает смещение равновесия влево – в сторону эндотермической реакции, ослабляющей оказанное воздействие (случай в).

Уменьшение давления (случай г) будет благоприятствовать реакции, ведущей к увеличению объема системы, т.е. в сторону образования N 2 и Н 2 .

Пример 5. Во сколько раз изменится скорость прямой и обратной реакции в системе 2SO 2 (г) + О 2 (г) 2SO 3 (r) если объем газовой смеси уменьшится в три раза? В какую сторону сместится равновесие системы?

Решение. Обозначим концентрации реагирующих веществ: =а, =b, =с. Согласно закону действующих масс, скорости прямой и обратной реакций до изменения объема равны

v пр = Ка 2 b, v обр = К 1 с 2

После уменьшения объема гомогенной системы в три раза концентрация каждого из реагирующих веществ увеличится в три раза: = 3а, [О 2 ] = 3b; = 3с. При новых концентрациях скорости v" np прямой и обратной реакций:

v" np = K(3a) 2 (3b) = 27 Ka 2 b; v o 6 p = K 1 (3c) 2 = 9K 1 c 2 .

Следовательно, скорость прямой реакции увеличилась в 27 раз, а обратной - только в девять раз. Равновесие системы сместилось в сторону образования SO 3 .

Пример 6. Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 70 0 С, если температурный коэффициент реакции равен 2.

Решение. Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле

Следовательно, скорость реакции при 70°С большескорости реакции при 30° С в 16 раз.

Пример 7. Константа равновесия гомогенной системы

СО(г) + Н 2 О(г) СО 2 (г) + Н 2 (г) при 850°С равна 1. Вычислите концентрации всех веществ при равновесии, если исходные концентрации: [СО] ИСХ = 3 моль/л, [Н 2 О] ИСХ = 2 моль/л.

Решение. При равновесии скорости прямой и обратной реакций равны, а отношение констант этих скоростей постоянно и называется константой равновесия данной системы:

V np = К 1 [СО][Н 2 О]; V o б p = К 2 [СО 2 ][Н 2 ];

В условии задачи даны исходные концентрации, тогда как в выражение К р входят только равновесные концентрации всех веществ системы. Предположим, что к моменту равновесия концентрация [СО 2 ] Р = х моль/л. Согласно уравнению системы число молей образовавшегося водорода при этом будет также х моль/л. По столько же молей моль/л) СО и Н 2 О расходуется для образования по х молей СО 2 и Н 2 . Следовательно, равновесные концентрации всех четырех веществ (моль/л):

[СО 2 ] Р = [Н 2 ] р = х; [СО] Р = (3 –х); P =(2-х).

Зная константу равновесия, находим значение х, а затем исходные концентрации всех веществ:

; х 2 =6-2х-3х + х 2 ; 5х = 6, л = 1,2 моль/л.

Таким образом, искомые равновесные концентрации: [СО 2 ] Р = 1,2 моль/л; [Н 2 ] р = 1,2 моль/л; [СО] Р = 3 - 1,2 = 1,8 моль/л; [Н 2 О] Р = = 2- 1,2 = 0,8 моль/л.

Пример 8. Эндотермическая реакция разложения пента-хлорида фосфора протекает по уравнению

РС1 5 (г) РС1 3 (г) + С1 2 (г); ∆Н = +92,59 кДж.

Как надо изменить: а) температуру; б) давление; в) концент­рацию, чтобы сместить равновесие в сторону прямой реакции - разложения РСl 5 ?

Решение. Смещением или сдвигом химического равновесия называют изменение равновесных концентраций реагирующих веществ в результате изменения одного из условий реакции. Направление, в котором сместилось равновесие, определяется по принципу Ле Шателье: а) так как реакция разложения РС1 5 эндотермическая (∆Н > 0), то для смещения равновесия в сторону прямой реакции нужно повысить температуру: б) так как в данной системе разложение РС1 5 ведет к увеличению объема (из одной молекулы газа образуются две газообразные молекулы), то для смещения равновесия в сторону прямой реакции надо уменьшить давление; в) смещения равновесия в указанном направлении можно достигнуть как увеличением концентрации РС1 5 , так иуменьшением концентрации РСl 3 или С1 2 .

В некоторых случаях вещества, получающиеся в результате реакции, либо взаимодействуют между собой, либо распадаются, и тогда в системе одновременно протекают две реакции: прямая (образуются продукты реакции) и обратная (вновь синтезируются исходные вещества). В случае совпадения скоростей прямого и обратного процессов в рассматриваемой системе наступает равновесие, которое называется химическим. Это динамичное равновесие, поскольку сама реакция не прекращается, но образуется и распадается одновременно одинаковое количество вещества. При неизменных температуре и давлении такая ситуация может сохраняться довольно долго. В графическом виде она представлена ниже. Под эквивалентной скоростью подразумевается некая константа, равная одновременно скоростям прямой и обратной реакции.

Принцип смещения химического равновесия

Принцип смещения (сдвига) равновесия открыл в 1884 году Ле Шателье. Позже его обобщил Карл Фердинанд Браун (1887 г.). Поэтому в настоящее время он носит сдвоенное название — принцип Ле Шателье-Брауна. Этот закон используется как в химии, так и в термодинамике, электродинамике, экологии и биохимии. Существует много формулировок, но суть каждой из них сводится к следующему: «При оказании на систему, находящуюся в равновесном состоянии, какого-либо воздействия, химическое равновесие смещается таким образом, чтобы компенсировать это изменение (т. е. система будет пытаться восстановить баланс)». Описываемый принцип можно наглядно продемонстрировать с помощью следующей системы. Имеется пружина, прикрепленная к неподвижной опоре. В состоянии покоя эта система находится в равновесии. Если пружину растянуть, то равновесие сместится в сторону внешнего воздействия. Однако при этом в системе также нарастает противодействие. И в какой-то момент силы противодействия и внешнего воздействия становятся равны друг другу, в результате чего наступает новое равновесное состояние.

Принцип Ле Шателье можно использовать только для систем, находящихся в равновесии, в противном случае результаты анализа будут неверными. Существуют три основных параметра, изменение которых вызывает смещение химического равновесия: давление, температура и концентрация химических веществ.

Температура

Изменение температуры — наиболее частая причина сдвига химического равновесия, что вполне объяснимо, ведь на этот фактор повлиять намного легче, чем, например, на давление. Здесь следует упомянуть, что реакции разделяются на два типа по термическому эффекту. Среди них следующие: экзотермические (с выделением тепла) и эндотермические (с его поглощением). Как будет смещаться в данном случае химическое равновесие? Принцип Ле Шателье в этом случае сводится к следующему: с увеличением температуры равновесие смещается в сторону реакции, проходящей с поглощением тепла, а при её уменьшении, соответственно, в противоположную сторону. Так, если для реакции, изображённой ниже, повысить температуру, равновесие сдвинется в правую сторону.

Большинство прямых реакций экзотермические, а обратных — эндотермические (это не правило, а, скорее, наблюдение, из которого можно найти множество исключений).

Давление

С изменением давления трансформируется следующий параметр системы — её объём (он увеличивается или уменьшается), поэтому воздействие с помощью этого параметра оказывает особенно сильное влияние на системы, в которых присутствуют газы. В этом случае принцип химического равновесия заключается в следующем. Если давление в системе увеличивается, то равновесие сдвигается в сторону сокращения числа молекул газа, а при уменьшении давления равновесие движется в противоположном направлении. Если число молекул газа во время реакции не изменяется, то равновесие не смещается при изменении давления, как, например, в следующей реакции.

Однако на практике такой принцип верен лишь для идеальных газов, поскольку все реальные обладают разной сжимаемостью. Таким образом, даже если число молекул газа остаётся неизменным, равновесие может зависеть от давления. На практике это будет заметно при высоких давлениях. В случае жидких и твердых веществ изменение давления фактически не влияет на равновесие из-за малых объемов, занимаемых такими веществами. При рассмотрении смешанных систем учитывают только молекулы газа.

Смещение равновесия в системе в результате изменения концентрации любого вещества, участвующего в реакции

В ходе изменения концентрации какого-либо вещества принцип Ле Шателье работает следующим образом. При увеличении концентрации продуктов реакции равновесие смещается в сторону обратной реакции, при уменьшении количества образующихся веществ равновесие двигается в противоположную сторону.

Что будет, если добавить инертный газ

Изменить объем системы можно не только сжав ее или ослабив давление, но и путем добавления инертного газа, который не будет вступать в реакцию. Что будет с системой при добавлении в нее, например, гелия? На самом деле, скорее всего, ничего не произойдет, поскольку соотношение участвующих в реакции веществ не изменится, а для хода процесса имеет значение не общее давление системы, а парциальное каждого компонента.

Влияние катализаторов

На смещение химического равновесия количество катализатора и вообще его наличие влияния не оказывают. Это происходит ввиду того, что этот элемент одинаково ускоряет и прямую, и обратную реакцию, сохраняя равновесие в системе неизменным.

Способ изучения химического равновесия

Детальное рассмотрение химических равновесий очень важно для полного понимания процесса. Одним из наиболее часто применяемых приёмов является так называемый метод замораживания равновесий. Так, происходит быстрое охлаждение системы, находящейся в сбалансированном состоянии. Равновесие просто не успевает сместиться, а при низких температурах скорость большинства процессов замедляется практически до нуля. Благодаря этому можно полностью проанализировать состав смеси при любой температуре (концентрации веществ, участвующих в реакции, при нуле градусов будет соответствовать количеству компонентов при той температуре, с которой началось понижение). Такой опыт проводят несколько раз с реакциями, протекающими в обоих направлениях.

Существует ли полная необратимость

Полностью сдвинуть химическое равновесие в одну сторону невозможно. Даже при кажущемся абсолютном смещении всегда останется небольшое число молекул, которые будут вступать в обратную реакцию.

На практике фактически все реакции обратимы, а насколько сильно будет виден этот эффект, часто зависит от температуры (нередко равновесие просто сильно смещено в одно сторону, поэтому оно становится заметным лишь при смене условий). Именно из-за этой распространенности обратимых химических реакций изучение равновесия особенно важно.

Примеры синтезов, в которых во время производства смещается химическое равновесие

На производстве химическое равновесие обычно смещают в направлении прямой реакции для получения, соответственно, продуктов реакции. Существует множество примеров таких синтезов: получение аммиака, оксида серы (VI), оксида азота (II) и т. д.

Рассмотрев, как влияет на состояние равновесия изменение концентраций реагирующих веществ, перейдем к рассмотрению влияния на равновесие изменений температуры и давления.

Повышение температуры ускоряет все вообще химические реакции, но для разных реакций это ускорение различно. В большинстве случаев скорости прямой и обратной реакций изменяются не в одинаковое число раз, и одна из них начинает протекать быстрее. Однако накопление продуктов получившей преобладание реакции, с одной стороны, и убыль участвующих в ней веществ - с другой, постепенно выравнивают скорости обоих процессов. Таким образом, снова наступает равновесие, но уже при иных, чем прежде, концентрациях каждого из веществ. Из этого следует, что каждой температуре соответствует и свое состояние равновесия, подобно тому, как, например, каждой температуре отвечает своя .

Направление, в котором смещается равновесие при изменении температуры, определяется законом Вант-Гоффа, относящимся к любым равновесным системам:

Если температура системы, находящейся в равновесии, изменяется, при повышении температуры равновесие смещается в сторону процесса, идущего с поглощением тепла, а при понижении температуры - в обратную сторону.

По отношению к обратимым химическим процессам это значит, что повышение температуры вызывает сдвиг равновесия в сторону эндотермической реакции, понижение температуры смещает равновесие в обратную сторону.

Приведем примеры.

Йодистый разлагается при нагревании на иод и . Реакция обратима и при высоких температурах идет слева направо с поглощением тепла:

2HJ⇄H 2 + J 2 - 12 ккал

С повышением температуры равновесие сдвигается вправо, концентрации водорода и иода в смеси увеличиваются, а концентрация йодистого водорода уменьшается.

Всякое обратимое разложение в химии носит название диссоциации. Если этот процесс обусловливается нагреванием, его называют термической диссоциацией.

Подобно йодистому водороду, при нагревании диссоциируют и многие другие . Во всех таких случаях повышение температуры в соответствии с законом Вант-Гоффа увеличивает (т. е. относительное количество разложившегося вещества), смещая равновесие в сторону образования продуктов диссоциации.

Примером реакции, идущей с выделением тепла, может служить реакция образования серного ангидрида из сернистого ангидрида и кислорода:

2SO 2 + O 2 ⇄ 2SO 3 + 46 ккал

В этом случае повышение температуры сдвигает равновесие влево, так как обратная реакция, очевидно, идет с поглощением тепла (см., например, стр. 73). Чтобы сдвинуть равновесие вправо, т. е. увеличить содержание SO 3 в реакционной смеси, нужно понизить температуру.

Закон Вант-Гоффа представляет собой лишь частный случай более общего закона, определяющего влияние различных факторов на равновесную систему и известного под названием

принципа Л е-Ш атель е. В применении к химическому равновесию этот принцип можно формулировать следующим образом.

Если изменить одно из условий, при которых система находится в состоянии химического равновесия, например температуру, давление или концентрацию, равновесие смещается в направлении той реакции, которая противодействует произведенному изменению.

Прилагая этот принцип к случаю изменения температуры, мы видим, что повышение температуры должно смещать равновесие в сторону реакции, понижающей температуру и, следовательно, идущей с поглощением тепла. Понижение температуры вызывает сдвиг равновесия в сторону реакции, идущей с выделением тепла.

Смещение равновесия при изменении давления путем сжатия смеси реагирующих веществ может иметь место, когда в реакции участвуют газообразные вещества. При этом, согласно принципу Ле-Шателье, равновесие должно смещаться в сторону той реакции, которая ослабляет произведенное изменение, т. е. уменьшает давление, если оно было увеличено, и увеличивает, если оно было уменьшено. Но в замкнутом пространстве при постоянной температуре изменение давления в результате реакции может произойти только в том случае, если реакция сопровождается изменением общего числа молекул газообразных веществ. Например, реакция образования двуокиси азота из окиси азота и кислорода при высокой температуре обратима и не идет до конца:

2NO + O 2 ⇄ 2NO 2

Так как из двух молекул окиси азота и одной молекулы кислорода образуются только две молекулы двуокиси азота, то очевидно, что превращение окиси азота и кислорода в двуокись азота в закрытом сосуде вызовет понижение давления. Обратная реакция - разложение двуокиси азота на окись азота и - будет сопровождаться увеличением давления. Поэтому, если при установившемся равновесии мы сожмём газовую смесь и таким образом увеличим давление, то, согласно принципу Ле-Шателье, равновесие после сжатия начнет сдвигаться вправо и давление снова понизится. Наоборот, если мы предоставим смеси возможность занять больший объем и тем самым понизим давление, то равновесие сдвинется влево, благодаря чему давление снова повысится. Таким образом, мы приходим к следующему выводу:

При увеличении давления равновесие смещается в сторону образования меньшего числа молекул газа, при уменьшении давления - в сторону образования большего числа молекул.

Понятно, что если при реакции число молекул газообразных веществ не изменяется, как, например, при реакции

СО 2 + Н 2 ⇄ СО + Н 2 О

то ни увеличение, ни уменьшение давления не нарушают равно-весия.

Наконец, нетрудно убедиться, что смещение равновесия при изменении^концентраций реагирующих веществ также подчиняется принципу Ле-Шателье. Действительно, когда мы увеличиваем концентрацию одного из участвующих в равновесии веществ, то равновесие всегда смещается в сторону реакции, понижающей концентрацию того же вещества. Например, при реакции между углекислым газом и водородом увеличение концентрации углекислого газа смещает равновесие в сторону образования окиси углерода и паров воды, причем концентрация углекислого газа снова понижается. Наоборот, уменьшение концентрации одного из веществ вызывает сдвиг равновесия в сторону образования этого вещества.

Введение катализатора в равновесную систему не изменяет состояния равновесия, так как катализатор в одинаковой степени ускоряет и прямую и обратную реакцию. Однако роль катализаторов при обратимых реакциях очень велика. При низких температурах ввиду малой скорости реакции равновесие между взаимодействующими веществами устанавливается обычно очень медленно. Чтобы дождаться образования значительного количества продуктов реакции, требуется много времени. Можно, конечно, ускорить наступление равновесия путем повышения температуры, но если интересующий нас продукт образуется с выделением тепла, то его получится при этом очень мало, так как при высокой температуре равновесие окажется сильно сдвинутым в обратную сторону. Применение же катализаторов дает возможность ускорить наступление равновесия, не повышая температуру, и, таким образом, получить то же количество вещества, но в более короткий срок.

2.6. Смещение химического равновесия. Принцип Ле Шателье

Если система находится в состоянии равновесия, то она будит пребывать в нем до тех пор, пока внешние условия сохраняются постоянными.

Наибольшее значение имеют случаи нарушения равновесия вследствие изменения концентрации какого – либо из веществ, участвующих в равновесии, давления или температуры.

Рассмотрим каждый из этих случаев.

    При увеличении концентрации какого-либо вещества, участвующего в равновесии, равновесие смещается в сторону расхода этого вещества; при уменьшении концентрации какого-либо вещества равновесие смещается в сторону образования этого вещества.

Например, для реакции

Введем в систему дополнительно некоторое количество водорода. Согласно закону действия масс, увеличение концентрации водорода повлечет за собой увеличение скорости прямой реакции – реакции синтеза HI, тогда как скорость обратной реакции не изменится. В прямом направлении реакция будет теперь протекать быстрее, чем в обратном, т.е. равновесие смещается вправо , т.е. в направлении течения прямой реакции. При обратном изменении концентраций говорят о смещении равновесия влево – в направлении обратной реакции.

2. При увеличении давления путем сжатия системы равновесие смещается в сторону уменьшения числа молекул газов, т.е. в сторону понижения давления; при уменьшении давления равновесие сдвигается в сторону возрастания числа молекул газов, т.е. в сторону увеличения давления.

Для реакции

увеличение давления должно смещать равновесие вправо (слева число моль газов равно 3, справа – 2).

В том случае, когда реакция протекает без изменения числа молекул газов, равновесие не нарушается при сжатии или при расширении системы. Например, в системе

равновесие не нарушается при изменении объема; выход HI не зависит от давления.

3. При повышении температуры равновесие смещается в направлении эндотермической, а при понижении – в направлении экзотермической реакции.

Так, синтез аммиака представляет собой экзотермическую реакцию (ΔН)


сдвигается влево – в сторону разложения аммиака, так как этот процесс идет с поглощением теплоты.

Наоборот, синтез оксида азота (II) представляет собой эндотермическую реакцию (ΔН>0 )

Поэтому при повышении температуры равновесие в системе
сдвигается вправо в сторону образования NO.

Закономерности, которые проявляются в рассмотренных примерах нарушения химического равновесия, представляют собой частные случаи общего принципа Ле Шателье :

Если на систему, находящуюся в равновесии, оказать какое-либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, что оказанное воздействие уменьшится.

Гетерогенное химическое равновесие также подчиняется принципу Ле Шателье, но твердые исходные вещества и продукты реакции не влияют на смещение гетерогенного химического равновесия.

2.7. Решение типовых задач

Пример 1. Вычислить равновесные концентрации водорода и йода, если известно, что их начальные концентрации составляли по 0,02 моль/л, а равновесная концентрация НI – 0,03 моль/л. Вычислить константу равновесия.

Решение. Из уравнения реакции

H 2 +I 2 ↔ 2HI

видно, что на образование 0,03 моля НI расходуется 0,015 моля водорода и столько же йода, следовательно, их равновесные концентрации равны и составляют 0,02 - 0,015 = 0,005 моль/л, а константа равновесия

.

Пример 2. В системе
равновесные концентрации веществ
=0,3 моль/л,
=0,2 моль/л и
=1,2 моль/л. Вычислить константу равновесия системы и начальные концентрации хлора и окиси углерода.

Решение. Из уравнения реакции видно, что для образования 1,2 моля
расходуется по 1,2 моля
и
. Следовательно, исходная концентрация хлора 0,3 + 1,2 = 1,5 моль/л, окиси углерода 0,2 + 1,2 = 1,4 моль/л. Константа равновесия

Пример 3. Во сколько раз возрастет скорость реакции взаимодействия оксида углерода (II) с кислородом, если концентрации исходных веществ увеличить в три раза?

Решение. 1) Записываем уравнение реакции:

Согласно закону действующих масс

2) Обозначим
, тогда:

3) При повышении концентрации исходных веществ в 3 раза получим:

, а

4) Рассчитываем скорость реакции :

, т.е. скорость реакции возрастет в 27 раз.

Пример 4. Во сколько раз возрастет скорость химической реакции при повышении температуры на 40˚С, если температурный коэффициент скорости реакции равен 3?

Решение. Согласно правилу Вант – Гоффа:

, т.е. скорость реакции возрастет в 81 раз.

Пример 5. Реакция при температуре 30˚С протекает за 2 минуты. За сколько времени закончится эта реакция при температуре 60˚С, если температурный коэффициент скорости равен 2?

Решение. 1) В соответствии с правилом Вант – Гоффа:

2) Скорость реакции обратно пропорциональна времени реакции, следовательно:

Пример 6. Реакция образования оксида азота (IV) выражается уравнением

Как изменится скорость прямой и обратной реакций, если увеличить давление в 3 раза, а температуру оставить постоянной? Вызовет ли это изменение скорости смещение равновесия?

Решение. Пусть до увеличения давления равновесные концентрации оксида азота (II), кислорода и оксида азота (IV) были: = a, = b,

C, тогда скорость прямой реакции

,

скорость обратной реакции

.

При увеличении давления в 3 раза во столько же раз увеличатся концентрации всех реагентов: = 3a, = 3b, = 3c.

Скорость прямой реакции станет:

Скорость обратной реакции станет:

.

Скорость прямой реакции возросла в 27 раз, а обратной – в 9 раз. Равновесие сместится в сторону прямой реакции, что согласуется с принципом Ле Шателье.

Пример 7. Как влияют на равновесие в системе

, (ΔН

а) понижение давления;

б) повышение температуры;

в) увеличение концентрации исходных веществ?

Решение. Согласно принципу Ле Шателье понижение давления приведет к смещению равновесия в сторону реакции, приводящей к увеличению ее объема, т.е. в сторону обратной реакции. Повышение температуры приведет к смещению равновесия в сторону эндотермической реакции, т.е. в сторону обратной реакции. И, наконец, увеличение концентрации исходных веществ приведет к смещению равновесия в сторону образования продуктов реакции, т.е. в сторону прямой реакции.

Пример 8. Рассмотрим химическое равновесие

Определим равновесные концентрации NH 3 для двух равновесных смесей:

1. = 0,1 M и = 0,1 M.

2. =1,0 M и = 0,1 M.

Константа равновесия К = 6,0 ∙ 10 -2 при 525 ˚С

Решение. Составим выражение для константы химического равновесия, подставим в него известные величины и произведем вычисления.

Первый вариант химического равновесия:

откуда

Второй вариант химического равновесия

откуда

Вывод. При увеличении в равновесной смеси концентрации N 2 (реагента) повышается концентрация NH 3 (продукта реакции).

2.8. Задачи для самостоятельного решения

1. Во сколько раз следует увеличить концентрацию водорода в системе

чтобы скорость реакции возросла в 125 раз?

2. Как изменится скорость реакции

если давление в системе увеличить в два раза?

3. Реакция между оксидом азота (II) и хлором протекает по уравнению

как изменится скорость реакции при увеличении:

а) концентрации оксида азота в два раза;

б) концентрации хлора в два раза;

в) концентрации обоих веществ в два раза?

4. При 150˚С некоторая реакция заканчивается за 16 минут. Принимая температурный коэффициент равным 2,5, рассчитайте, через какой период времени закончится эта реакция при 80˚С.

5. При температуре 40˚С реакция протекает за 36 минут, а при 60˚С – за 4 минуты. Рассчитайте температурный коэффициент скорости реакции.

6. Скорость некоторой реакции при 100 0 С равна 1. Во сколько раз медленнее будет протекать та же реакция при 10 0 С (температурный коэффициент скорости принять равным 2)?

7. При охлаждении реакционной смеси с 50 0 до 20 0 С скорость химической реакции уменьшилась в 27 раз. Вычислите температурный коэффициент этой реакции.

8. Составьте математическое выражение константы химического равновесия для каждой из следующих реакций:

Выполняя это задание, особо обратите внимание на то, что некоторые вещества – участники реакций – находятся в твердом состоянии.

9. Вычислить константу равновесия реакции

если равновесные концентрации равны

10. Примените принцип Ле Шателье для предсказания условий, которые позволяют увеличить выход нижеприведенных реакций за счет смещения равновесия:

, (ΔН

11. Среди приведенных реакций укажите те, для которых повышение давления смещает вправо химическое равновесие:

а)
;

б)
;

в)
;

г)
;

д)
;

12. При некоторой температуре константа равновесия процесса

Начальные концентрации Н 2 и НСОН составляли 4 моль/л и 3 моль/л соответственно. Какова равновесная концентрация СН 3 ОН?

13. Реакция протекает по уравнению 2А ↔ В. Исходная концентрация вещества А равна 0,2 моль/л. Константа равновесия реакции равна 0,5. Вычислите равновесные концентрации реагирующих веществ.

14. При некоторой температуре равновесная концентрация серного ангидрида, образующегося в результате реакции

,

составила 0,02 моль/л. Исходные концентрации сернистого газа и кислорода составляли, соответственно, 0,06 и 0,07 моль/л. Рассчитайте константу равновесия реакции.

ТЕМА 3. СТРОЕНИЕ АТОМА И ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д.И. МЕНДЕЛЕЕВА

3.1. Первые модели строения атома

В 1897 г. Дж. Томсон (Англия) открыл электрон, а в 1909 г. Р. Малликен определил его заряд, который равен 1,6 · 10 -19 Кл. Масса электрона составляет 9,11 ∙ 10 -28 г. В 1904 г. Дж. Томсон предложил модель строения атома, согласно которой атом можно представить в виде положительной сферы с вкрапленными электронами.

В 1910 г. в лаборатории Э. Резерфорда (Англия) в опытах по бомбардировке металлической фольги α-частицами было установлено, что некоторые α-частицы рассеиваются фольгой. Отсюда Резерфорд заключил, что в центре атома существует положительно заряженное ядро малого размера, окруженное электронами. Радиусы ядер лежат в пределах 10 -14 – 10 -15 м, т.е. в 10 4 – 10 5 раз меньше размера атома. Резерфорд предсказал существование протона и его массу, которая в 1800 раз превышает массу электрона.

В 1910 г. Резерфорд предложил ядерную планетарную модель атома, состоящего из тяжелого ядра, вокруг которого двигаются по орбитам электроны, подобно планетам солнечной системы. Однако, как показывает теория электромагнитного поля, электроны в этом случае должны двигаться по спирали, непрерывно излучая энергию, и падать на ядро.

Атомные спектры. При нагреве вещество испускает лучи (излучение). Если излучение имеет одну длину волны, то оно называется монохроматическим. В большинстве же случаев излучение характеризуется несколькими длинами волн. При разложении излучения на монохроматические компоненты получают спектр излучения, где отдельные его составляющие выражаются спектральными линиями. На рис 3.1. приведен атомный спектр водорода. Длины волн, соответствующие атомному спектру водорода, определяются уравнением Бальмера

. (3.1)

где λ – длина волны; R – постоянная Ридберга (109678 см -1); n и m – целые числа (n = 1 для серии Лаймана, n = 2 – для серии Бальмера, n = 3 – для серии Пашена; m = 2, 3, 4 для серии Лаймана, m = 3, 4, 5 для серии Бальмера, m = 4, 5, 6 – для серии Пашена).

Кванты и модель Бора. В 1900 г. М. Планк (Германия) высказал предположение, что вещества поглощают и испускают энергию дискретными порциями, названными им квантами. Энергия кванта Е пропорциональна частоте излучения (колебания) ν:

,

где – h – постоянная Планка (6,626∙10 -34 Дж·с); ν = с/λ, с – скорость света; λ – длина волны.

В 1913 г. датский ученый Н. Бор, испльзуя модель Резерфорда и теорию Планка, предложил модель строения атома водорода, согласно которой электроны двигаются вокруг ядра не по любым, а лишь по разрешенным орбитам, на которых электрон обладает определенными энергиями.При переходе электрона с одной ориты на другую атом поглощает или испускает энергию в виде квантов. Каждая орбита имеет номер n (1, 2, 3, 4,…), который назвали главным квантовым числом. Бор вычислил радиусы орбит. Радиус первой орбиты был 5,29∙10 -13 м, радиус других орбит был равен:

Энергия электрона (эВ) зависила от значения главного квантового

Отрицательный знак энергии означает устойчивость системы, которая тем более устойчива, чем ниже (чем более отрицательна) ее энергия. Атом водорода обладает минимальной энергией, когда электрон находится на первой орбите (n=1). Такое состояние называется основным . При переходе электрона на более высокие орбиты атом становится возбужденным . Такое состояние атома неустойчиво.

Рис. 3.1. Схема энергетических уровней и квантовые переходы атома водорода

При переходе с верхней орбиты на нижнюю атом излучает квант света, что экспериментально обнаруживается в виде серий атомного спектра (рис.3.1.). Значения n и m в уравнении (3.1) соответствуют значениям главных квантовых чисел, с которых электрон переходит (m) и на которые электрон переходит (n).

Теория Бора позволила рассчитать энергию электронов, значения квантов энергии, испускаемых при переходе электрона с одного уровня на другой. Теория Бора получила экспериментальное подтверждение. Однако Она не смогла объяснить поведение электрона в магнитном поле и все атомные спектральные линии. Теория Бора оказалась непригодной для многоэлектронных атомов. Возникла необходимость в новой модели атома, основанной на открытиях в микромире.

3.2. Квантово-механическая модель атома водорода

Двойственная природа электрона. В 1905 г. А. Эйнштейн предсказал, что любое излучение представляет собой поток квантов энергии, называемых фотонами. Из теории Эйнштейна следует, что свет имеет двойственную (корпускулярно-волновую) природу.

В 1924 г. Луи де Бройль (Франция) выдвинул предположение, что электрон также характеризуется корпускулярно-влновым дуализмом. Позднее это было подтверждено на опытах по дифракции на кристаллах. Де Бройль предложил уравнение, связывающее длину волны λ электрона или любой другой частицы с массой m и скоростью ν,

. (3.2)

Волны частиц материи де Бройль назвал материальными волнами. Они свойственны всем частицам или телам. Однако, как следует уравнения (3.2), для макротел длина волны настолько мала, что в настоящее время не может быть обнаружена. Так, для тела с массой 1000 кг, двигающегося со скоростью 108 км/ч (30 м/с) λ = 2,21·10 -38 м.

В 1927 г. В. Гейзенберг (Германия) постулировал принцип неопределенности, согласно которому положение и импульс движения субатомной частицы (микрочастицы) принципиально невозможно определить в любой момент времени с абсолютной точностью. В каждый момент времени можно определить только лишь одно из этих свойств. Э. Шредингер (Австрия) в 1926 г. вывел математическое описание поведения электрона в атоме.

Работы Планка, Эйнштейна, Бора, де Бройля, Гейзенберга, а также Шредингера, предложившего волновое уравнение, заложили основу квантовой механики, изучающей движение и взаимодействие микрочастиц.

Орбиталь. В соответствие с квантово-механическими представлениями невозможно точно определить энергию и положение электрона, поэтому в квантово-механической модели атома используют вероятностный подход для характеристики положения электрона. Вероятность нахождения электрона в определенной области пространства описывается волновой функцией ψ, которая характеризует амплитуду волны, как функцию координат электрона. В наиболее простом случае эта функция зависит от трех пространственных координат и называется орбиталью. В соответствии с определением ψ, орбиталью называется область пространства, в котором наиболее вероятно нахождение электрона. Необходимо заметить, что понятие орбиталь существенно отличается от понятия орбита, которая в теории Бора означала путь электрона вокруг ядра атома. Величина области пространства, которую занимает орбиталь, обычно такова, чтобы вероятность нахождения электрона внутри нее составляла не менее 95 %.

Так как электрон несет отрицательный заряд, то его орбиталь представляет собой определенное распределение заряда, которое получило название электронного облака .

Квантовые числа. Для характеристики поведения электрона в атоме введены квантовые числа: главное, орбитальное, магнитное и спиновое.

Главное квантовое число n определяет энергию и размеры электронных орбиталей. Главное квантовое число принимает значения 1,2,3,4,5,… и характеризует оболочку или энергитический уровень. Чем больше n, тем выше энергия. Оболочки (уровни) имеют буквенные обозначения: К (n = 1), L (n = 2), M (n = 3), N (n = 4), Q (n = 5), переходы электронов с одной оболочки (уровня) на другую сопровождаются выделение квантов энергии, которые могут проявиться в виде спектров (см. рис. 3.1).

Орбитальное квантовое число l определяет форму атомной орбитали. Электронные оболочки расщеплены на подоболочки, поэтому орбитальное квантовое число также характеризует энергитические подуровни в электронной оболочке атома.

Орбитальные квантовые числа принимают целочисловое значение от 0 до (n-1). Подоболочки также обозначаются буквами:

Подоболочка (подуровень)…………………s p d f

Орбитальное квантовое число, l ……………0 1 2 3

Электроны с орбитальным квантовым числом 0, называются s - электронами. Орбитали и соответственно электронные облака имеют сферическую форму (рис. 3.2, а).

Электроны с орбитальным квантовым числом 1 называются p - электронами. Орбитали и соответственно электронные облака имеют форму, напоминающую гантель (рис. 3.2, б).

Электроны с орбитальным квантовым числом 2 называют d – электронами . Орбитали имеют форму четырехлепестковой розетки (рис. 3.2, в).

Электроны с орбитальным квантовым числом 3 получили название f – электронов . Форма их орбиталей еще сложнее, чем форма d – орбиталей.

В первой оболочке (n=1) может быть одна (s–), во второй (n=2) две (s- и p-), в третьей (n=3) – три (s-, p-, d-), в четвертой (n=4) – четыре (s-, p-, d-, f-)-подоболочки.

Магнитное квантовое число m l характеризует положение орбитали в пространстве (см. рис. 3.2).

Соответственно в подоболочке s (l = 0) имеется одна орбиталь (m l = 0), в подоболочке р (l = 1) – три орбитали (m l = -1, 0, +1), в подоболочке d (l = 2) пять орбиталей (m l = -2, -1, 0, +1, +2).

Атомная орбиталь. Каждая электронная орбиталь в атоме (атомная орбиталь, АО) может характеризоваться тремя квантовыми числами n, l и m l .

Условно атомную орбиталь обозначают в виде клеточки .

Соответственно для s-подоболочки имеется одна АО , для р-подоболочки – три АО спина. работы ... может быть самостоятельной ... учеб. пособие по социологии для студентов вузов. ...

  • Литература универсального содержания

    Литература

    Помещены задачи для самостоятельной работы . Пособие предназначено для студентов университетов, обучающихся по специальностям "Математика" и "Прикладная математика", может быть также...