Изменение константы равновесия. Константа равновесия. Обратимые и необратимые химические реакции

Химическим равновесием называется такое состояние обратимой химической реакции

aA + b B = c C + d D,

при котором с течением времени не происходит изменения концентраций реагирующих веществ в реакционной смеси. Состояние химического равновесия характеризуется константой химического равновесия :

где C i – концентрации компонентов в равновесной идеальной смеси.

Константа равновесия может быть выражена также через равновесные мольные доли X i компонентов:

Для реакций, протекающих в газовой фазе, константу равновесия удобно выражать через равновесные парциальные давления P i компонентов:

Для идеальных газов P i = C i RT и P i = X i P , где P – общее давление, поэтому K P , K C и K X связаны следующим соотношением:

K P = K C (RT) c+d–a–b = K X P c+d–a–b . (9.4)

Константа равновесия связана с r G o химической реакции:

(9.5)

(9.6)

Изменение r G или r F в химической реакции при заданных (не обязательно равновесных) парциальных давлениях P i или концентрациях C i компонентов можно рассчитать по уравнению изотермы химической реакции (изотермы Вант-Гоффа ):

. (9.7)

. (9.8)

Согласно принципу Ле Шателье , если на систему, находящуюся в равновесии, оказать внешнее воздействие, то равновесие сместится так, чтобы уменьшить эффект внешнего воздействия. Так, повышение давления сдвигает равновесие в сторону уменьшения количества молекул газа. Добавление в равновесную смесь какого-либо компонента реакции сдвигает равновесие в сторону уменьшения количества этого компонента. Повышение (или понижение) температуры сдвигает равновесие в сторону реакции, протекающей с поглощением (выделением) теплоты.

Количественно зависимость константы равновесия от температуры описывается уравнением изобары химической реакции (изобары Вант-Гоффа )

(9.9)

и изохоры химической реакции (изохоры Вант-Гоффа )

. (9.10)

Интегрирование уравнения (9.9) в предположении, что r H реакции не зависит от температуры (что справедливо в узких интервалах температур), дает:

(9.11)

(9.12)

где C – константа интегрирования. Таким образом, зависимость ln K P от 1 должна быть линейной, а наклон прямой равен – r H /R .

Интегрирование в пределах K 1 , K 2 , и T 1, T 2 дает:

(9.13)

(9.14)

По этому уравнению, зная константы равновесия при двух разных температурах, можно рассчитать r H реакции. Соответственно, зная r H реакции и константу равновесия при одной температуре, можно рассчитать константу равновесия при другой температуре.

ПРИМЕРЫ

CO(г) + 2H 2 (г) = CH 3 OH(г)

при 500 K. f G o для CO(г) и CH 3 OH(г) при 500 К равны –155.41 кДж. моль –1 и –134.20 кДж. моль –1 соответственно.

Решение. G o реакции:

r G o = f G o (CH 3 OH) – f G o (CO) = –134.20 – (–155.41) = 21.21 кДж. моль –1 .

= 6.09 10 –3 .

Пример 9-2. Константа равновесия реакции

равна K P = 1.64 10 –4 при 400 o C. Какое общее давление необходимо приложить к эквимолярной смеси N 2 и H 2 , чтобы 10% N 2 превратилось в NH 3 ? Газы считать идеальными.

Решение. Пусть прореагировало моль N 2 . Тогда

N 2 (г) + 3H 2 (г) = 2NH 3 (г)
Исходное количество 1 1
Равновесное количество 1– 1–3 2 (Всего: 2–2)
Равновесная мольная доля:

Следовательно, K X = и K P = K X . P –2 = .

Подставляя = 0.1 в полученную формулу, имеем

1.64 10 –4 =, откуда P = 51.2 атм.

Пример 9-3. Константа равновесия реакции

CO(г) + 2H 2 (г) = CH 3 OH(г)

при 500 K равна K P = 6.09 10 –3 . Реакционная смесь, состоящая из 1 моль CO, 2 моль H 2 и 1 моль инертного газа (N 2) нагрета до 500 K и общего давления 100 атм. Рассчитать состав равновесной смеси.

Решение. Пусть прореагировало моль CO. Тогда

CO(г) + 2H 2 (г) = CH 3 OH(г)
Исходное количество: 1 2 0
Равновесное количество: 1– 2–2
Всего в равновесной смеси: 3–2 моль компонентов + 1 моль N 2 = 4–2 моль
Равновесная мольная доля

Следовательно, K X = и K P = K X . P –2 = .

Таким образом, 6.09 10 –3 = .

Решая это уравнение, получаем = 0.732. Соответственно, мольные доли веществ в равновесной смеси равны: = 0.288, = 0.106, = 0.212 и = 0.394.

Пример 9-4. Для реакции

N 2 (г) + 3H 2 (г) = 2NH 3 (г)

при 298 К K P = 6.0 10 5 , а f H o (NH 3) = –46.1 кДж. моль –1 . Оценить значение константы равновесия при 500 К.

Решение. Стандартная мольная энтальпия реакции равна

r H o = 2 f H o (NH 3) = –92.2 кДж. моль –1 .

Согласно уравнению (9.14), =

Ln (6.0 10 5) + = –1.73, откуда K 2 = 0.18.

Отметим, что константа равновесия экзотермической реакции уменьшается с ростом температуры, что соответствует принципу Ле Шателье.

ЗАДАЧИ

  1. При 1273 К и общем давлении 30 атм в равновесной смеси
  2. CO 2 (г) + C(тв) = 2CO(г)

    содержится 17% (по объему) CO 2 . Сколько процентов CO 2 будет содержаться в газе при общем давлении 20 атм? При каком давлении в газе будет содержаться 25% CO 2 ?

  3. При 2000 o C и общем давлении 1 атм 2% воды диссоциировано на водород и кислород. Рассчитать константу равновесия реакции
  4. H 2 O(г) = H 2 (г) + 1/2O 2 (г) при этих условиях.

  5. Константа равновесия реакции
  6. CO(г) + H 2 O(г) = CO 2 (г) + H 2 (г)

    при 500 o C равна K p = 5.5. Смесь, состоящая из 1 моль CO и 5 моль H 2 O, нагрели до этой температуры. Рассчитать мольную долю H 2 O в равновесной смеси.

  7. Константа равновесия реакции
  8. N 2 O 4 (г) = 2NO 2 (г)

    при 25 o C равна K p = 0.143. Рассчитать давление, которое установится в сосуде объемом 1 л, в который поместили 1 г N 2 O 4 при этой температуре.

  9. Сосуд объемом 3 л, содержащий 1.79 10 –2 моль I 2 , нагрели до 973 K. Давление в сосуде при равновесии оказалось равно 0.49 атм. Считая газы идеальными, рассчитать константу равновесия при 973 K для реакции
  10. I 2 (г) = 2I (г).

  11. Для реакции
  12. при 250 o C r G o = –2508 Дж. моль –1 . При каком общем давлении степень превращения PCl 5 в PCl 3 и Cl 2 при 250 o C составит 30%?

  13. Для реакции
  14. 2HI(г) = H 2 (г) + I 2 (г)

    константа равновесия K P = 1.83 10 –2 при 698.6 К. Сколько граммов HI образуется при нагревании до этой температуры 10 г I 2 и 0.2 г H 2 в трехлитровом сосуде? Чему равны парциальные давления H 2 , I 2 и HI?

  15. Сосуд объемом 1 л, содержащий 0.341 моль PCl 5 и 0.233 моль N 2 , нагрели до 250 o C. Общее давление в сосуде при равновесии оказалось равно 29.33 атм. Считая все газы идеальными, рассчитать константу равновесия при 250 o C для протекающей в сосуде реакции
  16. PCl 5 (г) = PCl 3 (г) + Cl 2 (г)

  17. Константа равновесия реакции
  18. CO(г) + 2H 2 (г) = CH 3 OH(г)

    при 500 K равна K P = 6.09 10 –3 . Рассчитать общее давление, необходимое для получения метанола с 90% выходом, если CO и H 2 взяты в соотношении 1: 2.

  19. При 25 o C f G o (NH 3) = –16.5 кДж. моль –1 . Рассчитать r G реакции образования NH 3 при парциальных давлениях N 2 , H 2 и NH 3 , равных 3 атм, 1 атм и 4 атм соответственно. В какую сторону реакция будет идти самопроизвольно при этих условиях?
  20. Экзотермическая реакция
  21. CO(г) + 2H 2 (г) = CH 3 OH(г)

    находится в равновесии при 500 K и 10 бар. Если газы идеальные, как повлияют на выход метанола следующие факторы: а) повышение T ; б) повышение P ; в) добавление инертного газа при V = const; г) добавление инертного газа при P = const; д) добавление H 2 при P = const?

  22. Константа равновесия газофазной реакции изомеризации борнеола (C 10 H 17 OH) в изоборнеол равна 0.106 при 503 K. Смесь 7.5 г борнеола и 14.0 г изоборнеола поместили в сосуд объемом 5 л и выдерживали при 503 K до достижения равновесия. Рассчитать мольные доли и массы борнеола и изоборнеола в равновесной смеси.
  23. Равновесие в реакции
  24. 2NOCl(г) = 2NO(г) + Cl 2 (г)

    устанавливается при 227 o C и общем давлении 1.0 бар, когда парциальное давление NOCl равно 0.64 бар (изначально присутствовал только NOCl). Рассчитать r G o для реакции. При каком общем давлении парциальное давление Cl 2 будет равно 0.10 бар?

  25. Рассчитать общее давление, которое необходимо приложить к смеси 3 частей H 2 и 1 части N 2 , чтобы получить равновесную смесь, содержащую 10% NH 3 по объему при 400 o C. Константа равновесия для реакции
  26. N 2 (г) + 3H 2 (г) = 2NH 3 (г)

    при 400 o C равна K = 1.60 10 –4 .

  27. При 250 o C и общем давлении 1 атм PCl 5 диссоциирован на 80% по реакции
  28. PCl 5 (г) = PCl 3 (г) + Cl 2 (г).

    Чему будет равна степень диссоциации PCl 5 , если в систему добавить N 2 , чтобы парциальное давление азота было равно 0.9 атм? Общее давление поддерживается равным 1 атм.

  29. При 2000 o C для реакции
  30. N 2 (г) + O 2 (г) = 2NO(г)

    K p = 2.5 10 –3 . В равновесной смеси N 2 , O 2 , NO и инертного газа при общем давлении 1 бар содержится 80% (по объему) N 2 и 16% O 2 . Сколько процентов по объему составляет NO? Чему равно парциальное давление инертного газа?

  31. Рассчитать стандартную энтальпию реакции, для которой константа равновесия
    а) увеличивается в 2 раза, б) уменьшается в 2 раза при изменении температуры от 298 К до 308 К.
  32. Зависимость константы равновесия реакции 2C 3 H 6 (г) = C 2 H 4 (г) + C 4 H 8 (г) от температуры между 300 К и 600 К описывается уравнением

ln K = –1.04 –1088 /T +1.51 10 5 /T 2 .

ДЛЯ УЧИТЕЛЕЙ СРЕДНИХ ШКОЛ, СТУДЕНТОВ ПЕДАГОГИЧЕСКИХ ВУЗОВ И ШКОЛЬНИКОВ 9–10 КЛАССОВ, РЕШИВШИХ ПОСВЯТИТЬ СЕБЯ ХИМИИ И ЕСТЕСТВОЗНАНИЮ
УЧЕБНИК · ЗАДАЧНИК · ЛАБОРАТОРНЫЙ ПРАКТИКУМ · НАУЧНЫЕ РАССКАЗЫ ДЛЯ ЧТЕНИЯ

§ 3.2. Константа равновесия
и изобарный потенциал реакции

Константа равновесия легко может быть найдена из значения изобарного потенциала, который вычисляется по табличным данным об энтальпии образования и энтропии исходных веществ и продуктов реакции

Вам эта формула понадобится, когда нужно будет вычислить константу равновесия изучаемой реакции.

В этом учебнике мы стараемся не давать готовых формул, а выводить их простейшими методами математической логики, поэтому ниже приводится вывод этой формулы. Прочитав этот материал, вы познакомитесь с простейшими представлениями теории вероятности, с энтропией активации и др.

Не только энергия активации определяет скорость химической реакции. Огромную роль играют размеры и форма реагирующих молекул и расположение в них реакционноспособных атомов или их групп. В связи с этим при столкновении двух частиц важна их определенная ориентация, т. е. контакт именно тех центров, которые являются реакционноспособными.

Обозначим вероятность необходимой для взаимодействия ориентации молекул при столкновении W:

Натуральный логарифм величины W, умноженный на газовую постоянную R, называется энтропией активации S a:

Из этого выражения следует:

Откуда по определению логарифма получаем вероятность необходимой ориентации:

Чем больше вероятность необходимой ориентации для прохождения реакции, тем выше ее скорость и соответственно константа скорости, что можно записать:

Раньше мы узнали, что константа скорости зависит от энергии активации и температуры:

Таким образом, константа скорости зависит от энергии активации, температуры и энтропии активации:

Введем коэффициент пропорциональности Z и поставим знак равенства:

Полученное выражение называется основным уравнением химической кинетики .

Это уравнение объясняет некоторые стороны катализа: катализатор понижает энергию активации реакции и повышает энтропию активации, т. е. повышает вероятность надлежащей для взаимодействия ориентации реагирующих частиц.

Интересно отметить, что энтропия активации учитывает не только определенную ориентацию частиц, но и продолжительность контакта в момент столкновения. Если продолжительность контакта частиц очень мала, то их электронные плотности не успевают перераспределиться для образования новых химических связей, и частицы, отталкиваясь, расходятся в разные стороны. Катализатор также в значительной мере увеличивает продолжительность контакта реагирующих частиц.

Еще одна особенность каталитического действия: катализатор забирает избыток энергии с вновь образовавшейся частицы, и она не распадается на исходные частицы из-за своей высокой энергетической активности.

Вы знаете, что константа равновесия – это отношение констант скоростей прямой и обратной реакций:

Заменим константы скоростей прямой и обратной реакций на выражения основного уравнения химической кинетики:

Отношение двух коэффициентов пропорциональности Z пр /Z обр – величина постоянная, которую внесем в значение константы равновесия, отчего она останется, как и прежде, константой.

Если вы вспомните правила действий с показательными функциями, вам будет понятно преобразование формулы:

В соответствии с законом Гесса разность энергий активации обратной и прямой реакций есть изменение энтальпии (убедитесь в этом, нарисовав энтальпийную диаграмму реакции, проходящей с выделением теплоты, и не забыв, что в данном случае D Н < 0 ):

Точно так же разность обозначим D S :

Объяснить, почему перед скобками поставлен знак минус.

Получаем уравнение:

Прологарифмируем обе части этого уравнения:

Откуда имеем:

Это уравнение настолько важно для химии и других естественных наук, что многие зарубежные студенты-химики носят рубашки с изображением этой формулы.

Если D G выражается в Дж/моль, то формула приобретает вид:

У этой формулы есть одна особенность: если константу равновесия определяют через давления газообразных веществ, то в выражение константы равновесия подставляют давления этих веществ в атмосферах (1атм=101325Па=760мм рт.ст.).

Эта формула позволяет по известному значению D G реакции вычислить константу равновесия и таким образом узнать состав равновесной системы при заданной температуре. Формула показывает, что чем выше константа равновесия и чем больше в равновесной реакционной смеси содержится продуктов реакции (веществ, стоящих в правой части уравнения реакции), тем более отрицательное значение имеет изменение изобарного потенциала реакции. И наоборот, чем ниже значение константы равновесия и чем меньше в равновесной смеси содержится продуктов реакции и больше исходных веществ, тем меньше отрицательное значение D G .

Когда константа равновесия больше 1 и изобарный потенциал отрицателен, принято говорить, что равновесие смещено в сторону продуктов реакции, или вправо. Когда константа равновесия меньше 1 и изобарный потенциал положителен, принято говорить, что равновесие смещено в сторону исходных веществ, или влево.

При равенстве константы равновесия 1 изобарный потенциал равен 0. Такое состояние системы принято считать границей между смещением равновесия вправо или влево. Когда для данной реакции изменение изобарного потенциала отрицательно (D G<0 ), принято говорить, что реакция может проходить в прямом направлении; если D G>0 , говорят, что реакция не проходит.

Таким образом,

D G<0 – реакция может проходить (термодинамически возможна);

D G<0 , то К>1 – равновесие смещено в сторону продуктов, вправо;

D G>0 , то К<1 – равновесие смещено в сторону исходных веществ, влево.

Если вам понадобится узнать, возможна ли интересующая вас реакция (например, узнать, возможен ли синтез нужного красителя, будет ли спекаться данный минеральный состав, влияние кислорода воздуха на окраску и т. п.), достаточно рассчитать для этой реакции D G . Если окажется, что изменение изобарного потенциала отрицательно, то реакция возможна, и вы можете смешивать различные исходные вещества для получения желаемого продукта.

Прочитайте, что нужно сделать, чтобы рассчитать изменение изобарного потенциала и константу равновесия при различных температурах (алгоритм расчета).

1. Выпишите из справочных таблиц значения (для температуры 298 К) энтальпий образования из простых веществ D Н обр и энтропии S всех веществ, записанных в уравнении химической реакции. Если D Н обр выражены в кДж/моль, то их следует перевести в Дж/моль (почему?).

2. Подсчитайте изменение энтальпии в реакции (298 К) как разность между суммой энтальпий образования продуктов и суммой энтальпий образования исходных веществ, помня о стехиометрических коэффициентах:

3. Подсчитайте изменение энтропии в реакции (298 К) как разность между суммой энтропий продуктов и суммой энтропий исходных веществ, помня о стехиометрических коэффициентах:

4. Составьте уравнение зависимости изменения изобарного потенциала от изменений энтальпии реакции, энтропии и температуры, подставив в известное вам уравнение полученные только что численные значения D Н р-ции и D S р-ции :

5. Подсчитайте изменение изобарного потенциала при стандартной температуре 298 К:

6. По знаку D G р-ции , 298 сделайте вывод о возможности прохождения реакции при стандартной температуре: если знак «минус», то реакция термодинамически возможна; если знак «плюс», то реакция невозможна.

7. Подсчитайте D G р-ции при интересующей вас температуре Т:

и сделайте вывод, как влияет изменение температуры на возможность прохождения реакции. Если окажется, что при этой температуре изменение изобарного потенциала стало менее положительное или более отрицательное по сравнению с D G 298 , то, следовательно, при этой температуре реакция становится более вероятной.

8. Вычислите из известного вам уравнения константу равновесия K при интересующей вас температуре Т:

9. Сделайте вывод о смещении равновесия в сторону исходных веществ (К<1) или в сторону продуктов (К>1).

Для заключения о возможности прохождения реакции при отрицательном значении изменения изобарного потенциала (D G р-ции <0 ) одних термодинамических данных часто оказывается недостаточно. Термодинамически возможная реакция может оказаться кинетически заторможенной и осуществимой при изменении условий (концентрации веществ, давление, температура), через другие реакционные пути или в присутствии правильно подобранного катализатора.

Рассмотрим на примере реакции кристаллического железа с газообразной водой (пары воды):

как узнать о термодинамической возможности реакции.

Эта реакция интересна тем, что показывает причины уменьшения блеска металлического изделия и разрушения его от коррозии.

Прежде всего подберем стехиометрические коэффициенты уравнения реакции:

Выпишем из справочных таблиц термодинамические данные (температура 298 К) для всех участников реакции:

Рассчитаем изменение энтальпии в этой реакции, вспомнив, что энтальпии простых веществ равны нулю:

Выразим изменение энтальпии в Дж:

Реакция сопровождается выделением теплоты, Q>0, Q=+50 300 Дж/моль, и это дает возможность предположить, что она проходит самопроизвольно. Однако уверенно сказать, что реакция самопроизвольна, можно только по знаку изменения изобарного потенциала.

Рассчитаем изменение энтропии в этой реакции, не забыв про стехиометрические коэффициенты:

Энтропия системы в результате реакции понижается, поэтому можно отметить, что в системе происходит повышение порядка.

Теперь составим уравнение зависимости изменения изобарного потенциала от изменений энтальпии, энтропии и температуры:

Рассчитаем изменение изобарного потенциала в реакции при стандартной температуре 298 К:

Высокое отрицательное значение изменения изобарного потенциала говорит о том, что при комнатной температуре железо может быть окислено кислородом. Если бы вы смогли получить тончайший порошок железа, то увидели бы, как железо на воздухе сгорает. Почему на воздухе не горят железные изделия, статуэтки, гвозди и т. п.? Результаты расчета показывают, что на воздухе железо корродирует, т. е. разрушается, превращаясь в оксиды железа.

Теперь посмотрим, как влияет повышение температуры на возможность прохождения этой реакции. Рассчитаем изменение изобарного потенциала при температуре 500 К:

Получили результат, показывающий, что при повышении температуры изменение изобарного потенциала реакции становится менее отрицательной величиной. Это означает, что с повышением температуры реакция становится менее термодинамически вероятной, т. е. равновесие реакции все сильнее смещается в сторону исходных веществ.

Интересно узнать, при какой температуре равновесие в одинаковой мере смещено и в сторону продуктов реакции, и в сторону исходных веществ. Это происходит при D G р-ции =0 (константа равновесия равна 1):

Откуда получаем:

Т=150300/168,2=894К , или 621°С .

При этой температуре равновероятно прохождение реакции как в прямом, так и в обратном направлении. При температуре выше 621°С начинает преобладать обратная реакция восстановления Fe 3 O 4 водородом. Эта реакция является одним из способов получения чистого железа (в металлургии оксиды железа восстанавливают углеродом).

При температуре 298 К:

Таким образом, при повышении температуры константа равновесия понижается.

Оксид железа Fe 3 O 4 называется магнетитом (магнитный железняк). Этот оксид железа в отличие от оксидов FeО (вюстит) и Fe 2 О 3 (гематит), притягивается магнитом. Существует легенда, что в древности пастух по имени Магнус нашел очень маленький продолговатый камушек, который он своими жирными (почему это важно?) руками положил на поверхность воды в миске. Камушек не утонул и стал плавать по воде, причем, как ни поворачивал миску пастух, камушек всегда указывал только в одну сторону. Будто бы так был изобретен компас, а минерал получил название от имени этого пастуха. Хотя, возможно, магнетит был так назван по имени древнего города Малой Азии – Магнесии. Магнетит – главная руда, из которой добывают железо.

Иногда формулу магнетита изображают так: FeО Fe 2 O 3 , подразумевая, что магнетит состоит из двух оксидов железа. Это неправильно: магнетит – индивидуальное вещество.

Другой оксид Fe 2 О 3 (гематит) – красный железняк – так назван из-за своего красного цвета (в пер. с греч. – кровь). Из гематита получают железо.

Оксид FeО почти не встречается в природе и не имеет промышленного значения.

П р и м е р.

Вычислите константу химического равновесия для обратимой гомогенной реакции, СО + Н 2 О = СО 2 + Н 2 , исходя из того, что равновесие концентрации веществ:

[СО] р = 0,045 моль/л,

[Н 2 О] р = 0,064 моль/л,

[СО 2 ] р = 0,18 моль/л.

Дано:

[СО] р = 0,045 моль/л

[Н 2 О] р = 0,064 моль/л

[СО 2 ] р = 0,18 моль/л

Решение:

Молярное отношение продуктов реакции 1:1, поэтому

[СО 2 ] р = [Н 2 ] р = 0,18 моль/л.

Исходя из выражения (2.1) рассчитываем величину константы химического равновесия:

К х.р = [СО 2 ] р [Н 2 ] р / [СО 2 ] р [Н 2 О] р = 0,18 · 0,18/0,045 · 0,064

Ответ: 11,25.

2. Вычисление равновесных концентраций по исходным концентрациям реагирующих веществ и наоборот

П р и м е р 1.

Обратимая газовая реакция протекает по уравнению:

СО + CI 2 = COCI 2 .

Исходные концентрации реагирующих веществ:

[СО] 0 = 0,03 моль/л;

0 = 0,02 моль/л.

После наступления равновесия концентрация угарного газа стала:

[СО] р = 0,021 моль/л.

Вычислить равновесные концентрации остальных веществ и величину константы химического равновесия.

Дано:

[СО] 0 = 0,03 моль/л

[С1 2 ] 0 = 0,02 моль/л

[СО] р = 0,021 моль/л

P , p , K x . p – ?

Решение:

К моменту равновесия изменение концентрации СО составило:

∆[СО] = [СО] 0 – [СО] р = 0,03 – 0,021 = 0,009 моль/л.

Поскольку молярное отношение веществ, участвующих в реакции 1:1:1, то изменение концентрации всех веществ одинаково:

[С1 2 ] р = [С1 2 ] 0 – ∆[С1 2 ] = 0,02 – 0,009 = 0,011 моль/л,

[СОС1 2 ] р = 0,009 моль/л,

К х·р = [СОС1 2 ] Р / [СО] Р [С1 2 ] р = 0,009/0,021 · 0,011 = 39.

Результаты вычислений внесем в таблицу, где знаки «+» и «–» означают соответственно увеличение или понижение концентрации вещества.

Ответ: [С1 2 ] р = 0,011 моль/л; [СОС1 2 ] р = 0,009 моль/л; К х·р = 39.

П р и м е р 2.

Равновесные концентрации веществ, участвующих в обратимой реакции 2NO + О 2 = 2NО 2 , следующие (моль/л):

Р = 0,056;

[О 2 ] = 0,028;

Дано:

Р = 0,056 моль/л

Р = 0,028 моль/л

Р = 0,044 моль/л

0 , [О 2 ] 0 – ?

Решение:

Начальная концентрация оксида азота (IV) была 0 = 0, а ее изменение к моменту равновесия составляет ∆ = 0,044 моль/л.

Молярное отношение NO и NО 2 в реакции 2:2 (1:1), следовательно, начальная концентрация NO будет:

0 = р + 0,044 = 0,056 + 0,044 = 0,1 моль/л.

Молярное отношение О 2 и NO 2 составляет 1:2, отсюда начальная концентрация О 2 будет:

[О 2 ] 0 = [О 2 ] р + 0,044/2 = 0,028 + 0,022 = 0,05 моль/л.

Результаты вычислений записываем в таблицу

Ответ: 0 = 0,1 моль/л; [О 2 ] 0 = 0,05 моль/л.

П р и м е р 3.

Реакция синтеза аммиака протекает по уравнению ЗН 2 + N 2 = 2NH 3 . Начальные концентрации исходных веществ равны (моль/л): водорода – 0,05; азота – 0,04: константа скорости реакции равна 0,3. Рассчитать: а) начальную скорость реакции; б) скорость реакции, когда концентрация аммиака стала равной 0,02 моль/л.

Дано:

а) [Н 2 ] 0 = 0,05 моль/л

0 = 0,04 моль/л

б) = 0,02 моль/л

Решение:

а) В соответствии с законом действующих масс находим начальную скорость реакции:

υ 0 = k 0 3 0 = 3 · 10 –1 3 = 1,5 · 10 –6 моль/л·с.

б) Исходя из уравнения реакции молярное отношение водорода и аммиака 3:2. Увеличение концентрации аммиака на 0,02 моль/л вызывает уменьшение концентрации водорода на 0,03 моль/л (0,02 – 3/2 = 0,03).

Таким образом, к моменту когда концентрация аммиака выросла на 0,02 моль/л, концентрация водорода уменьшилась до 0,02 моль/л (0,05 – 0,03 = 0,02). Молярное отношение азота и аммиака 1:2. Концентрация азота уменьшится на 0,01 моль (0,02 – 1/2 = = 0,01) и станет равной 0,03 моль/л (0,04 – 0,01 = 0,03). Скорость реакции с уменьшением концентрации реагирующих веществ также понизится:

υ = k 3 = 3 · 10 –1 3 = 7,2 · 10 –8 моль/л·с.

Ответ: а) 1,5 · 10 –6 моль/л·с; б) 7,2 · 10 –8 моль/л·с.

П р и м е р 4.

Реакция протекает по уравнению 2NO + О 2 = 2NO 2 , через некоторое время после начала реакции концентрации всех веществ, участвующих в реакции, стали: = 0,04 моль/л; [О 2 ] = 0,01 моль/л; = 0,02 моль/л. Рассчитать начальные концентрации исходных веществ и начальную скорость реакции, если константа скорости реакции k = 1.

Дано:

0,04 моль/л

[О 2 ] = 0,01 моль/л

0,02 моль/л

0 , 0 , x 0 – ?

Решение:

В соответствии с уравнением реакции молярное отношение NO и NO 2 равно 2:2 (1:1).

Увеличение концентрации продукта реакции NO 2 до 0,02 моль/л вызвало уменьшение концентрации NO на 0,02 моль. Следовательно, начальная концентрация оксида азота (II) была:

0 = +0,02 = 0,04 + 0,02 = 0,06 моль/л.

Молярное отношение О 2 и NO 2 составляет 1:2, поэтому повышение концентрации NO 2 до 0,02 моль вызвало уменьшение концентрации кислорода на 0,01 моль (0,02 · 1/2 = 0,01). В результате начальная концентрация кислорода была:

[О 2 ] 0 = [О 2 ] + 0,01 = 0,01 + 0,01 = 0,02 моль/л.

Начальная скорость реакции

υ 0 = k 0 2 0 = 1 2 = 7,2 · 10 –5 моль/л·с.

Ответ: 0 = 0,06 моль/л; [О 2 ] 0 = 0,02 моль/л;

х 0 = 7,2 · 10 –5 моль/л·с.

Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком:

аA + вB D сC + d D,

где A и B - исходные вещества прямой реакции; C и D - продукты прямой реакции; а, в, с, и d - стехиометрические коэффициенты.

В начальный момент времени, когда концентрация веществ A и B наибольшая, скорость прямой реакции также будет наибольшей и по закону действующих масс равна

u пр = k 1 C А а C В в (6.1)

где k 1 - константа скорости прямой реакции.

С течением времени концентрация веществ A и B уменьшается, а, следовательно, уменьшается и скорость прямой реакции.

В начальный момент времени концентрация веществ C и D равна нулю, а, следовательно, и скорость обратной реакции равна нулю, с течением времени концентрация веществ C и D возрастает, а, следовательно, возрастает и скорость обратной реакции и она будет равна

u обр = k 2 C C с C D d (6.2)

где k 2 - константа скорости обратной реакции.

В момент достижения равновесия, концентрации принимают значение равновесных, а скорости равны между собой u пр = u обр, следовательно

k 1 C А а C В в = k 2 C C с C D d (6.3)

Перенесем константы скорости в одну сторону, а концентрации в другую:

Отношение двух постоянных величин есть величина постоянная, и называется она константой химического равновесия:

Константа равновесия показывает во сколько раз скорость прямой реакции больше или меньше скорости обратной реакции.

Константа равновесия - это отношение произведения равновесных концентраций продуктов реакции, взятых в степени их стехиометрических коэффициентов к произведению равновесных концентраций исходных веществ, взятых в степени их стехиометрических коэффициентов.

Величина константы равновесия зависит от природы реагирующих веществ и температуры, и не зависит от концентрации в момент равновесия, поскольку их отношение - всегда величина постоянная, численно равная константе равновесия. Если гомогенная реакция идет между веществами в растворе, то константа равновесия обозначается K С, а если между газами, то K Р.

где Р С, Р D , Р А и Р В - равновесные давления участников реакции.

Используя уравнение Клапейрона-Менделеева , можно определить связь между K Р и K С

Перенесем объем в правую сторону

р = RT, т. е. р = CRT (6.9)

Подставим уравнение (6.9) в (6.7), для каждого реагента и упростим

, (6.10)

где Dn - изменение числа молей газообразных участников реакции

Dn = (с + d ) - (а + в) (6.11)

Следовательно,

K Р = К С (RT) D n (6.12)

Из уравнения (6.12) видно, что K Р = К С, если не меняется количество молей газообразных участников реакции (Dn = 0) или газы в системе отсутствуют.


Необходимо отметить, что в случае гетерогенного процесса концентрацию твердой или жидкой фазы в системе не учитывают.

Например, константа равновесия для реакции вида 2А + 3В = С + 4D, при условии, что все вещества газы и имеет вид

а если D - твердое, то

Константа равновесия имеет большое теоретическое и практическое значение. Численное значение константы равновесия позволяет судить о практической возможности и глубине протекания химической реакции.

Если K > 1, то данная реакция протекает со значительным выходом продуктов реакции; если K > 10 4 , то реакция необратима; если K < 1, то такая реакция нетехнологична; если K < 10 -4 , то такая реакция невозможна.

Зная константу равновесия, можно определить состав реакционной смеси в момент равновесия и рассчитать константу выхода продуктов реакции. Константу равновесия можно определить, используя экспериментальные методы, анализируя количественный состав реакционной смеси в момент равновесия, или применяя теоретические расчеты. Для многих реакций при стандартных условиях константа равновесия - это табличная величина.

6.3. Факторы, влияющие на химическое равновесие. Принцип Ле-Шателье

При внешнем воздействии на систему происходит смещение химического равновесия, т. е. изменяются равновесные концентрации исходных веществ и продуктов реакции. Если в результате внешнего воздействия увеличиваются равновесные концентрации продуктов реакции, то говорят о смещении равновесия вправо (в сторону прямой реакции). Если вследствие внешнего воздействия увеличиваются равновесные концентрации исходных веществ, то говорят о смещении равновесия влево (в сторону обратной реакции).

Влияние различных факторов на смещение химического равновесия отражает принцип Ле-Шателье (1884): если на систему, находящуюся в устойчивом химическом равновесии воздействовать извне, изменяя температуру, давление или концентрацию, то химическое равновесие смещается в том направлении, при котором эффект произведенного воздействия уменьшается.

Необходимо отметить, что катализатор не смещает химическое равновесие, а только ускоряет его наступление.

Рассмотрим влияние каждого фактора на смещение химического равновесия для реакции общего вида:

аA + вB = сC + d D ± Q.

Влияние изменения концентрации. Согласно принципу Ле-Шателье, увеличение концентрации одного из компонентов равновесной химической реакции приводит к сдвигу равновесия в сторону усиления той реакции, при которой происходит химическая переработка этого компонента. И наоборот, уменьшение концентрации одного из компонентов приводит к сдвигу равновесия в сторону образования этого компонента.

Таким образом, увеличение концентрации вещества А или В смещает равновесие в прямом направлении; увеличение концентрации вещества С или D смещает равновесие в обратном направлении; уменьшение концентрации А или В смещает равновесие в обратном направлении; уменьшение концентрации вещества С или D смещает равновесие в прямом направлении. (Схематично можно записать: -C А или C В ®; -C С или C D ¬; ¯ C А или C В ¬; ¯ C С или C D ®).

Влияние температуры. Общее правило, определяющее влияние температуры на равновесие, имеет следующую формулировку: повышение температуры способствует сдвигу равновесия в сторону эндотермической реакции (- Q); понижение температуры способствует сдвигу равновесия в сторону экзотермической реакции (+ Q).

Реакции, протекающие без тепловых эффектов, не смещают химического равновесия при изменении температуры. Повышение температуры в этом случае приводит лишь к более быстрому установлению равновесия, которое было бы достигнуто в данной системе и без нагревания, но за более длительное время.

Таким образом, в экзотермической реакции (+ Q) увеличение температуры приводит к сдвигу равновесия в обратном направлении и, наоборот, в эндотермической реакции (- Q) увеличение температуры приводит к сдвигу в прямом направлении, а уменьшение температуры - в обратном направлении. (Схематично можно записать: при +Q -Т ¬; ¯Т ®; при -Q -Т ®; ¯Т ¬).

Влияние давления. Как показывает опыт, давление оказывает заметное влияние на смещение только тех равновесных реакций, в которых участвуют газообразные вещества, и при этом изменение числа молей газообразных участников реакции (Dn) не равно нулю. При увеличении давления равновесие смещается в сторону той реакции, которая сопровождается образованием меньшего количества молей газообразных веществ, а при понижении давления - в сторону образования большего количества молей газообразных веществ.

Таким образом, если Dn = 0, то давление не влияет на смещение химического равновесия; если Dn < 0, то увеличение давления смещает равновесие в прямом направлении, уменьшение давления в сторону обратной реакции; если Dn > 0, то увеличение давления смещает равновесие в обратном направлении, а уменьшение давления - в сторону прямой реакции. (Схематично можно записать: при Dn = 0 Р не влияет; при Dn 0 -Р ¬, ¯Р ®). Принцип Ле-Шателье применим как к гомогенным, так и к гетерогенным системам и дает качественную характеристику сдвига равновесия.

Пример 1 . Вычислить изменение энергии Гиббса ΔG в реакции димеризации диоксида азота 2NО 2(г) = N 2 O 4(г) при стандартной температуре 298 К, 273 К и 373 К. Сделать вывод о направлении процесса. Определить константы равновесия реакции димеризации диоксида азота при выше указанных температурах. Определить температуру, при которой Δ G = 0. Сделайте вывод о направлении этой реакции выше и ниже этой температуры. Термодинамические характеристики компонентов:

ΔΗ° 298 S o 298

В-во кДж/моль Дж/моль*K

NO 2 (г) 33,3 240,2

N 2 O 4(г) 9,6 303,8

Решение. Для обратимого процесса:

aA (г) + bB (г) ⇄ сС (г) + dD (г)

выражение для константы равновесия K р будет
K р =(P c C *P d D)/(P a A *P b B)

где P A , P B , P C , P D - равновесные парциальные давления газообразных компонентов А,В,С,D a, b, c, d - стехиометрические коэффициенты.

Для процесса aA (ж) +bB) ⇄ сC (ж) +dD (ж) выражение для константы равновесия
K c = (C c C *C d D)/(C a A *C b B)

где C A , C B , C C , C D - равновесные концентрации веществ А,В,С,D a, b, c, d - стехиометрические коэффициенты.

По формуле (1.4.1) для системы 2NO 2 ⇄ N 2 O 4 имеем

K р =P N 2 O 4 /P 2 NO 2
При стандартной температуре 298 K изменение энтальпии (ΔH o реакции) определим по формуле (1.2.2)

ΔH o реакции = ΔΗ° 298 N 2 O 4 - 2ΔΗ° 298 NO 2 = 9,6-2*33,5 = -57400 Дж.

Изменение энтропии (1.3.5)

ΔS o реакции = S° 298 N2O4 - 2S° 298 NO2 =303,8-2* (240 ,2)=-176 Дж/моль*К

Пользуясь принципом Ле-Шателье, который говорит о том, что при изменении условий, при которых обратимая реакция находится в состоянии равновесия, равновесие сместится в сторонy процесса ослабевающего изменения, предскажем направление смещения равновесия. Значение ΔΗ о отрицательно, следовательно реакция образования экзотермическая (идет c выделением тепла) и при понижении температуры равновесие должно смещаться вправо, при повышении температуры - влево. Кроме того, по фopмyлe (1.3.6), зная, что ΔH 0 характеризует невозможность самопроизвольного процесса (см. пример 4 разд. 1.3). Следовательно, в нашем случае при понижении температуры будет предпочтительнее образование N 2 О 4 (равновесие смещается вправо), а при увеличении температуры предпочтительнее образование NO 2 (равновесие смещается влево). Качественные выводы подтвердим расчетами

ΔG o 273 ; ΔG o 298 ; ΔG o 373 и K 273 ; K 298 ; K 373

Значение энергии Гиббса для заданных температур рассчитаем по формуле (1.3.7):

ΔG o 298 =ΔH o -TΔS o =-57400-298*(-176)=-4952Дж.,

ΔG o 273 =-57400-273*(-176)=-9352Дж:

ΔG o 373 =-57400-373*(-176)= 7129 Дж.

Отрицательное значение ΔG o 298 говорит о смещении равновесия реакции вправо, а более высокое отрицательное значение ΔG o 273 свидетельствует о том, что при снижении температуры от (298 до 273 К) равновесие смещается вправо.

Положительное значение ΔG o 373 указывает на изменение направления самопроизвольного процесса. При этой температуре предпочтительнее становится обратная реакция (смещение равновесия влево).

Константы равновесия К p и энергию Гиббса ΔG o связывает формула

где К p - константа равновесия процесса; R - газовая постоянная; T - абсолютная температура. По формуле (1.4.3) имеем:

lnK 273 =- ΔG o 273 /RT=9352/8,31*273=4,12

lnK 298 = -ΔG o 298 /RT=4952/8,31*298=2

lnK 373 = -ΔG o 373 /RT=-7129/8,31*298=-2,3

значение К 298 и K 273 > 1 показывает на смещение равновесия вправо (сравни с (1.4.1)) и тем больше, чем выше значение константы равновесия. K 373 < 1, говорит ο смещении равновесия в системе влево (сравни с (1.4.1)).

Условию ΔG o реакции =0 отвечает константа равновесия,

равная единице.

Рассчитаем температуру Т, соответствующую этой константе по формуле (1.3.7):

ΔG°=ΔΗ°-TΔS o ; O=ΔH o -TΔS o ;

T Δ G =0 =ΔΗ°/ΔS°=57400/176=326,19 K

Вывод. При температуре 326,19 K прямая и обратная реакции протекают c одинаковой вероятностью, K р =1. С понижением температуры равновесие будет смещаться вправо с повышением влево.

Пример 2 . Константа равновесия К р реакции синтеза NH 3 по реакции N2+3 H2==2NH 3 при 623 K равна 2,32*10 -13 . Вычислить К с при той же температуре.

Решение. Связь К р и К с осуществляется по формуле

K p = K c (RT) Δ n , (1.4.4)

Δn= n 2 - n 1 =2-4= -2, где n 1 и n 2 количество молей peaгентов и продуктов. Следовательно,

K c =K p /(RT) Δ n =0,624*10 -5

Ответ . К = 0,624*10 -5 .

Пример 2. Упругость диссоциации карбоната кальция при 1154 К равна 80380 Па, а при 1164 K - 91177 Па. Рассчитать, при какой температуре упругость диссоциации карбоната кальция будет равна 101325 Па.

Решение. Реакция диссоциации CaCO 3(кр) ⇄ CaO (кр) +СО 2(г)

Отсюда по (1.4.1)

K p =P CO 2
Следовательно, при каждой температуре (Т 1 - 1154 K; Τ =1164 К* Τ = X) константы равновесия будут соответствовать давлению:

K T 1 = 80380; K T 2 = 91177; K T 3 = 101325.

Зависимость константы равновесия от температуры показы­вает уравнение Аррениуса

dlnK p /dT= ΔΗ/RT 2 (1.4.5)

где К p - константа равновесия; Τ - температура, К; ΔΗ - теп­ловой эффект реакции; R - газовая постоянная.

Интегрируя уравнение (1.4.5) в интервале температур Т 1 -Т 2 при Δ H= соnst получим
lnK T 1 /K T 2 = ΔΗ/R(1/T 1 -1/T 2),

Где K T 1 и K T 2 – константы равновесия при T 1 и T 2 .

Определим сначала ΔΗ (по 1.4.6)

ΔΗ=ln(91177*8,31*1154*1164/80380*10)=140500 Дж/моль.

ln(101325/91177)=140500/8,31(1/1164-1/T 3)

T 3 =1172 K
Ответ. При Т=1172К упругость диссоциации карбоната кальция будет равна 101325 Па.

Задачи

56. Константа диссоциации уксусной кислоты при 298 К равна 1,75*10 -5 . Чему равно изменение энергии Гиббса диссо­циации уксусной кислоты?

57. Найти значение энергии Гиббса (ΔG o 298) и константы равновесия K 298 для реакции BaSО 4(кр) → Ba 2+ (р) + SО 2- 4(p) .

Для расчета использовать следующие данные:

Вещество S о 298 Дж/моль*К ΔH o 298 кДж/моль 2 ^ 2^

BaSO 4(кр) 132,4 -1447,39

Ba 2+ (р) 9,64 -533,83

SO 2- 4 (р) 18,44 -904,2.

58. Найти константу равновесия при 473 К для реакции гидратации этилена

С 2 Н 4(г) + H 2 O (г) =С 2 Н 5 ОН (г) .
Свойства реагентов взять в табл. 3. Зависимостью ΔS и ΔH от температуры пренебречь.

59. Считая, что ΔH o 298 и ΔS о 298 реакции 4HCl+O 2 ⇄ 2Н 2 О + 2Сl 2 не зависят от температуры, найти температуру, при которой

К р =1, а ΔG o = О.

60. Пользуясь табличными данными, вычислить константы равновесия следующих реакций при 298 К и при 1000 К:

а) Н 2 О (г) + СО ⇄ СО 2 + Н 2

б) СО 2 + С (гр) ⇄ 2СО;

c) N 2 + 3H 2 ⇄ 2NH 3 .
Изменениями ΔH o и S о от температуры пренебречь.

61. Для некоторой самопроизвольно протекающей реакции Δ S < О. Как будет изменяться константа равновесия с повышением температуры: а) увеличиваться, б) уменьшаться, в) по данным задачи нельзя определить.

62. Не пользуясь вычислениями, установить знак ΔS o сле­дующих процессов:

а) 2NH 3(г) ⇄ N 2(г) + H 2(г) ;

б) CO 2(кр) ⇄ CO 2(г) ;

в) 2NO (г) + O 2 (г) = 2NO 2(г) ;

г) 2Н 2 S (г) + 3O 2 = 2H 2 O (ж) + 2SO 2(г) ;

д) 2СН 3 ОН (г) + 3О 2(г) = 4H 2 O (г) + 2СО 2(г) .

63. В каком из следующих случаев реакция возможна при любых температурах: а) ΔН°< 0, ΔS°> 0; б) Δ Н°<0, ΔS°<0; в) Δ Н°>0, ΔS°> 0 ?

64. В каком из следующих случаев реакция неосуществима при любых температурах: а) ΔН°> 0, ΔS°> 0; б) Δ Н°>0, ΔS°<0; в) Δ Н°<0, ΔS°<0 ?

65. Если ΔΗ°<0 и ΔS°<0 , в каком из случаев реакция может протекать самопроизвольно:
а)| ΔН°| > |TΔS°|; б)| ΔН°| > |TΔS°| ?

66. Какими воздействиями на систему можно сместить равновесие систем:

а) N 2(г) + 3Н 2(г) ⇄ 2NH 3(г) ;

б) 4Fe (кр) + 3О 2(г) ⇄ 2Fe 2 O 3(кр) ;

в) SO 2 (г) + О 2(г) ⇄ 2SO 3 (г) .

67. В каком направлении произойдет смещение равновесия при повышении температуры в системах:

1) СОCl 2 ⇄ CO +Cl 2 ; ΔН°=113 кДж;

2) 2СО ⇄ СО 2 + С; ΔН°=-171 кДж;

3) 2SO 3 ⇄ 2SO 2 + O 2 ; ΔН°=192 кДж.

68. В каком направлении сместится равновесие при повыше­нии давления в системах:

1) Н 2(г) + S (кр) ⇄ Н 2 S (г) ;

2) 2CO (г) ⇄ СО 2(г) + С (гр) ;

3) 4HCl (г) +О 2(г) ⇄ 2Н 2 О (г) + 2Cl 2(г) .

69. Как повлияет на равновесие следующих реакций:

СаСО 3(кр) ⇄ СаО (кр) + СО 2(г) ; ΔН°=178 кДж;

2СО (г) + О 2(г) ⇄ 2СО 2 ; ΔН°=-566 кДж;

N 2(г) + О 2(г) ⇄ 2NO (г) ; ΔН°=180 кДж.

а) повышение температуры,

б) повышение давления?

70. Используя справочные данные, найти приближенное зна­чение температуры, при которой константа равновесия реакции образования водяного газа

С (гр) + Н 2 О (г) ⇄ СО (г) + Н 2(г)
равна 1. Зависимостью ΔH o и S о от температуры пренебречь.

71. Константа равновесия К р реакции СО+Сl 2 ⇄ СОCl 2 при 600 о С равна 1,67*10 -6 . Вычислять К с реакции при данной температуре.

72. Упругость диссоциации карбоната магния при 1000 К равна 42189 Па, а при 1020 К - 80313 Па. Определить тепловой эффект реакции MgCО 3 ⇄ МgО+СO 2 и температуру, при ко­торой упругость диссоциации карбоната магния станет равной 1 Па.