Увеличение объема газа при постоянной температуре. Экспериментальные газовые законы. Справочник компрессорной техники

По закону Бойля V1: V2 = Р2: P1 при постоянной температуре

По закону Гей-Люсака V1: V2 = T1: T2 при постоянном давлении
P1: Р2 = T1: T2 при постоянном объёме
Из формул, представленных выше, можно заметить, что две из трех величин, могут рассматриваться как переменные, если третья постоянна. Нет такого состояния, при котором давление, объем и температура могли бы все рассматриваться как переменные.
Однако бывают случаи, когда все величины переменные, а один фактор неизвестен. В практических случаях такие задачи могут быть решены по аналогии с примерами ниже:
Газ при температуре 20 o C занимает объем 0,98 м 3 в цилиндре диаметром 50 мм, к поршню приложена сила 980Н. Каким будет смещение поршня, если сила, приложенная к поршню, удвоилась, а температура увеличилась до 50 o C?
Смещение поршня легко определить при задании изменений объема. Однако, в задаче задано только одно значение объема (0,98 м 3), а другое неизвестно.
Чтобы установить зависимости между всеми параметрами, которые являются переменными, изменения объема должны быть рассмотрены отдельно при двух фазах.

Случай А 1-ая фаза

Газ нагревается от температуры t = 20 o C, которая соответствует абсолютной температуре T1 = 20 + 273 = 293 o K, до температуры 50 o C, которая соответствует T2 = (50 + 273) =323 o K. Если давление на поршень остается постоянным с нагрузкой 980Н, то произойдет увеличение объема газа. По закону Гей-Люсака V1: V2 = T1: T2
Vх = (0,98 323)/293 =1,08 дм 3 (промежуточное значение)

2-ая фаза
Газ, достигнув объема Vх = 1,08 дм 3 в результате увеличения температуры до T2 (323 o K), теперь получает дополнительное воздействие - увеличилась сила, приложенная к поршню. В результате, оно возрастает до P2 = 980 2 = 1960 Н, а объем уменьшается, поскольку воздух сжимается поршнем. По закону Бойля Vх: V2 = P2: Р1 (Vх P1 = V2 P2)
Подставляя заданные значения:
V2 = (1,08 980)/1960 = 0,54 дм 3 (окончательное значение)

Отметим, что параметры P1 и Р2 были представлены как символы приложенной силы, а не единицы давления. Это - не ошибка, поскольку сила относится непосредственно к давлению в этом примере, так как диаметр поршня не изменяется.

Это подтверждается следующими вычислениями.
I. Площадь поверхности поршня в см 2 (3,14 D2)/4
Диаметр = 50 мм = 5 см S = (3,14 52)/4 = 19,6 см 2
Давление на каждой стадии теперь можно рассчитать.
II. Начальное давление P1=Начальная сила/Площадь поверхности = 980Н/19,6см 2 = 50Н/см 2 =5кг/см 2
Финальное давление P2= Финальная сила/Площадь поверхности = (980 2)/19,6 =100Н/см=10кг/см 2
При равенстве площадей поверхности поршня увеличение вдвое приложенной силы удвоит давление.
Подставляя заданные значения:
Vх P1 = V2 P2
V2 = (1,08 дм 3 50 Н/см 2)/100Н/см 2 = (1,08 дм 3 5 кг/см 2)/10кг/см 2 = 0,54 дм 3

Этот же самый результат получен в предыдущем вычислении.
Можно получить результат, непосредственно используя следующее выражение, которое является комбинацией из двух начальных формул:
(P 1 V1)/Т1 = (P2 V2)/Т2
В примере объем V2 требуется для того, чтобы вычислить перемещение поршня
V2 = (Р1 V1 T2)/(T1 P2) = (5 0,98 323)/(293 10) = 0,54 дм 2
Используя оба объема, можно вычислить изменение в положении поршня, применяя геометрию:
Объем = площадь поверхности высота Высота в см = объем в см 2 / площадь в см 2
Начальная высота = 980см 3 /19,6см 2 =50см. Финальная высота = 540см 3 /19,6см 2 =27,5см
Перемещение поршня = 50-27,5=22,5 см В этой задаче принималось, что нагревание газа произошло в результате увеличения температуры внешней среды.

Если вспомнить эксперимент с велосипедным насосом, когда воздух сжат и у него нет возможности расширяться, выделяется тепло, то есть температура воздуха возрастает и это тепло передается к внешним поверхностям насоса. Обратный процесс возникает, когда газ расширяется.
Если у газа есть возможность расшириться, его температура уменьшится.
Изменения температуры воздуха порождают:
I. Возникновение тепла на стадии сжатия.
II. Поглощение тепла на стадии расширения.

Изменения температуры могут быть рассчитаны, как показано, при использовании величин из предыдущего примера.
Количество газа при температуре 293°K занимает объем V1 =0,98 дм 3 при давлении 5 бар. Если давление повысить до 10 бар, объем уменьшится до V2=0,54 дм 3 .
Какой станет температура газа? Важно помнить, что закон Бойля работает только тогда, когда температура постоянна. Поэтому, при 293°K повышение давления от P1 до P2 приводит к уменьшению объема газа с V1 до Vх: V1: Vх = P2: P1 то есть. V1 P1 = Vх P2
Подставляя известные значения: Vх = (0,98 5)/10=0,49 дм 3
Используя закона Гей-Люсака и рассматривая давление как постоянную величину P2 (к которому уже отнесен объем Vх), можно записать:
Vх: V2 = Т1: Т2 то есть Vх T2 = V2 T1
Подставляя известные значения: T2 = (0,54 293)/0,49 = 323°K Это значение равно значению, которое дано в начальном примере.

В основе физических свойств газов и законов газового состояния лежит молекулярно-кинетическая теория газов. Большинство законов газового состояния было выведено для идеального газа, молекулярные силы которого равны нулю, а объем самих молекул бесконечно мал по сравнению с объемом межмолекулярного пространства.

Молекулы реальных газов помимо энергии прямолинейного движения обладают энергией вращения и колебания. Они занимают некоторый объем, то есть имеют конечные размеры. Законы для реальных газов несколько отличаются от законов для идеальных газов. Это отклонение тем больше, чем выше давление газов и ниже их температура, оно учитывается введением в соответствующие уравнения поправочного коэффициента сжимаемости.

При транспортировании газов по трубопроводам под высоким давлением коэффициент сжимаемости имеет большое значение.

При давлениях газа в газовых сетях до 1 МПа законы газового состояния для идеального газа достаточно точно отражают свойства природного газа. При более высоких давлениях или низких температурах применяют уравнения, учитывающие объем, занимаемый молекулами, и силы взаимодействия между ними, или вводят в уравнения для идеального газа поправочные коэффициенты - коэффициенты сжимаемости газа.

Закон Бойля - Мариотта.

Многочисленными опытами установлено, что если взять определенное количество газа и подвергать его различным давлениям, то объем этого газа будет изменяться обратно пропорционально величине давления. Эта зависимость между давлением и объемом газа при постоянной температуре выражается следующей формулой:

p 1 /p 2 = V 2 /V 1 , или V 2 = p 1 V 1 /p 2 ,

где p 1 и V 1 - первоначальные абсолютное давление и объем газа; p 2 и V 2 - давление и объем газа после изменения.

Из этой формулы можно получить следующее математическое выражение:

V 2 p 2 = V 1 p 1 = const.

То есть произведение величины объема газа на величину соответствующего этому объему давления газа будет постоянной величиной при постоянной температуре. Этот закон имеет практическое применение в газовом хозяйстве. Он позволяет определять объем газа при изменении его давления и давление газа при изменении его объема при условии, что температура газа остается постоянной. Чем больше при постоянной температуре увеличивается объем газа, тем меньше становится его плотность.

Зависимость между объемом и плотностью выражается формулой:

V 1 /V 2 = ρ 2 /ρ 1 ,

где V 1 и V 2 - объемы, занимаемые газом; ρ 1 и ρ 2 - плотности газа, соответствующие этим объемам.

Если отношение объемов газа заменить отношением их плотностей, то можно получить:

ρ 2 /ρ 1 = p 2 /p 1 или ρ 2 = р 2 ρ 1 /p 1 .

Можно сделать вывод, что при одной и той же температуре плотности газов прямо пропорциональны давлениям, под которыми находятся эти газы, то есть плотность газа (при постоянной температуре) будет тем больше, чем больше его давление.

Пример. Объем газа при давлении 760 мм рт. ст. и температуре 0 °С составляет 300 м 3 . Какой объем займет этот газ при давлении 1520 мм рт. ст. и при той же температуре?

760 мм рт. ст. = 101329 Па = 101,3 кПа;

1520 мм рт. ст. = 202658 Па = 202,6 кПа.

Подставляя заданные значения V , р 1 , р 2 в формулу, получим, м 3:

V 2 = 101, 3-300/202,6 = 150.

Закон Гей-Люссака.

При постоянном давлении с повышением температуры объем газов увеличивается, а при понижении температуры уменьшается, то есть при постоянном давлении объемы одного и того же количества газа прямо пропорциональны их абсолютным температурам. Математически эта зависимость между объемом и температурой газа при постоянном давлении записывается так:

V 2 /V 1 = Т 2 /Т 1

где V - объем газа; Т - абсолютная температура.

Из формулы следует, что если определенный объем газа нагревать при постоянном давлении, то он изменится во столько раз, во сколько раз изменится его абсолютная температура.

Установлено, что при нагревании газа на 1 °С при постоянном давлении его объем увеличивается на постоянную величину, равную 1 /273,2 первоначального объема. Эта величина называется термическим коэффициентом расширения и обозначается р. С учетом этого закон Гей-Люссака можно сформулировать так: объем данной массы газа при постоянном давлении есть линейная функция температуры:

V t = V 0 (1 + βt или V t = V 0 T/273.

Закон Шарля.

При постоянном объеме абсолютное давление неизменного количества газа прямо пропорционально его абсолютным температурам. Закон Шарля выражается следующей формулой:

р 2 /р 1 = Т 2 /Т 1 или p 2 = p 1 T 2 /T 1

где р 1 и р 2 - абсолютные давления; T 1 и Т 2 абсолютные температуры газа.

Из формулы можно сделать вывод, что при постоянном объеме давление газа при нагревании увеличивается во столько раз, во сколько раз увеличивается его абсолютная температура.

Математическим выражением закона Бойля-Мариотта являются формулы P 2 /P 1 =V 1 /V 2 или PV=const.

Пример: при некоторой температуре давление газа, занимающего объем 3 л, равно 93,3 кПа. Каким станет давление, если, не изменяя температуры, уменьшить объем газа до 2,8л?

Решение: обозначив искомое давление через Р 2 , можно записать
Р 2 /93,3=3/2,8. Отсюда: Р 2 =93,3*3/2,8=100 кПа.

Зависимость между объемом газа, давлением и температурой можно выразить общим уравнением, объединяющим законы Бойля-Мариотта и Гей-Люссака

где Р и V - давление и объем газа при данной температуре Т, Р о, V o - давление и объем газа при нормальных условиях.

Пример: при 25°С и давлении 99,3 кПа некоторое количество газа занимает объем 152 мл. Найти, какой объем займет это же количество газа при 0°С и давлении 101,33 кПа?

Решение: подставляя данные в уравнение, получаем

Vо=РVоТ/Р 0 Т=99,ЗкПа*152мл*273К/(101,33кПа*298К)=136,5мл.

Если условия, в которых находится газ, отличаются от нормальных, то используют уравнение Менделеева-Клапейрона, которое связывает все основные параметры газа

где Р - давление газа, Па; V - объем газа, м 3 ; m, - масса газа, г; М - мольная масса газа, г/моль; R - универсальная газовая постоянная, 11=8,31Дж/(моль*К); Т - температура газа, К.

ТЕМА 2.2ПАРЦИАЛЬНОЕ ДАВЛЕНИЕ ГАЗОВ

При определении молекулярных весов газообразных веществ часто приходится измерять объем газа, собранный над водой и потому насыщенного водяным паром. Определяя в этом случае давление газа, необходимо вводить поправку на парциальное давление водяного пара.

Парциальным давлением (р) называется та часть общего давления, производимого газовой смесью, которая приходится на долю данного газа.

При этом парциальное давление газа в смеси равно тому давлению, которое он производил бы, занимая один такой же объем, какой занимает смесь.

Пример: смешивают 2л кислорода и 4л оксида серы SO 2 , взятых при одинаковом давлении, равном 100 кПа; объем смеси 6л. Определить парциальное давление газов в смеси.

Решение: по условию задачи объем кислорода увеличился после смешения в 6/2=3 раза, объем оксида серы - в 6/4=1,5 раза. Во столько же раз уменьшились парциальные давления газов. Следовательно

р(О 2)= 100/3=33,3 кПа, p(SO 2)=100/l,5=66,7 кПа.

Согласно закону парциальных давлений, общее давление смеси газов, не вступающих друг с другом в химическое взаимодействие, равно сумме парциальных давлений газов, составляющих смесь.

Пример: смешивают Зл СО 2 , 4л О 2 и 6 л N 2 . До смешивания давление СО 2 , О 2 , N 2 .составляло соответственно 96, 108 и 90,6 кПа. Общий объем смеси 10л. Определить давление смеси.

Решение: находим парциальные давления отдельных газов

р(СО 2)=96*3/10=28,8кПа,

р(О 2)=108*4/10=43,2кПа,

p(N 2)=90,6*6/l 0=54,4кПа.

Общее давление газовой смеси равно сумме парциальных давлений

Р(смеси)=28,8кПа+43,2кПа+54,4кПа=126,4 кПа.

ВОПРОСЫ И ЗАДАЧИ ДЛЯ САМОКОНТРОЛЯ

1. Какие условия, характеризующие газы, называются нормальными?

2. Какой объем занимает 1 моль любого газа при нормальных условиях?

3. Дайте формулировку закона Авогадро.

Комбинированный газовый закон - это формула, которая связывает основные параметры идеального газа и позволяет вычислять неизвестные в случаях, если заданы пять остальных величин.

Идеальный газ

Идеальный газ - это математическая модель с определенными допущениями, которая позволяет исследовать свойства газообразных веществ с достаточной точностью. К допущениям, которые используются в модели идеального газа, относятся:

  • пренебрежение размерами молекул;
  • силы молекулярного взаимодействия не учитываются;
  • соударение атомов и молекул абсолютно упруго;
  • газ находится в термодинамическом равновесии.

Благодаря этим допущениям ученые изучили основные свойства газообразных веществ и вывели основные законы, которым подчиняются любые газы. Комбинированный закон объединяет все перечисленные ниже зависимости.

Газовые законы

Любое газообразное вещество характеризуется тремя простыми параметрами: объемом, давлением и температурой. Газ тем и хорош, что он заполняет весь предоставленный объем или может сжиматься до минимальных объемов, иногда переходя в состояние жидкости. Сжимать газ можно двумя способами:

  • при постоянном давлении уменьшить температуру;
  • при постоянной температуре увеличить давление.

Эти две простые формулировки отражают в себе два известных газовых закона: изобару и изотерму. В изобарном процессе изменение температуры приводит к прямо пропорциональному изменению объема. Вспомните жидкий азот: он занимает минимум места, при этом его температура составляет 63,29 К, что соответствует –209 . Если температуру азота поднять до 20 градусов Цельсия, то 1 литр жидкого азота превратится в 700 литров газа. Увеличивается температура, увеличивается объем и наоборот. Эти изменения обусловлены тем, что соотношение объема к температуре газа остается статичным.

В изотермическом процессе температура не изменяется и для сжатия газа придется увеличить давление. Это процесс проще для понимания, так как сдавливая газ мы уменьшаем его объем подобно тому, как утрамбовывание грунта или снега позволяет уложить их более плотно и с меньшим объемом. В этом изотермическом процессе изменение давления приводит к обратно пропорциональному изменению объема. Больше давление, меньше объем и наоборот. Такая динамика обусловлена тем, что произведение давления на объем - это всегда постоянная величина.

Если же объем газа не изменяется, то процесс называется изохорным и в этом процессе отображается взаимосвязь давления и температуры. Согласно закону, изменение одного параметра вызывает прямо пропорциональное изменение другого. Это означает, что увеличение давления в сосуде вызывает рост температуры находящегося там газа. Верно и обратное утверждение.

Комбинированный закон

Все перечисленные законы подчиняются общей формулировке: при постоянстве одного параметра, отношение двух других также постоянно. Обобщая эти законы в динамике получаем комбинированный газовый закон, который описывается формулой:

P1×V1/T1 = P2×V2/T2,

где P1, V1 и T1 - соответственно начальные давление, объем и температура, а P2, V2 и T2 - конечные.

Используя данную формулу легко определить динамику параметров во время нагрева газа или его сжатия.

Наша программа позволяет рассчитать соотношение параметров идеального газа при их изменении. Для использования калькулятора требуется задать пять известных величин, после чего программа определит последнее неизвестное. Рассмотрим небольшой пример.

Пример использования калькулятора

Представим баллон газа объемом 15 л под давлением 120 кПа и при температуре –20 градусов Цельсия. Определим температуру газа, если баллон будет заменен на емкость объемом 10 л и давлением 150 кПа. На первый взгляд у нас есть все параметры, однако в газовых законах температура обязательно указывается в кельвинах, а не градусах. Для перевода температуры в систему Си достаточно прибавить к значению величину 273. Получаем, что температура газа составляет 253 К. Теперь вводим данные в соответствующие ячейки и смотрим на результат: конечная температура теперь равна 210 К или –63 градуса Цельсия. Очевидно, что газ подчинился приведенным выше законам и при уменьшении объема его температура также уменьшилась.

Заключение

Газовые законы - серьезная тема школьного курса физики, которую более подробно разбирают на первом году обучения в вузах. Комбинированный закон газа прост на первый взгляд, но обилие параметров может запутать школьника, а выведение пропорций и вовсе способно превратить задачу в ад. Для упрощения расчетов используйте наш онлайн-калькулятор, не забывая переводить все заданные параметры в систему СИ.