Этилформиат простой или сложный. Сложные эфиры в быту. Физические свойства жиров

Если исходная кислота многоосновная, то возможно образование либо полных эфиров – замещены все НО-группы, либо кислых эфиров – частичное замещение. Для одноосновных кислот возможны только полные эфиры (рис.1).

Рис. 1. ПРИМЕРЫ СЛОЖНЫХ ЭФИРОВ на основе неорганической и карбоновой кислоты

Номенклатура сложных эфиров.

Название создается следующим образом: вначале указывается группа R, присоединенная к кислоте, затем – название кислоты с суффиксом «ат» (как и в названиях неорганических солей: карбонат натрия, нитрат хрома). Примеры на рис. 2

Рис. 2. НАЗВАНИЯ СЛОЖНЫХ ЭФИРОВ . Фрагменты молекул и соответствующие им фрагменты названий выделены одинаковым цветом. Сложные эфиры обычно рассматривают как продукты реакции между кислотой и спиртом, например, бутилпропионат можно воспринимать как результат взаимодействия пропионовой кислоты и бутанола.

Если используют тривиальное (см . ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ) название исходной кислоты, то в название соединения включают слово «эфир», например, С 3 Н 7 СООС 5 Н 11 – амиловый эфир масляной кислоты.

Классификация и состав сложных эфиров.

Среди изученных и широко применяемых сложных эфиров большинство представляют соединения, полученные на основе карбоновых кислот. Сложные эфиры на основе минеральных (неорганических) кислот не столь разнообразны, т.к. класс минеральных кислот менее многочисленен, чем карбоновых (многообразие соединений – один из отличительных признаков органической химии).

Когда число атомов С в исходных карбоновой кислоте и спирте не превышает 6–8, соответствующие сложные эфиры представляют собой бесцветные маслянистые жидкости, чаще всего с фруктовым запахом. Они составляют группу фруктовых эфиров. Если в образовании сложного эфира участвует ароматический спирт (содержащий ароматическое ядро), то такие соединения обладают, как правило, не фруктовым, а цветочным запахом. Все соединения этой группы практически нерастворимы в воде, но легко растворимы в большинстве органических растворителей. Интересны эти соединения широким спектром приятных ароматов (табл. 1), некоторые из них вначале были выделены из растений, а позже синтезированы искусственно.

Табл. 1. НЕКОТОРЫЕ СЛОЖНЫЕ ЭФИРЫ , обладающие фруктовым или цветочным ароматом (фрагменты исходных спиртов в формуле соединения и в названии выделены жирным шрифтом)
Формула сложного эфира Название Аромат
СН 3 СООС 4 Н 9 Бутил ацетат грушевый
С 3 Н 7 СООСН 3 Метил овый эфир масляной кислоты яблочный
С 3 Н 7 СООС 2 Н 5 Этил овый эфир масляной кислоты ананасовый
С 4 Н 9 СООС 2 Н 5 Этил малиновый
С 4 Н 9 СООС 5 Н 11 Изоамил овый эфир изовалериановой кислоты банановый
СН 3 СООСН 2 С 6 Н 5 Бензил ацетат жасминовый
С 6 Н 5 СООСН 2 С 6 Н 5 Бензил бензоат цветочный

При увеличении размеров органических групп, входящих в состав сложных эфиров, до С 15–30 соединения приобретают консистенцию пластичных, легко размягчающихся веществ. Эту группу называют восками, они, как правило, не обладают запахом. Пчелиный воск содержит смесь различных сложных эфиров, один из компонентов воска, который удалось выделить и определить его состав, представляет собой мирициловый эфир пальмитиновой кислоты С 15 Н 31 СООС 31 Н 63 . Китайский воск (продукт выделения кошенили – насекомых Восточной Азии) содержит цериловый эфир церотиновой кислоты С 25 Н 51 СООС 26 Н 53 . Кроме того, воски содержат и свободные карбоновые кислоты и спирты, включающие большие органические группы. Воски не смачиваются водой, растворимы в бензине, хлороформе, бензоле.

Третья группа – жиры. В отличие от предыдущих двух групп на основе одноатомных спиртов ROH, все жиры представляют собой сложные эфиры, образованные из трехатомного спирта глицерина НОСН 2 –СН(ОН)–СН 2 ОН. Карбоновые кислоты, входящие в состав жиров, как правило, имеют углеводородную цепь с 9–19 атомами углерода. Животные жиры (коровье масло, баранье, свиное сало) – пластичные легкоплавкие вещества. Растительные жиры (оливковое, хлопковое, подсолнечное масло) – вязкие жидкости. Животные жиры, в основном, состоят из смеси глицеридов стеариновой и пальмитиновой кислоты (рис. 3А,Б). Растительные масла содержат глицериды кислот с несколько меньшей длиной углеродной цепи: лауриновой С 11 Н 23 СООН и миристиновой С 13 Н 27 СООН. (как и стеариновая и пальмитиновая – это насыщенные кислоты). Такие масла могут долго храниться на воздухе, не меняя своей консистенции, и потому называются невысыхающими. В отличие от них, льняное масло содержит глицерид ненасыщенной линолевой кислоты (рис. 3В). При нанесении тонким слоем на поверхность такое масло под действием кислорода воздуха высыхает в ходе полимеризации по двойным связям, при этом образуется эластичная пленка, не растворимая в воде и органических растворителях. На основе льняного масла изготавливают натуральную олифу.

Рис. 3. ГЛИЦЕРИДЫ СТЕАРИНОВОЙ И ПАЛЬМИТИНОВОЙ КИСЛОТЫ (А И Б) – компоненты животного жира. Глицерид линолевой кислоты (В) – компонент льняного масла.

Сложные эфиры минеральных кислот (алкилсульфаты, алкилбораты, содержащие фрагменты низших спиртов С 1–8) – маслянистые жидкости, эфиры высших спиртов (начиная с С 9) – твердые соединения.

Химические свойства сложных эфиров.

Наиболее характерно для эфиров карбоновых кислот гидролитическое (под действием воды) расщепление сложноэфирной связи, в нейтральной среде оно протекает медленно и заметно ускоряется в присутствии кислот или оснований, т.к. ионы Н + и НО – катализируют этот процесс (рис. 4А), причем гидроксильные ионы действуют более эффективно. Гидролиз в присутствии щелочей называют омылением. Если взять количество щелочи, достаточное для нейтрализации всей образующейся кислоты, то происходит полное омыление сложного эфира. Такой процесс проводят в промышленном масштабе, при этом получают глицерин и высшие карбоновые кислоты (С 15–19) в виде солей щелочных металлов, представляющих собой мыло (рис. 4Б). Содержащиеся в растительных маслах фрагменты ненасыщенных кислот, как и любые ненасыщенные соединения, могут быть прогидрированы, водород присоединяется к двойным связям и образуются соединения, близкие к животным жирам (рис. 4В). Этим способом в промышленности получают твердые жиры на основе подсолнечного, соевого или кукурузного масла. Из продуктов гидрирования растительных масел, смешанных с природными животными жирами и различными пищевыми добавками, изготавливают маргарин.

Основной способ синтеза – взаимодействие карбоновой кислоты и спирта, катализируемое кислотой и сопровождаемое выделением воды. Эта реакция обратна показанной на рис. 3А. Чтобы процесс шел в нужном направлении (синтез сложного эфира), из реакционной смеси дистиллируют (отгоняют) воду. Специальными исследованиями с применением меченых атомов удалось установить, что в процессе синтеза атом О, входящий в состав образующейся воды, отрывается от кислоты (отмечено красной пунктирной рамкой), а не от спирта (нереализующийся вариант выделен синей пунктирной рамкой).

По такой же схеме получают сложные эфиры неорганических кислот, например, нитроглицерин (рис. 5Б). Вместо кислот можно использовать хлорангидриды кислот, метод применим как для карбоновых (рис. 5В), так и для неорганических кислот (рис. 5Г).

Взаимодействие солей карбоновых кислот с галоидалкилами RCl также приводит к сложным эфирам (рис. 5Г), реакция удобна тем, что она необратима – выделяющаяся неорганическая соль сразу удаляется из органической реакционной среды в виде осадка.

Применение сложных эфиров.

Этилформиат НСООС 2 Н 5 и этилацетат Н 3 СООС 2 Н 5 используются как растворители целлюлозных лаков (на основе нитроцеллюлозы и ацетилцеллюлозы).

Сложные эфиры на основе низших спиртов и кислот (табл. 1) используют в пищевой промышленности при создании фруктовых эссенций, а сложные эфиры на основе ароматических спиртов – в парфюмерной промышленности.

Из восков изготавливают политуры, смазки, пропиточные составы для бумаги (вощеная бумага) и кожи, они входят и в состав косметических кремов и лекарственных мазей.

Жиры вместе с углеводами и белками составляют набор необходимых для питания пищевых продуктов, они входят в состав всех растительных и животных клеток, кроме того, накапливаясь в организме, играют роль энергетического запаса. Из-за низкой теплопроводности жировой слой хорошо предохраняет животных (в особенности, морских – китов или моржей) от переохлаждения.

Животные и растительные жиры представляют собой сырье для получения высших карбоновых кислот, моющих средств и глицерина (рис. 4), используемого в косметической промышленности и как компонент различных смазок.

Нитроглицерин (рис. 4) – известный лекарственный препарат и взрывчатое вещество, основа динамита.

На основе растительных масел изготавливают олифы (рис. 3), составляющие основу масляных красок.

Эфиры серной кислоты (рис. 2) используют в органическом синтезе как алкилирующие (вводящие в соединение алкильную группу) реагенты, а эфиры фосфорной кислоты (рис. 5) – как инсектициды, а также добавки к смазочным маслам.

Михаил Левицкий

Сложными эфирами принято называть соединения, полученные по реакции этерификации из карбоновых кислот. При этом происходит замещение ОН- из карбоксильной группы на алкоксирадикал. В результате образуются сложные эфиры, формула которых в общем виде записывается как R-СОО-R".

Строение сложноэфирной группы

Полярность химических связей в молекулах сложных эфиров аналогична полярности связей в карбоновых кислотах. Главным отличием является отсутствие подвижного атома водорода, на месте которого размещается углеводородный остаток. Вместе с тем электрофильный центр располагается на атоме углерода сложноэфирной группы. Но и углеродный атом алкильной группы, соединенный с ней, тоже положительно поляризован.

Электрофильность, а значит, и химические свойства сложных эфиров определяются строением углеводородного остатка, занявшего место атома Н в карбоксильной группе. Если углеводородный радикал образует с атомом кислорода сопряженную систему, то реакционная способность заметно возрастает. Так происходит, например, в акриловых и виниловых эфирах.

Физические свойства

Большинство сложных эфиров представляют собой жидкости или кристаллические вещества с приятным ароматом. Температура их кипения обычно ниже, чем у близких по значениям молекулярных масс карбоновых кислот. Что подтверждает уменьшение межмолекулярных взаимодействий, а это, в свою очередь, объясняется отсутствием водородных связей между соседними молекулами.

Однако так же, как и химические свойства сложных эфиров, физические зависят от особенностей строения молекулы. А точнее, от типа спирта и карбоновой кислоты, из которых он образован. По этому признаку сложные эфиры делят на три основные группы:

  1. Фруктовые эфиры. Они образованы из низших карбоновых кислот и таких же одноатомных спиртов. Жидкости с характерными приятными цветочно-фруктовыми запахами.
  2. Воски. Являются производными высших (число атомов углерода от 15 до 30) кислот и спиртов, имеющих по одной функциональной группе. Это пластичные вещества, которые легко размягчаются в руках. Основным компонентом пчелиного воска является мирицилпальмитат С 15 Н 31 СООС 31 Н 63 , а китайский - цериловый эфир церотиновой кислоты С 25 Н 51 СООС 26 Н 53 . Они не растворяются в воде, но растворимы в хлороформе и бензоле.
  3. Жиры. Образованные из глицерина и средних и высших карбоновых кислот. Животные жиры, как правило, твердые при нормальных условиях, но легко плавятся при повышении температуры (сливочное масло, свиной жир и др.). Для растительных жиров характерно жидкое состояние (льняное, оливковое, соевое масла). Принципиальным отличием в строении этих двух групп, что и сказывается на различиях в физических и химических свойствах сложных эфиров, является наличие или отсутствие кратных связей в кислотном остатке. Животные жиры являются глицеридами непредельных карбоновых кислот, а растительные - предельных кислот.

Химические свойства

Эфиры реагируют с нуклеофилами, что приводит к замещению алкоксигруппы и ацилированию (или алкилированию) нуклеофильного агента. Если в структурной формуле сложного эфира имеется α-водородный атом, то возможна сложноэфирная конденсация.

1. Гидролиз. Возможен кислотный и щелочной гидролиз, представляющий собой реакцию, обратную этерификации. В первом случае гидролиз обратим, а кислота выступает в роли катализатора:

R-СОО-R" + Н 2 О <―> R-СОО-Н + R"-OH

Основной гидролиз необратим и обычно называется омылением, а натриевые и калиевые соли жирных карбоновых кислот - мылами:

R-СОО-R" + NaOH ―> R-СОО-Na + R"-OΗ

2. Аммонолиз. Нуклеофильным агентом может выступать аммиак:

R-СОО-R" + NH 3 ―> R-СО-NH 2 + R"-OH

3. Переэтерификация. Это химическое свойство сложных эфиров можно причислить также к способам их получения. Под действием спиртов в присутствии Н + или ОН - возможна замена углеводородного радикала, соединенного с кислородом:

R-СОО-R" + R""-OH ―> R-СОО-R"" + R"-OH

4. Восстановление водородом приводит к образованию молекул двух разных спиртов:

R-СО-OR" + LiAlH 4 ―> R-СΗ 2 -ОΗ + R"OH

5. Горение - еще одна типичная для сложных эфиров реакция:

2CΗ 3 -COO-CΗ 3 + 7O 2 = 6CO 2 + 6H 2 O

6. Гидрирование. Если в углеводородной цепи молекулы эфира имеются кратные связи, то по ним возможно присоединение молекул водорода, которое происходит в присутствии платины или других катализаторов. Так, например, из масел возможно получение твердых гидрогенизированных жиров (маргарина).

Применение сложных эфиров

Сложные эфиры и их производные применяются в различных отраслях промышленности. Многие из них хорошо растворяют различные органические соединения, используются в парфюмерии и пищевой промышленности, для получения полимеров и полиэфирных волокон.

Этилацетат. Используется как растворитель для нитроцеллюлозы, ацетилцеллюлозы и других полимеров, для изготовления и растворения лаков. Благодаря приятному аромату применяется в пищевой и парфюмерной промышленностях.

Бутилацетат. Также применяют в качестве растворителя, но уже и полиэфирных смол.

Винилацетат (СН 3 -СОО-СН=СН 2). Используется как основа полимера, необходимого в приготовлении клея, лаков, синтетических волокон и пленок.

Малоновый эфир. Благодаря своим особым химическим свойствам этот сложный эфир широко используется в химическом синтезе для получения карбоновых кислот, гетероциклических соединений, аминокарбоновых кислот.

Фталаты. Эфиры фталевой кислоты используют в качестве пластифицирующих добавок к полимерам и синтетическим каучукам, а диоктилфталат - еще и как репеллент.

Метилакрилат и метилметакрилат. Легко полимеризуются с образованием устойчивого к различным воздействиям листов органического стекла.

Простые эфиры (окиси алканов) можно представить как соединения, образованные замещением обоих атомов водорода молекулы воды двумя алкильными радикалами или замещением гидроксильного спирта алкильным радикалом.

Изомерия и номенклатура. Общая формула простых эфировROR(I) ((C n H 2 n +1) 2 O) илиC n H 2 n +1 OC k H 2 k +1 , гдеnk(R 1 OR 2) (II). Последние часто называют смешанными эфирами, хотя (I) частный случай (II).

Простые эфиры изомерны спиртам (изомерия функциональной группы). Приведем примеры таких соединений:

Н 3 СОСН 3 диметиловый эфир; С 2 Н 5 ОН этиловый спирт;

Н 5 С 2 ОС 2 Н 5 диэтиловый эфир; С 4 Н 9 ОН бутиловый спирт;

Н 5 С 2 ОС 3 Н 7 этилпропиловый эфир; С 5 Н 11 ОН амиловый спирт.

Кроме того, для простых эфиров распространена изомерия углеродного скелета (метилпропиловый эфир и метилизопропиловый эфир). Оптически активные эфиры немногочисленны.

Способы получения простых эфиров

1. Взаимодействие галогенпроизводных с алкоголятами (реакция Вильямсона).

С 2 Н 5 ОNa+IC 2 H 5 Н 5 С 2 ОС 2 Н 5 +NaI

2. Дегидратация спиртов в присутствии ионов водорода как катализаторов.

2С 2 Н 5 ОHН 5 С 2 ОС 2 Н 5

3. Частная реакция получения диэтилового эфира.

Первая стадия:

Вторая стадия:

Физические свойства простых эфиров

Два первых простейших представителя – диметиловый и метилэтиловый эфиры – при обычных условиях газы, все остальные – жидкости. Их Т кип много ниже, чем соответствующих спиртов. Так, температура кипения этанола – 78,3С, а Н 3 СОСН 3 – 24С, соответственно (С 2 Н 5) 2 О – 35,6С. Дело в том, что простые эфиры не способны к образованию молекулярных водородных связей, а, следовательно, и к ассоциации молекул.

Химические свойства простых эфиров

1. Взаимодействие с кислотами.

(С 2 Н 5) 2 О +HCl[(С 2 Н 5) 2 ОH + ]Cl  .

Эфир играет роль основания.

2. Ацидолиз – взаимодействие с сильными кислотами.

Н 5 С 2 ОС 2 Н 5 + 2H 2 SO 4 2С 2 Н 5 OSO 3 H

этилсерная кислота

Н 5 С 2 ОС 2 Н 5 +HIС 2 Н 5 OH+ С 2 Н 5 I

3. Взаимодействие со щелочными металлами.

Н 5 С 2 ОС 2 Н 5 + 2NaС 2 Н 5 ONa+ С 2 Н 5 Na

Отдельные представители

Этиловый эфир (диэтиловый эфир) – бецветная прозрачная жидкость, малорастворимая в воде. С этиловым спиртом смешивается в любых отношениях. Т пл =116,3С, давление насыщенного пара 2,6610 4 Па (2,2С) и 5,3210 4 Па (17,9С). Криоскопическая константа 1,79, эбулиоскопическая –1,84. Температура воспламенения – 9,4С, образует с воздухом взрывоопасную смесь при 1,71 об. % (нижний предел) – 48,0 об. % (верхний предел). Вызывает набухание резин. Широко применяется в качестве растворителя, в медицине (ингаляционный наркоз), вызывает привыкание человека, ядовит.

Сложные эфиры карбоновых кислот Получение сложных эфиров карбоновых кислот

1. Этерификация кислот спиртами.

Гидроксил кислоты выделяется в составе воды, спирт же отдает лишь атом водорода. Реакция обратима, те же катионы катализируют и обратную реакцию.

2. Взаимодействие ангидридов кислот со спиртами.

3. Взаимодействие галогенангидридов со спиртами.

Некоторые физические свойства сложных эфиров приведены в табли- це 12.

Таблица 12

Некоторые физические свойства ряда сложных эфиров

Строение радикала

Название

Плотность

метилформиат

этилформиат

метилацетат

этилацетат

н-пропилацетат

н-бутилацетат

Сложные эфиры низших карбоновых кислот и простейших спиртов – жидкости с освежающим фруктовым запахом. Употребляются как отдушки для приготовления напитков. Многие эфиры (уксусноэтиловый, уксуснобутиловый) широко применяются как растворители, особенно лаков.

Введение -3-

1. Строение -4-

2. Номенклатура и изомерия -6-

3. Физические свойства и нахождение в природе -7-

4. Химические свойства -8-

5. Получение -9-

6. Применение -10-

6.1 Применение сложных эфиров неорганических кислот -10-

6.2 Применение сложных эфиров органических кислот -12-

Заключение -14-

Использованные источники информации -15-

Приложение -16-

Введение

Среди функциональных производных кислот особое место занимают сложные эфиры - производные кислот, у которых кислотный водород заменён на алкильные (или вообще углеводородные) радикалы.

Сложные эфиры делятся в зависимости от того, производной какой кислоты они являются (неорганической или карбоновой).

Среди сложных эфиров особое место занимают природные эфиры - жиры и масла, которые образованы трехатомным спиртом глицерином и высшими жирными кислотами, содержащими четное число углеродных атомов. Жиры входят в состав растительных и животных организмов и служат одним из источников энергии живых организмов, которая выделяется при окислении жиров.

Цель моей работы заключается в подробном ознакомлении с таким классом органических соединений, как сложные эфиры и углублённом рассмотрении области применения отдельных представителей этого класса.

1. Строение

Общая формула сложных эфиров карбоновых кислот:

где R и R" - углеводородные радикалы (в сложных эфиpax муравьиной кислоты R - атом водорода).

Общая формула жиров:

гдеR", R", R"" - углеродные радикалы.

Жиры бывают “простыми” и “смешанными”. В состав простых жиров входят остатки одинаковых кислот (т. е. R’ = R" = R""), в состав смешанных - различных.

В жирах наиболее часто встречаются следующие жирные кислоты:

Алкановые кислоты

1. Масляная кислота СН 3 - (CH 2) 2 - СООН

3. Пальмитиновая кислота СН 3 - (CH 2) 14 - СООН

4. Стеариновая кислота СН 3 - (CH 2) 16 - СООН

Алкеновые кислоты

5. Олеиновая кислота С 17 Н 33 СООН

СН 3 -(СН 2) 7 -СН === СН-(СН 2) 7 -СООН

Алкадиеновые кислоты

6. Линолевая кислота С 17 Н 31 СООН

СН 3 -(СН 2) 4 -СН = СН-СН 2 -СН = СН-СООН

Алкатриеновые кислоты

7. Линоленовая кислота С 17 Н 29 СООН

СН 3 СН 2 СН = CHCH 2 CH == CHCH 2 CH = СН(СН 2) 4 СООН

2. Номенклатура и изомерия

Названия сложных эфиров производят от названия углеводородного радикала и названия кислоты, в котором вместо окончания -овая используют суффикс - ат, например:

Для сложных эфиров характерны следующие виды изомерии:

1. Изомерия углеродной цепи начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку - с пропилового спирта, например, этилбутирату изомерны этилизобутират, пропилацетат и изопропилацетат.

2. Изомерия положения сложноэфирной группировки -СО-О-. Этот вид изомерии начинаетсясо сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, например этилацетат и метилпропионат.

3. Межклассовая изомерия, например, метилацетату изомерна пропановая кислота.

Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи и цис-, транс-изомерия.

3. Физические свойства и нахождение в природе

Сложные эфиры низших карбоновых кислот и спиртов представляют собой летучие, нерастворимые в воде жидкости. Многие из них имеют приятный запах. Так, например, бутилбутират имеет запах ананаса, изоамилацетат - груши и т. д.

Сложные эфиры высших жирных кислот и спиртов - воскообразные вещества, не имеют запаха, в воде не растворимы.

Приятный аромат цветов, плодов, ягод в значительной степени обусловлен присутствием в них тех или иных сложных эфиров.

Жиры широко распространены в природе. Наряду с углеводородами и белками они входят в состав всех растительных и животных организмов и составляют одну из основных частей нашей пищи.

По агрегатному состоянию при комнатной температуре жиры делятся на жидкие и твердые. Твердые жиры, как правило, образованы предельными кислотами, жидкие жиры (их часто называют маслами) - непредельными. Жиры растворимы в органических растворителях и нерастворимы в воде.

4. Химические свойства

1. Реакция гидролиза, или омыления. Так, как реакция этерификации является обратимой, поэтому в присутствии кислот протекает обратная реакция гидролиза:

Реакция гидролиза катализируется и щелочами; в этом случае гидролиз необратим, так как получающаяся кислота со щелочью образует соль:

2. Реакция присоединения. Сложные эфиры, имеющие в своем составе непредельную кислоту или спирт, способны к реакциям присоединения.

3. Реакция восстановления. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:

4. Реакция образования амидов. Под действием аммиака сложные эфиры превращаются в амиды кислот и спирты:

5. Получение

1. Реакция этерификации:

Спирты вступают в реакции с минеральными и органическими кислотами, образуя сложные эфиры. Реакция обратима (обратный процесс – гидролиз сложных эфиров).

Реакционная способность одноатомных спиртов в этих реакциях убывает от первичных к третичным.

2. Взаимодействием ангидридов кислот со спиртами:

3. Взаимодействием галоидангидридов кислот со спиртами:

6. Применение

6.1 Применение сложных эфиров неорганических кислот

Эфиры борной кислоты - триалкилбораты - легко получаются нагреванием спирта и борной кислоты с добавкой концентрированной серной кислоты. Борнометиловый эфир (триметилборат) кипит при 65° С, борноэтиловый (триэтилборат) - при 119° С. Эфиры борной кислоты легко гидролизуются водой.

Реакция с борной кислотой служит для установления конфигурации многоатомных спиртов и была неоднократно использована при изучении Сахаров.

Ортокремневые эфиры - жидкости. Метиловый эфир кипит при 122° С, этиловый при 156° С. Гидролиз водой проходит легко уже на холоду, но идет постепенно и при недостатке воды приводит к образованию высоко­молекулярных ангидридных форм, в которых атомы кремния соединены друг с другом через кислород (силоксановые группировки):

Эти высокомолекулярные вещества (полиалкоксисилоксаны) находят применение в качестве связующих, выдерживающих довольно высокую температуру, в частности для покрытия поверхности форм для точной отливки металла.

Аналогично SiCl 4 реагируют диалкилдихлорсиланы, например ((СН 3) 2 SiCl 2 , образуя диалкоксильные производные:

Их гидролиз при недостатке воды дает так называемые полиалкилсилоксаны:

Они обладают разным (но очень значительным) молекулярным весом и представляют собой вязкие жидкости, используемые в качестве термо­стойких смазок, а при еще более длинных силоксановых скелетах - термостойкие электроизоляционные смолы и каучуки.

Эфиры ортотитановой кислоты. Их получают аналогично ортокремневым эфирам по реакции:

Это жидкости, легко гидролизующиеся до метилового спирта и TiO 2 применяются для пропитки тканей с целью придания им водонепроницаемости.

Эфиры азотной кислоты. Их получают действием на спирты смеси азотной и концентрированной серной кислот. Метилнитрат СН 3 ONO 2 , (т. кип. 60° С) и этилнитрат C 2 H 5 ONO 2 (т. кип. 87° С) при осторожной работе можно перегнать, но при нагревании выше температуры кипения или при детонации они очень сильно взрывают.

Нитраты этиленгликоля и глицерина, неправильно называемые нитрогликолем и нитроглицерином, применяются в качестве взрывчатых веществ. Сам нитроглицерин (тяжелая жидкость) неудобен и опасен в обращении.

Пентрит - тетранитрат пентаэритрита С(CH 2 ONO 2) 4 , получаемый обработкой пентаэритрита смесью азотной и серной кислот, - тоже сильное взрывчатое вещество бризантного действия.

Нитрат глицерина и нитрат пентаэритрита обладают сосудорасширя­ющим эффектом и применяются как симптоматические средства при сте­нокардии.

Эфиры фосфорной кислоты - высококипящие жидкости, лишь очень медленно гидролизуемые водой, быстрее щелочами и разбавленными кислотами. Эфиры, образованные этерификацией высших спиртов (и фено­лов), находят применение как пластификаторы пластмасс и для извлече­ния солей уранила из водных растворов.

Известны эфиры типа (RO)2S═O, но они не имеют практического значения.

Из алкилсульфатов - солей сложных эфиров высших спиртов и серной кислоты производят моющие средства. В общем виде образование таких солей можно изобразить уравнениями:

Они и обладают прекрасными моющими способностями. Принцип их действия тот же, что и у обычного мыла, только кислотный остаток серной кислоты лучше адсорбируется частицами загрязнения, а кальцевые соли алкилсерной кислоты растворимы в воде, поэтому это моющее средство стирает и в жесткой, и в морской воде.

6.2 Применение сложных эфиров органических кислот

Наибольшее применение в качестве растворителей получили эфиры уксусной кислоты - ацетаты. Прочие эфиры (кислот молочной - лактаты, масляной - бутираты, муравьиной - формиаты) нашли ограниченное применение. Формиаты из-за сильной омыляемости и высокой токсичности в настоящее время не используются. Определенный интерес представляют растворители на основе изобутилового спирта и синтетических жирных кислот, а также алкиленкарбонаты. Физико-химические свойства наиболее распространенных сложных эфиров приведены в таблице (см. приложение).

Метилацетат СН 3 СООСН 3 . Отечественной промышленностью технический метилацетат выпускается в виде древесно-спиртового растворителя, в котором содержится 50% (масс.) основного продукта. Метилацетат также образуется в виде побочного продукта при производстве поливинилового спирта. По растворяющей способности метилацетат аналогичен ацетону и применяется в ряде случаев как его заменитель. Однако он обладает большей токсичностью, чем ацетон.

Этилацетат С 2 Н 5 СООСН 3 . Получают методом этерификации на лесохимических предприятиях при переработке синтетической и лесохимической уксусной кислоты, гидролизного и синтетического этилового спирта или конденсацией ацетальдегида. За рубежом разработан процесс получения этилацетата на основе метилового спирта.
Этилацетат подобно ацетону растворяет большинство полимеров. По сравнению с ацетоном его преимущество в более высокой температуре кипения (меньшей летучести). Добавка 15-20 % этилового спирта повышает растворяющую способность этилацетата в отношении эфиров целлюлозы, особенно ацетилцеллюлозы.

Пропилацетат СН 3 СООСН 2 СН 2 СН 3 . По растворяющей способности подобен этилацетату.

Изопропилацетат СН3СООСН(СН 3) 2 . По свойствам занимает промежуточное положение между этил- и пропилацетат.

Амилацетат CH 3 COOCH 2 CH 2 CH 2 CH 2 CH 3 , т. кип. 148° С, иногда называют «банановым маслом» (которое он напоминает по запаху). Он образуется в реакции между амиловым спиртом (часто – сивушным маслом) и уксусной кислотой в присутствии катализатора. Амилацетат широко применяется как растворитель для лаков, поскольку он испаряется медленнее, чем этилацетат.

Фруктовые эфиры. Характер многих фруктовых запахов, таких, как запахи малины, вишни, винограда и рома, отчасти обусловлен летучими эфирами, например этиловым и изоамиловым эфирами муравьиной, уксусной, масляной и валериановой кислот. Имеющиеся в продаже эссенции, имитирующие эти запахи, содержат подобные эфиры.

Винилацетат CH 2 =CHOOCCH 3 , образуется при взаимодействии уксусной кислоты с ацетиленом в присутствии катализатора. Это важный мономер для приготовления поливинилацетатных смол, клеев и красок.

Мыла - это соли высших карбоновых кислот.Обычные мыла состоят главным образом из смеси солей пальмитиновой, стеариновой и олеиновой кислот. Натриевые соли образуют твердые мыла, калиевые соли - жидкие мыла.

Мыла получаются при гидролизе жиров в присутствии щелочей:

Обычное мыло плохо стирает в жесткой воде и совсем не стирает в морской воде, так как содержащиеся в ней ионы кальция и магния дают с высшими кислотами нерастворимые в воде соли:

Ca 2+ + 2C 17 H 35 COONa→Ca(C 17 H 35 COO) 2 ↓ + 2Na +

В настоящее время для стирки в быту, для промывки шерсти и тканей в промышленности используют синтетические моющие средства, которые обладают в 10 раз большей моющей способностью, чем мыла, не портят тканей, не боятся жесткой и даже морской воды.

Заключение

Исходя из вышесказанного, можно сделать вывод, что сложные эфиры находят широкое применение, как в быту, так и в промышленности. Некоторые из сложных эфиров готовятся искусственно и под названием «фруктовых эссенций» широко применяются в кондитерском деле, в производстве прохладительных напитков, в парфюмерии и во многих других отраслях. Жиры используют для многих технических целей. Однако особенно велико их значение как важнейшей составной части рациона человека и животных, наряду с углеводами и белками. Прекращение использования пищевых жиров в технике и замена их непищевыми материалами – одна из важнейших задач народного хозяйства. Эта задача может быть разрешена только при достаточно основательных знаниях о сложных эфирах и дальнейшем изучении этого класса органических соединений.

Использованные источники информации

1. Цветков Л.А. Органическая химия: Учебник для 10-11 классов общеобразовательных учебных заведений. - М.: Гуманит. изд. центр ВЛАДОС, 2001;

2. Несмеянов А. Н., Несмеянов Н. А., Начала органической химии, кн. 1-2, М.,1969-70.;

3. Глинка Н. Л. Общая химия: Учебное пособие для вузов. – 23-е изд., испр./ Под ред. В. А. Рабиновича. – Л.: Химия, 1983;

4. http://penza.fio.ru

5. http://encycl.yandex.ru

Приложение

Физико-химические свойства сложных эфиров

Название Давление пара при 20°С, кПа Молеку- лярная масса Темпера- тура кипения при 101,325 кПа. °С Плотность при 20°С. г/см 3 Показа- тель перелом- ления n 20 Поверхнос- тное натяжение 20°С. мН/м
Метилацетат 23,19 74,078 56,324 0,9390 1,36193 24,76 25,7
Этилацетат 9,86 88,104 77,114 0,90063 1,37239 23,75
Пропилацетат 3,41 102,13 101,548 0,8867 1,38442 20,53
Изопропилацетат 8,40 102,13 88,2 0,8718 1,37730 22,10 22
Бутилацетат 2,40 116,156 126,114 0,8813 1,39406 25,2
Изоиутилацетат 1,71 116,156 118 0,8745 1,39018 23,7
Втор-Бутилацетат - 116,156 112,34 0,8720 1,38941 23,33 22,1
Гексилацетат - 114,21 169 0,890 - -
Амилацетат 2,09 130,182 149,2 0,8753 1,40228 25,8
Изоамилацетат 0,73 130,182 142 0,8719 1,40535 24,62 21,1
Ацетат монометилового эфира этиленгликоля (метилцеллозольвацетат) 0,49 118,0 144,5 1,007 1,4019 -
Ацетат моноэтилового эфира этиленгликоля (этилцеллозольвацетат) 0,17 132,16 156,4 0,9748 1,4030 -
Этиленгликольмоноацетат - 104 181-182 1,108-1,109 - -
Этиленгликольдиацетат 0,05 146 186-190 1,106 - -
Циклогексилацетат 0,97 142 175 0,964 1,4385 -
Этиллактат 0,13 118,13 154,5 1,031 1,4118 28,9 17,3
Бутиллактат 0,05 146,0 185 0,97 - -
Пропиленкарбонат - 102,088 241,7 1,206 1,4189 -

При взаимодействии карбоновых кислот со спиртами (реакция этерификации) образуются сложные эфиры:
R 1 -COOH (кислота) + R 2 -OH (спирт) ↔ R 1 -COOR 2 (сложный эфир) + H 2 O
Эта реакция обратима. Продукты реакции могут взаимодействовать друг с другом с образованием исходных веществ — спирта и кислоты. Таким образом, реакция сложных эфиров с водой — гидролиз сложного эфира — обратна реакции этерификации. Химическое равновесие, устанавливающееся при равенстве скоростей прямой (этерификации) и обратной (гидролиз) реакций, может быть смещено в сторону образования эфира присутствием водоотнимающих веществ.

Сложные эфиры в природе и технике

Сложные эфиры широко распространены в природе, находят применение в технике и различных отраслях промышленности. Они являются хорошими растворителями органических веществ, их плотность меньше плотности воды, и они практически не растворяются в ней. Так, сложные эфиры с относительно небольшой молекулярной массой представляют собой легковоспламеняющиеся жидкости с невысокими температурами кипения, имеют запахи различных фруктов. Их применяют в качестве растворителей лаков и красок, ароматизаторов изделий в пищевой промышленности. Например, метиловый эфир масляной кислоты имеет запах яблок, этиловый спирт этой кислоты – запах ананасов, изобутиловый эфир уксусной кислоты – запах бананов:
C 3 H 7 -COO-CH 3 (метиловый эфир масляной кислоты);
C 3 H 7 -COO-C 2 H 5 (этиловый эфир масляной кислоты);
CH 3 -COO-CH 2 -CH 2 (изобутиловый эфир уксусной кислоты)
Сложные эфиры высших карбоновых кислот и высших одноосновных спиртов называют восками . Так, пчелиный воск состоит главным образом из эфира пальмитиновой кислоты мирицилового спирта C 15 H 31 COOC 31 H 63; кашалотовый воск – спермацет – сложный эфир той же пальмитиновой кислоты и цетилового спирта C 15 H 31 COOC 16 H 33