Алкан щелочь. Алканы — предельные углеводороды, их химические свойства. Физические свойства предельных углеводородов

Алканы - насыщенные (предельные) углеводороды. Представителем этого класса является метан (СН 4 ). Все последующие предельные углеводороды отличаются на СН 2 - группу, которая называется гомологической группой, а соединения - гомологами.

Общая формула - С n H 2 n +2 .

Строение алканов.

Каждый атом углерода находится в sp 3 - гибридизации , образует 4 σ - связи (1 С-С и 3 С-Н ). Форма молекулы в виде тетраэдра с углом 109,5°.

Связь образуется посредством перекрывания гибридных орбиталей, причем максимальная область перекрывания лежит в пространстве на прямой, соединяющей ядра атомов . Это наиболее эффективное перекрывание, поэтому σ-связь считается наиболее прочной.

Изомерия алканов.

Для алканов свойственна изомерия углеродного скелета. Предельные соединения могут принимать различные геометрические формы, сохраняя при этом угол между связями. Например,

Различные положения углеродной цепи называются конформациями. В нормальных условиях конформации алканов свободно переходят друг в друга с помощью вращения С-С связей, поэтому их часто называют поворотными изомерами. Существует 2 основные конформации - «заторможенное» и «заслоненное»:

Изомерия углеродного скелета алканов.

Количество изомеров возрастает с увеличением роста углеродной цепи. Например у бутана известно 2 изомера:


Для пентана - 3, для гептана - 9 и т.д.

Если у молекулы алкана отнять один протон (атом водорода), то получится радикал:

Физические свойства алканов.

В нормальных условиях - С 1 -С 4 - газы, С 5 -С 17 - жидкости, а углеводороды с количеством атомов углерода больше 18 - твердые вещества.

С ростом цепи повышается температура кипения и плавления. Разветвленные алканы имеют более низкие температуры кипения, чем нормальные.

Алканы нерастворимы в воде , но хорошо растворяются в неполярных органических растворителях. Легко смешиваются друг с другом.

Получение алканов.

Синтетические методы получения алканов:

1. Из ненасыщенных углеводородов - реакция «гидрирования» протекает под воздействием катализатора (никель, платина) и при температуре:

2. Из галогенпроизводных - реакция Вюрца : взаимодействие моногалогенаклканов с металлическим натрием, в результате чего получаются алканы с удвоенным числом углеродных атомов в цепи:

3. Из солей карбоновых кислот . При взаимодействии соли с щелочи, получаются алканы, которые содержат на 1 атом углерод меньше по сравнению с исходной карбоновой кислотой:

4. Получение метана. В электрической дуге в атмосфере водорода:

С + 2Н 2 = СН 4 .

В лаборатории метан получают так:

Al 4 C 3 + 12H 2 O = 3CH 4 + 4Al(OH) 3 .

Химические свойства алканов.

В нормальных условиях алканы - химически инертные соединения, они не реагируют с концентрированной серной и азотной кислотой, с концентрированной щелочью, с перманганатом калия.

Устойчивость объясняется прочностью связей и их неполярностью.

Соединения не склонны к реакциях разрыва связи (реакция присоединения), для них свойственно замещение.

1. Галогенирование алканов. Под воздействием кванта света начинается радикальное замещение (хлорирование) алкана. Общая схема:

Реакция идет по цепному механизму, в которой различают:

А) Инициирование цепи:

Б) Рост цепи:

В) Обрыв цепи:

Суммарно можно представить в виде:

2. Нитрование (реакция Коновалова)алканов. Реакция протекает при 140 °С:

Легче всего реакция протекает с третитичным атомом углерода, чем с первичным и вторичным.

3. Изомризацияалканов. При конкретных условиях алканы нормального строения могут превращаться в разветвленные:

4. Крекингалканов. При дейсвии высоких температур и катализаторов высшие алканы могут рвать свои связи, образуя алкены и алканы более низшие:

5. Окислениеалканов. В различных условиях и при разных катализаторах окисление алкана может привести к образованию спирта, альдегида (кетона) и уксусной кислоты. В условиях полного окисления реакция протекает до конца - до образования воды и углекислого газа:

Применение алканов.

Алканы нашли широкое применение в промышленности, в синтезе нефти, топлива и т.д.

Каждый класс химических соединений способен проявлять свойства, обусловленные их электронным строением. Для алканов характерны реакции замещения, отщепления или окисления молекул. Все имеют свои особенности протекания, о которых пойдет дальше речь.

Что такое алканы

Это насыщенные углеводородные соединения, которые носят название парафинов. Их молекулы состоят только из атомов углеродных и водородных, имеют линейную или разветвленную ациклическую цепочку, в которой есть лишь одинарные соединения. Учитывая характеристику класса, можно вычислить, какие реакции характерны для алканов. Они подчиняются формуле для всего класса: H 2n+2 C n .

Строение химическое

Молекула парафинов включает углеродные атомы, проявляющие sp 3 -гибридизацию. У них все валентные четыре орбитали обладают одинаковой формой, энергией и направлением в пространстве. Размер угла между энергетическими уровнями составляет 109° и 28".

Наличие одинарных связей в молекулах определяет, какие реакции характерны для алканов. В них присутствуют σ-соединения. Связь между углеродами является неполярной и слабо поляризуемой, она немного длиннее, чем в C−H. Также наблюдается смещение электронной плотности к углеродному атому, как наиболее электроотрицательному. В результате соединение C−H характеризуется малой полярностью.

Реакции замещения

Вещества класса парафинов обладают слабой химической активностью. Это можно объяснить прочностью связей между C−C и C−H, которые трудно разорвать из-за неполярности. В основе их разрушения лежит механизм гомолитический, при котором участвуют радикалы свободного типа. Именно поэтому для алканов характерны реакции замещения. Такие веществ не способны взаимодействовать с молекулами воды или несущими заряд ионами.

Им причисляют замещение свободнорадикальное, в котором водородные атомы заменяются на галогеновые элементы или другие активные группы. К таким реакциям относят процессы, связанные с галогенированием, сульфохлорированием и нитрованием. Их результатом является получение алкановых производных.

В основе механизма реакций замещения по свободнорадикальному типу лежат основные три стадии:

  1. Начинается процесс с инициирования или зарождения цепочки, в результате которого формируются свободные радикалы. Катализаторами служат источники света ультрафиолетового и нагревание.
  2. Затем развивается цепочка, в которой осуществляются последовательные взаимодействия активных частиц с неактивными молекулами. Происходит их превращение в молекулы и радикалы соответственно.
  3. Конечным этапом будет обрыв цепочки. Наблюдается рекомбинация или исчезновение активных частиц. Так прекращается развитие цепной реакции.

Процесс галогенирования

В его основе лежит механизм радикального типа. Реакция галогенирования алканов проходит при облучении ультрафиолетом и нагревании смеси из галогенов и углеводородов.

Все стадии процесса подчиняются правилу, которое высказал Марковников. В нем указано, что подвергается замещению галогеном, прежде всего, который принадлежит самому гидрированному углероду. Галогенирование протекает в такой последовательности: от третичного атома до первичного углерода.

Процесс проходит лучше у молекул алканов с длинной основной углеродной цепочкой. Это связано с уменьшением ионизирующей энергии в данном направлении, от вещества легче отщепляется электрон.

Примером может служить хлорирование молекулы метана. Действие ультрафиолета приводит к расщеплению хлора на радикальные частицы, которые осуществляют атаку на алкан. Происходит отрыв атомарного водорода и формирование H 3 C· или метильного радикала. Такая частица, в свою очередь, атакует молекулярный хлор, приводя к разрушению ее структуры и образованию нового химического реагента.

На каждом этапе процесса осуществляется замещение только одного водородного атома. Реакция галогенирования алканов приводит к постепенному формированию хлорметановой, дихлорметановой, трихлорметановой и тетрахлорметановой молекулы.

Схематически процесс выглядит следующим образом:

H 4 C + Cl:Cl → H 3 CCl + HCl,

H 3 CCl + Cl:Cl → H 2 CCl 2 + HCl,

H 2 CCl 2 + Cl:Cl → HCCl 3 + HCl,

HCCl 3 + Cl:Cl → CCl 4 + HCl.

В отличие от хлорирования молекулы метана, проведение такого процесса с другими алканами характеризуется получением веществ, у которых замещение водорода происходит не у одного атома углерода, а у нескольких. Их количественное соотношение связано с температурными показателями. В холодных условиях наблюдается уменьшение скорости образования производных с третичной, вторичной и первичной структурой.

С повышением температурного показателя быстрота формирования таких соединений выравнивается. На процесс галогенирования существует влияние фактора статического, который указывает на разную вероятность столкновения радикала с углеродным атомом.

Процесс галогенирования йодом в обычных условиях не протекает. Необходимо создание специальных условий. При воздействии на метан данным галогеном происходит возникновение йодистого водорода. На него оказывает действие йодистый метил, в результате выделяются первоначальные реагенты: метан и йод. Такая реакция считается обратимой.

Реакция Вюрца для алканов

Является методом получения с симметричной структурой. В качестве реагирующих веществ используют натрий металлический, алкилбромиды или алкилхлориды. При их взаимодействии получают галогенид натрия и увеличенную углеводородную цепь, которая является суммой двух радикалов углеводородов. Схематически синтез выглядит следующим образом: R−Cl + Cl−R + 2Na → R−R + 2NaCl.

Реакция Вюрца для алканов возможна только в том случае, если в их молекулах галогены находятся у первичного углеродного атома. Например, CH 3 −CH 2 −CH 2 Br.

Если в процессе участвует галогенуглеводорододная смесь из двух соединений, то при конденсации их цепочек образуются три разных продукта. Примером такой реакции алканов может служить взаимодействие натрия с хлорметаном и хлорэтаном. На выходе получается смесь, содержащая бутан, пропан и этан.

Кроме натрия, можно применять другие щелочные металлы, к которым относят литий или калий.

Процесс сульфохлорирования

Его еще называют реакцией Рида. Протекает она по принципу свободнорадикального замещения. тип реакции алканов на действие смеси из диоксида серы и молекулярного хлора в присутствии ультрафиолетового излучения.

Процесс начинается с инициации цепного механизма, при котором из хлора получаются два радикала. Один из них атакует алкан, что приводит к возникновению алкильной частицы и молекулы хлороводорода. К углеводородному радикалу прикрепляется серы диоксид с формированием сложной частицы. Для стабилизации происходит захват одного хлорного атома из другой молекулы. Конечным веществом является сульфонилхлорид алкана, его применяют при синтезе поверхностно-активных соединений.

Схематически процесс выглядит так:

ClCl → hv ∙Cl + ∙Cl,

HR + ∙Cl → R∙ + HCl,

R∙ + OSO → ∙RSO 2 ,

∙RSO 2 + ClCl → RSO 2 Cl + ∙Cl.

Процессы, связанные с нитрованием

Алканы вступают в реакции с кислотой азотной в виде раствора 10%, а также с азота четырехвалентного оксидом в газообразном состоянии. Условиями ее протекания являются высокие температурные значения (около 140 °C) и низкие показатели давления. На выходе продуцируются нитроалканы.

Данный процесс свободнорадикального типа назвали в честь ученого Коновалова, открывшего синтез нитрования: CH 4 + HNO 3 → CH 3 NO 2 + H 2 O.

Механизм отщепления

Для алканов характерны реакции дегидрирования и крекинга. Молекула метана подвергается полному термическому разложению.

Основным механизмом вышеуказанных реакций является отщепление атомов от алканов.

Процесс дегидрирования

При отделении атомов водорода от углеродного скелета парафинов, за исключением метана, получаются непредельные соединения. Такие химические реакции алканов проходят в условиях высокой температуры (от 400 до 600 °C) и под действием ускорителей в виде платины, никеля, и алюминия.

Если в реакции участвуют молекулы пропана или этана, то ее продуктами будет пропен или этен с одной двойной связью.

При дегидрировании четырех или пятиуглеродного скелета получаются диеновые соединения. Из бутана формируются бутадиен-1,3 и бутадиен-1,2.

Если в реакции присутствуют вещества с 6 и более атомами углеродов, то образуется бензол. В нем имеется ароматическое ядро с тремя связями двойными.

Процесс, связанный с разложением

В условиях высокой температуры реакции алканов могут проходить с разрывом связей углеродных и формированием активных частиц радикального типа. Такие процессы называют крекингом или пиролизом.

Нагревание реагирующих веществ до температур, превышающих 500 °C, приводит к разложению их молекул, в ходе которого образуются сложные смеси из радикалов алкильного типа.

Проведение при сильном нагревании пиролиза алканов с длинными углеродными цепочками связано с получением предельных и непредельных соединений. Его называют термическим крекингом. Такой процесс использовали до середины 20 века.

Недостатком было получение углеводородов с низким октановым числом (не более 65), поэтому его заменили Процесс проходит при температурных условиях, которые ниже 440 °C, и значениях давления, меньше 15 атмосфер, в присутствие алюмосиликатного ускорителя с выделением алканов, имеющих разветвлённую структуру. Примером может служить метановый пиролиз: 2CH 4 → t ° C 2 H 2 + 3H 2 . В ходе данной реакции образуется ацетилен и молекулярный водород.

Молекула метана может подвергаться конверсии. Для такой реакции необходима вода и никелевый катализатор. На выходе получается смесь из угарного газа и водорода.

Окислительные процессы

Химические реакции, характерные для алканов, связаны с отдачей электронов.

Существует автоокисление парафинов. В нем задействован свободно-радикальный механизм окисления насыщенных углеводородов. В ходе реакции из жидкой фазы алканов получают гидроперекиси. На начальном этапе молекула парафина взаимодействует с кислородом, в результате выделяются активные радикалы. Далее с алкильной частицей взаимодействует еще одна молекула O 2 , получается ∙ROO. С перекисным радикалом жирной кислоты контактирует молекула алкана, после чего выделяется гидроперекись. Примером может служить автоокисление этана:

C 2 H 6 + O 2 → ∙C 2 H 5 + HOO∙,

∙C 2 H 5 + O 2 → ∙OOC 2 H 5 ,

∙OOC 2 H 5 + C 2 H 6 → HOOC 2 H 5 + ∙C 2 H 5 .

Для алканов характерны реакции горения, которые относятся к главным химическим свойствам, при определении их в составе топлива. Они имеют окислительный характер с выбросом тепла: 2C 2 H 6 + 7O 2 → 4CO 2 + 6H 2 O.

Если в процессе наблюдается малое количество кислорода, то конечным продуктом может быть уголь или углерода двухвалентный оксид, что определяется концентрацией O 2 .

При окислении алканов под влиянием каталитических веществ и нагревании до 200 °C получаются молекулы спирта, альдегида или карбоновой кислоты.

Пример с этаном:

C 2 H 6 + O 2 → C 2 H 5 OH (этанол),

C 2 H 6 + O 2 → CH 3 CHO + H 2 O (этаналь и вода),

2C 2 H 6 + 3O 2 → 2CH 3 COOH + 2H 2 O (этановая кислота и вода).

Алканы могут окисляться при действии на них трёхчленных циклических пероксидов. К ним относят диметилдиоксиран. Результатом окисления парафинов является молекула спирта.

Представители парафинов не реагируют на KMnO 4 или марганцовокислый калий, а также на

Изомеризация

На алканы тип реакции характеризуется замещением с электрофильным механизмом. Сюда причисляют изомеризацию углеродной цепи. Катализирует данный процесс алюминия хлорид, который взаимодействует с насыщенным парафином. Примером служит изомеризация молекулы бутана, которая становится 2-метилпропаном: C 4 H 10 → C 3 H 7 CH 3 .

Процесс ароматизации

Насыщенные вещества, у которых в основной цепочке углеродной содержится шесть или больше атомов углеродных, способны проводить дегидроциклизацию. Для коротких молекул не характерна такая реакция. Результатом всегда является шестичленный цикл в виде циклогексана и его производных.

В присутствии реакционных ускорителей проходит дальнейшее дегидрирование и превращение в более устойчивое бензольное кольцо. Происходит превращение ациклических углеводородов в ароматические соединения или арены. В качестве примера служит дегидроциклизация гексана:

H 3 C−CH 2 − CH 2 − CH 2 − CH 2 −CH 3 → C 6 H 12 (циклогексан),

C 6 H 12 → C 6 H 6 + 3H 2 (бензол).

Нелишне будет начать с определения понятия алканов. Это насыщенные либо предельные Также можно сказать, что это углероды, в которых соединение атомов C осуществляется посредством простых связей. Общая формула имеет вид: CnH₂n+ 2.

Известно, что соотношение количества атомов H и C в их молекулах максимально, если сравнивать с другими классами. Ввиду того что все валентности заняты либо C, либо H, химические свойства алканов выражены недостаточно ярко, поэтому их вторым названием выступает словосочетание предельные либо насыщенные углеводороды.

Также существует более древнее наименование, которое лучше всего отражает их относительную химинертность - парафины, что в переводе означает «лишенные сродства».

Итак, тема нашего сегодняшнего разговора: «Алканы: гомологический ряд, номенклатура, строение, изомерия». Также будут представлены данные касательно их физических свойств.

Алканы: строение, номенклатура

В них атомы C пребывают в таком состоянии, как sp3-гибридизация. В связи с этим молекулу алканов можно продемонстрировать в качестве набора тетраэдрических структур C, которые связаны не только между собой, но и с H.

Между атомами C и H присутствуют прочные, весьма малополярные s-связи. Атомы же вокруг простых связей всегда вращаются, ввиду чего молекулы алканов принимают разнообразные формы, причем длина связи, угол между ними - постоянные величины. Формы, которые трансформируются друг в друга из-за вращения молекулы, происходящего вокруг σ-связей, принято называть ее конформациями.

В процессе отрыва атома H от рассматриваемой молекулы сформировываются 1-валентные частицы, называемые углеводородными радикалами. Они появляются в результате соединений не только но и неорганических. Если отнять 2 атома водорода от молекулы предельного углеводорода, то получатся 2-валентные радикалы.

Таким образом, номенклатура алканов может быть:

  • радиальной (старый вариант);
  • заместительной (международная, систематическая). Она предложена ИЮПАК.

Особенности радиальной номенклатуры

В первом случае номенклатура алканов характеризуется следующим:

  1. Рассмотрение углеводородов в качестве производных метана, у которого замещен 1 либо несколько атомов H радикалами.
  2. Высокая степень удобства в случае с не очень сложными соединениями.

Особенности заместительной номенклатуры

Заместительная номенклатура алканов имеет следующие особенности:

  1. Основа для названия - 1 углеродная цепь, остальные же молекулярные фрагменты рассматриваются в качестве заместителей.
  2. При наличии нескольких идентичных радикалов перед их наименованием указывается число (строго прописью), а радикальные номера разделяются запятыми.

Химия: номенклатура алканов

Для удобства информация представлена в виде таблицы.

Название вещества

Основа названия (корень)

Молекулярная формула

Название углеродного заместителя

Формула углеродного заместителя

Вышеуказанная номенклатура алканов включает названия, которые сложились исторически (первые 4 члена ряда предельных углеводородов).

Наименования неразвернутых алканов с 5 и более атомами C образованы от греческих числительных, которые отражают данное число атомов C. Так, суффикс -ан говорит о том, что вещество из ряда насыщенных соединений.

При составлении названий развернутых алканов в роли основной цепи выбирается та, которая содержит максимальное количество атомов C. Она нумеруется так, чтобы заместители были с наименьшим номером. В случае двух и более цепей одинаковой длины главной становится та, которая содержит наибольшее количество заместителей.

Изомерия алканов

В качестве углеводорода-родоначальника их ряда выступает метан CH₄. С каждым последующим представителем метанового ряда наблюдается отличие от предыдущего на метиленовую группу - CH₂. Данная закономерность прослеживается во всем ряду алканов.

Немецкий ученый Шиль выдвинул предложение назвать этот ряд гомологическим. В переводе с греческого означает «сходный, подобный».

Таким образом, гомологический ряд - набор родственных органических соединений, имеющих однотипную структуру с близкими химсвойствами. Гомологи - члены данного ряда. Гомологическая разность - метиленовая группа, на которую отличаются 2 соседних гомолога.

Как уже упоминалось ранее, состав любого насыщенного углеводорода может быть выражен посредством общей формулы CnH₂n + 2. Так, следующим за метаном членом гомологического ряда является этан - C₂H₆. Чтобы вывести его структуру из метановой, необходимо заменить 1 атом H на CH₃ (рисунок ниже).

Структура каждого последующего гомолога может быть выведена из предыдущего таким же образом. В итоге из этана образуется пропан - C₃H₈.

Что такое изомеры?

Это вещества, которые имеют идентичный качественный и количественный молекулярный состав (идентичную молекулярную формулу), однако различное химическое строение, а также обладающие разными химсвойствами.

Вышерассмотренные углеводороды отличаются по такому параметру, как температура кипения: -0,5° - бутан, -10° - изобутан. Данный вид изомерии именуется как изомерия углеродистого скелета, она относится к структурному типу.

Число структурных изомеров растет быстрыми темпами с увеличением количества углеродных атомов. Таким образом, C₁₀H₂₂ будет соответствовать 75 изомерам (не включая пространственные), а для C₁₅H₃₂ уже известны 4347 изомеров, для C₂₀H₄₂ - 366 319.

Итак, уже стало понятно, что такое алканы, гомологический ряд, изомерия, номенклатура. Теперь стоит перейти к правилам составления названий по ИЮПАК.

Номенклатура ИЮПАК: правила образования названий

Во-первых, необходимо отыскать в углеводородной структуре углеродную цепь, которая наиболее длинна и содержит максимальное количество заместителей. Затем требуется пронумеровать атомы C цепи, начиная с конца, к которому ближе всего расположен заместитель.

Во-вторых, основа - название неразветвленного насыщенного углеводорода, которому по количеству атомов C соответствует самая главная цепь.

В-третьих, перед основой необходимо указать номера локантов, возле которых расположены заместители. За ними записываются через дефис названия заместителей.

В-четвертых, в случае наличия идентичных заместителей при разных атомах C локанты объединяются, при этом перед названием появляется умножающая приставка: ди - для двух идентичных заместителей, три - для трех, тетра - четырех, пента - для пяти и т. д. Цифры должны быть отделены друг от друга запятой, а от слов - дефисом.

Если один и тот же атом C содержится сразу два заместителя, локант тоже записывается дважды.

Согласно этим правилам и формируется международная номенклатура алканов.

Проекции Ньюмена

Этот американский ученый предложил для графической демонстрации конформаций специальные проекционные формулы - проекции Ньюмена. Они соответствуют формам А и Б и представлены на рисунке ниже.

В первом случае это А-заслоненная конформация, а во втором - Б-заторможенная. В позиции А атомы H располагаются на минимальном расстоянии друг от друга. Данной форме соответствует самое большое значение энергии, ввиду того что отталкивание между ними наибольшее. Это энергетически невыгодное состояние, вследствие чего молекула стремится покинуть его и перейти к более устойчивому положению Б. Здесь атомы H максимально удалены друг от друга. Так, энергетическая разница этих положений - 12 кДж/моль, благодаря чему свободное вращение вокруг оси в молекуле этана, которая соединяет метильные группы, получается неравномерным. После попадания в энергетически выгодное положение молекула там задерживается, другими словами, «тормозится». Именно поэтому оно и называется заторможенным. Результат - 10 тыс. молекул этана пребывают в заторможенной форме конформации при условии комнатной температуры. Только одна имеет другую форму - заслоненную.

Получение предельных углеводородов

Из статьи уже стало известно, что это алканы (строение, номенклатура их подробно описаны ранее). Будет нелишне рассмотреть способы их получения. Они выделяются из таких природных источников, как нефть, природный, каменный уголь. Применяются также и синтетические методы. Например, H₂ 2H₂:

  1. Процесс гидрирования CnH₂n (алкены)→ CnH₂n+2 (алканы)← CnH₂n-2 (алкины).
  2. Из смеси монооксида C и H - синтез-газа: nCO+(2n+1)H₂→ CnH₂n+2+nH₂O.
  3. Из карбоновых кислот (их солей): электролиз на аноде, на катоде:
  • электролиз Кольбе: 2RCOONa+2H₂O→R-R+2CO₂+H₂+2NaOH;
  • реакция Дюма (сплав со щелочью): CH₃COONa+NaOH (t)→CH₄+Na₂CO₃.
  1. Крекинг нефти: CnH₂n+2 (450-700°)→ CmH₂m+2+ Cn-mH₂(n-m).
  2. Газификация топлива (твердого): C+2H₂→CH₄.
  3. Синтез сложных алканов (галогенопроизводных), которые имеют меньшее количество атомов C: 2CH₃Cl (хлорметан) +2Na →CH₃- CH₃ (этан) +2NaCl.
  4. Разложение водой метанидов (карбидов металлов): Al₄C₃+12H₂O→4Al(OH₃)↓+3CH₄.

Физические свойства предельных углеводородов

Для удобства данные сгруппированы в таблицу.

Формула

Алкан

Температура плавления в °С

Температура кипения в °С

Плотность, г/мл

0,415 при t = -165°С

0,561 при t= -100°C

0,583 при t = -45°C

0,579 при t =0°C

2-Метилпропан

0,557 при t = -25°C

2,2-Диметил-пропан

2-Метилбутан

2-Метилпентан

2,2,3,3-Тетра-метилбутан

2,2,4-Триметил-пентан

н-C₁₀H₂₂

н-C₁₁H₂₄

н-Ундекан

н-C₁₂H₂₆

н-Додекан

н-C₁₃H₂₈

н-Тридекан

н-C₁₄H₃₀

н-Тетрадекан

н-C₁₅H₃₂

н-Пентадекан

н-C₁₆H₃₄

н-Гексадекан

н-C₂₀H₄₂

н-Эйкозан

н-C₃₀H₆₂

н-Триаконтан

1 мм рт. ст

н-C₄₀H₈₂

н-Тетраконтан

3 мм рт. ст.

н-C₅₀H₁₀₂

н-Пентаконтан

15 мм рт. ст.

н-C₆₀H₁₂₂

н-Гексаконтан

н-C₇₀H₁₄₂

н-Гептаконтан

н-C₁₀₀H₂₀₂

Заключение

В статье было рассмотрено такое понятие, как алканы (строение, номенклатура, изомерия, гомологический ряд и пр.). Немного рассказано об особенностиях радиальной и заместительной номенклатур. Описаны способы получения алканов.

Кроме того, в статье подробно перечислена вся номенклатура алканов (тест может помочь усвоить полученную информацию).

Предельными углеводородами, или парафинами, называются такие биосоединения, в молекулах которых атомы углерода соединены простой (одинарной) связью, а все другие единицы валентности насыщены атомами водорода.

Алканы: физические свойства

Отщепление водорода от молекулы алкана, или дегидрирование, в присутствии катализаторов и при нагревании (до 460 °С) позволяет получить необходимые алкены. Разработаны методы окисления алканов при невысоких температурах в присутствии катализаторов (солей магния). Это позволяет направленно влиять на ход реакции и получать необходимые продукты окисления в процессе химического синтеза. К примеру, при окислении высших алканов получают разнообразные высшие спирты или высшие жирные кислоты.

Расщепления алканов также происходит и в других условиях (горение, крекинг). Насыщенные углеводороды горят синим пламенем с выделением огромного количества тепла. Эти свойства позволяют использовать их в качестве высококалорийного топлива как в быту, так и в промышленности.

Предельные углеводороды - это такие соединения, которые представляют собой молекулы, состоящие из атомов углерода, находящихся в состоянии гибридизации sp 3 . Они связаны между собой исключительно ковалентными сигма-связями. Название «предельные» или «насыщенные» углеводороды исходит из того факта, что эти соединения не имеют возможности присоединять какие-либо атомы. Они предельны, полностью насыщены. Исключение составляют циклоалканы.

Что такое алканы?

Алканы - это углеводороды предельные, а их углеродная цепь незамкнута и состоит из атомов углерода, связанных между собой при помощи одинарных связей. Она не содержит иных (то есть двойных, как у алкенов, или же тройных, как у алкилов) связей. Алканы также называют парафинами. Это название они получили, так как общеизвестные парафины являются смесью преимущественно данных предельных углеводородов С 18 -С 35 с особой инертностью.

Общие сведения об алканах и их радикалах

Их формула: С n Р 2 n +2 , здесь n больше или равно 1. Молярная масса вычисляется по формуле: М = 14n + 2. Характерная особенность: окончания в их названиях - «-ан». Остатки их молекул, которые образуются в результате замещения водородных атомов на иные атомы, имеют название алифатических радикалов, или алкилов. Их обозначают буквой R. Общая формула одновалентных алифатических радикалов: С n Р 2 n +1 , здесь n больше или равно 1. Молярная масса алифатических радикалов вычисляется по формуле: М = 14n + 1. Характерная особенность алифатических радикалов: окончания в названиях «-ил». Молекулы алканов имеют свои особенности строения:

  • связь С-С характеризуется длиной 0,154 нм;
  • связь С-Н характеризуется длиной 0,109 нм;
  • валентный угол (угол между связями углерод-углерод) равен 109 градусов и 28 минут.

Начинают гомологический ряд алканы: метан, этан, пропан, бутан и так далее.

Физические свойства алканов

Алканы - это вещества, которые не имеют цвета и нерастворимы в воде. Температура, при которой алканы начинают плавиться, и температура, при которой они закипают, повышаются в соответствии с увеличением молекулярной массы и длины углеводородной цепи. От менее разветвленных к более разветвленным алканам температуры кипения и плавления понижаются. Газообразные алканы способны гореть бледно-голубым либо бесцветным пламенем, при этом выделяется довольно много тепла. СН 4 -С 4 Н 10 представляют собой газы, у которых отсутствует также и запах. С 5 Н 12 -С 15 Н 32 - это жидкости, которые обладают специфическим запахом. С 15 Н 32 и так далее - это твердые вещества, которые также не имеют запаха.

Химические свойства алканов

Данные соединения являются малоактивными в химическом плане, что можно объяснить прочностью трудноразрываемых сигма-связей - С-С и С-Н. Также стоит учитывать, что связи С-С неполярны, а С-Н малополярны. Это малополяризуемые виды связей, относящиеся к сигма-виду и, соответственно, разрываться по наибольшей вероятности они станут по механизму гомолитическому, в результате чего будут образовываться радикалы. Таким образом, химические свойства алканов в основном ограничиваются реакциями радикального замещения.

Реакции нитрования

Алканы взаимодействуют только с азотной кислотой с концентрацией 10% либо с оксидом четырехвалентного азота в газовой среде при температуре 140°С. Реакция нитрования алканов носит название реакции Коновалова. В результате образуются нитросоединения и вода: CH 4 + азотная кислота (разбавленная) = CH 3 - NO 2 (нитрометан) + вода.

Реакции горения

Предельные углеводороды очень часто применяются как топливо, что обосновано их способностью к горению: С n Р 2n+2 + ((3n+1)/2) O 2 = (n+1) H 2 O + n СО 2 .

Реакции окисления

В химические свойства алканов также входит их способность к окислению. В зависимости от того, какие условия сопровождают реакцию и как их изменяют, можно из одного и того же вещества получить различные конечные продукты. Мягкое окисление метана кислородом при наличии катализатора, ускоряющего реакцию, и температуры около 200 °С может дать в результате следующие вещества:

1) 2СН 4 (окисление кислородом) = 2СН 3 ОН (спирт - метанол).

2) СН 4 (окисление кислородом) = СН 2 О (альдегид - метаналь или формальдегид) + Н 2 О.

3) 2СН 4 (окисление кислородом) = 2НСООН (карбоновая кислота - метановая или муравьиная) + 2Н 2 О.

Также окисление алканов может производиться в газообразной или жидкой среде воздухом. Такие реакции приводят к образованию высших жирных спиртов и соответствующих кислот.

Отношение к нагреванию

При температурах, не превышающих +150-250°С, обязательно в присутствии катализатора, происходит структурная перестройка органических веществ, которая заключается в изменении порядка соединения атомов. Данный процесс называется изомеризацией, а вещества, полученные в результате реакции - изомерами. Таким образом, из нормального бутана получается его изомер - изобутан. При температурах 300-600°С и наличии катализатора происходит разрыв связей С-Н с образованием молекул водорода (реакции дегидрирования), молекул водорода с замыканием углеродной цепи в цикл (реакции циклизации или ароматизации алканов):

1) 2СН 4 = С 2 Н 4 (этен) + 2Н 2.

2) 2СН 4 = С 2 Н 2 (этин) + 3Н 2.

3) С 7 Н 16 (нормальный гептан) = С 6 Н 5 - СН 3 (толуол) + 4Н 2 .

Реакции галогенирования

Такие реакции заключаются во введении в молекулу органического вещества галогенов (их атомов), в результате чего образуется связь С-галоген. При взаимодействии алканов с галогенами образуются галогенпроизводные. Данная реакция обладает специфическими особенностями. Она протекает по механизму радикальному, и чтобы ее проинициировать, необходимо на смесь галогенов и алканов воздействовать ультрафиолетовым излучением или же просто нагреть ее. Свойства алканов позволяют реакции галогенирования протекать, пока не будет достигнуто полное замещение на атомы галогена. То есть хлорирование метана не закончится одной стадией и получением метилхлорида. Реакция пойдет далее, будут образовываться все возможные продукты замещения, начиная с хлорметана и заканчивая тетрахлорметаном. Воздействие хлора при данных условиях на другие алканы приведет к образованию различных продуктов, полученных в результате замещения водорода у различных атомов углерода. От температуры, при которой идет реакция, будет зависеть соотношение конечных продуктов и скорость их образования. Чем длиннее углеводородная цепь алкана, тем легче будет идти данная реакция. При галогенировании сначала будет замещаться атом углерода наименее гидрированый (третичный). Первичный вступит в реакцию после всех остальных. Реакция галогенирования будет происходить поэтапно. На первом этапе заместиться только один атом водорода. C растворами галогенов (хлорной и бромной водой) алканы не взаимодействуют.

Реакции сульфохлорирования

Химические свойства алканов также дополняются реакцией сульфохлорирования (она носит название реакции Рида). При воздействии ультрафиолетового излучения алканы способны реагировать со смесью хлора и диоксида серы. В результате образуется хлороводород, а также алкильный радикал, который присоединяет к себе диоксид серы. В результате получается сложное соединение, которое становится стабильным благодаря захвату атома хлора и разрушения очередной его молекулы: R-H + SO 2 + Cl 2 + ультрафиолетовое излучение = R-SO 2 Cl + HCl. Образовавшиеся в результате реакции сульфонилхлориды находят широкое применение в производстве поверхностно-активных веществ.