Виды соединений в химии. Химическое соединение. На какие классы делятся химические соединения

Химические соединения.

Наименование параметра Значение
Тема статьи: Химические соединения.
Рубрика (тематическая категория) Металлы и Сварка

Компонент, фаза, чистые химические элементы.

Основные понятия теории сплавов.

Глава 4. ТЕОРИЯ МЕТАЛЛИЧЕСКИХ СПЛАВОВ

Чистые металлы находят ограниченное применение, так как обладают невысокой прочностью; обычно применяют сплавы. Их получают сплавлением металлов, либо металла с неметаллом, а также методами порошковой технологии.

Компоненты элементы, образующие сплав.

Компоненты сплава при взаимодействии образуют фазы. Фаза - ϶ᴛᴏ однородная часть сплава, по составу, структуре и свойствам, отделœенная от других частей границей раздела. При переходе через границу резко меняются строение и свойства. Сочетание и взаимное расположение фаз, формируемых при охлаждении сплава, образуют его структуру.

Основные фазы в сплавах:

· жидкая фаза . Большинство компонентов металлических сплавов в жидком состоянии полностью растворяются друг в друге, образуя жидкий раствор или расплав.

· твёрдые растворы,

· химические соединœения.

Вместе с тем, фазами бывают чистые химические элементы, к примеру углерод (графит) в серых чугунах.

4.1.2.Твёрдые растворы, виды твёрдых растворов. Условия образования твёрдых растворов.

Твёрдый раствор – фаза, в которой сохраняется кристаллическая решетка основного компонента (растворителя). По характеру расположения растворенных атомов в кристаллической решетке растворителя различают:

· твердые растворы замещения;

· твердые растворы внедрения.

В твёрдых растворах замещения атомы растворенного компонента (В) располагаются в узлах кристаллической решетки, замещая атомы основного компонента (А). Такие растворы образуются между металлами. Οʜᴎ бывают неограниченной и ограниченной растворимости.

Условия образования неограниченных твердых растворов :

· одинаковый тип кристаллической решётки компонентов;

· различие в атомных размерах компонентов не более 8…15%;

· расположение элементов в одной и той же или сосœедних группах таблицы Менделœеева.

Твердые растворы внедрения образуют металлы с неметаллами малого атомного радиуса – C,N,B,H. Твёрдые растворы внедрения всœегда имеют ограниченную растворимость.

Твёрдые растворы обозначают α, β, γ , к примеру, α=А(В) - твердый раствор компонента В в А.

Химические соединœения – фазы, которые имеют свою кристаллическую решетку, отличающуюся от решеток компонентов. Это определяет резкое отличие свойств соединœений от свойств образующих его компонентов. Для химических соединœений характерны высокая твёрдость, хрупкость, высокая температура плавления и др.

Валентные соединœения имеют постоянный состав, соответствующий законам нормальной валентности. Это бывают соединœения между металлами (интерметаллиды), а также соединœения металлов с неметаллами: MgS, Al 2 O 3 , Ni 3 Ti, и др.

Фазы внедрения образуют переходные металлы с неметаллами малого атомного радиуса (Rнм/Rм<0,59), к примеру, карбиды и нитриды: Mo 2 C, TiC, Fe 4 N, VN и др.Фазы внедрения отличаются от твёрдых растворов внедрения более высокой концентрацией неметалла и простой кристаллической решёткой типа К8, К12, Г12. Фазы внедрения тугоплавки и обладают высокой твёрдостью. Их используют в легированных сталях и сплавах для упрочнения.

Электронные соединœения - ϶ᴛᴏ химические соединœения с определённой электронной концентрацией, ᴛ.ᴇ. отношением числа валентных электронов к числу атомов. Наиболее распространены соединœения с электронной концентрацией 3/2: СuZn, CuBe; 7/4: CuSn 3 и 21/13: Cu 5 Zn 8 и др.
Размещено на реф.рф
Их используют как упрочняющие фазы в сплавах меди.

Химические соединения. - понятие и виды. Классификация и особенности категории "Химические соединения." 2017, 2018.

  • - ХИМИЧЕСКИЕ СОЕДИНЕНИЯ, ВХОДЯЩИЕ В СОСТАВ НЕФТЕЙ И ПРИРОДНЫХ ГАЗОВ

    СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТЕЙ И ПРИРОДНЫХ УГЛЕВОДОРОДНЫХ ГАЗОВ Природные углеводородные газы встречаются в виде свободных скоплений или растворены в нефти и состоят в основном из угле­водородов. В их составе присутствуют углекислота, азот, сероводород и... .


  • - Химические соединения

    Химические соединения и родственные им по природе фазы в металлических сплавах многообразны. Характерными особенностями химических соединений, образованных по закону нормальной валентности, отличающими их от твердых растворов, являются следующие: 1.... .


  • - Химические соединения

    Диаграммы состояния систем, образующих Компоненты системы могут вступать между собой в химическое взаимодействие с образованием новой кристаллической решетки. Такие компоненты имеют различные типы диаграмм для систем с конгруэнтно (рисунок 3.7) или инконгруэнтно... .


  • - Химические соединения

    При образовании сплавов встречаются следующие группы химических соединений и промежуточных фаз: 1. Химическое соединение с нормальной валентностью, 2. Электронные соединения, 3. Фазы внедрения. Характерные особенности химических соединений: 1. Кристаллическая... .


  • -

    Диаграмма состояния сплавов представлена на рис. 5.6. Рис. 5.6. Диаграмма состояния сплавов, компоненты которых образуют химические соединения Диаграмма состояния сложная, состоит из нескольких простых диаграмм. Число компонентов и количество диаграмм зависит от того,... .


  • - Строение сплавов. Твердые растворы, химические соединения, механические смеси

    Чистые металлы, содержащие 99,99…99,999 % основного металла, как правило, обладают низкой прочностью, и по этой причине их применение в качестве конструкционных материалов крайне ограничено. Гораздо чаще применяют сплавы металлов с металлами и неметаллами. Химические... [читать подробнее] .


  • - Диаграмма состояния сплавов, компоненты которых образуют химические соединения.

    Диаграмма состояния сплавов представлена на рис. 5.6. Рис. 5.6. Диаграмма состояния сплавов, компоненты которых образуют химические соединения Диаграмма состояния сложная, состоит из нескольких простых диаграмм. Число компонентов и количество диаграмм зависит от... .


  • Все вещества можно разделить на простые (состоящие из атомов одного химического элемента) и сложные (состоящие из атомов разных химических элементов). Простые вещества делятся на металлы и неметаллы .

    Металлы обладают характерным “металлическим” блеском, ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей теплопроводностью и электрической проводимостью. При комнатной температуре все металлы, кроме ртути, находятся в твердом состоянии.

    Неметаллы не обладают блеском, хрупки, плохо проводят теплоту и электричество. При комнатной температуре некоторые неметаллы находятся в газообразном состоянии.

    Сложные вещества делят на органические и неорганические.

    Органическими соединениями принято называть соединения углерода. Органические соединения входят в состав биологических тканей и являются основой жизни на Земле.

    Все остальные соединения называются неорганическими (реже минеральными). Простые соединения углерода (СО, СО 2 и ряд других) принято относить к неорганическим соединениям, их обычно рассматривают в курсе неорганической химии.

    Классификация неорганических соединений

    Неорганические вещества делят на классы либо по составу (бинарные и многоэлементные; кислородосодержащие, азотсодержащие и т.п.), либо по функциональным признакам.

    К важнейшим классам неорганических соединений, выделяемых по функциональным признакам, относятся соли, кислоты, основания и оксиды.

    Соли – это соединения, которые в растворе диссоциируют на катионы металла и кислотные остатки. Примерами солей могут служить, например, сульфат бария BaSO 4 и хлорид цинка ZnCl 2 .

    Кислоты – вещества, диссоциирующие в растворах с образованием ионов водорода. Примерами неорганических кислот могут служить соляная (НCl), серная (H 2 SO 4), азотная (HNO 3), фосфорная (H 3 PO 4) кислоты. Наиболее характерное химическое свойство кислот – их способность реагировать с основаниями с образованием солей. По степени диссоциации в разбавленных растворах кислоты подразделяются на сильные кислоты, кислоты средней силы и слабые кислоты. По окислительно–восстановительной способности различают кислоты–окислители (HNO 3) и кислоты–восстановители (HI, H 2 S). Кислоты реагируют с основаниями, амфотерными оксидами и гидроксидами с образованием солей.



    Основания – вещества, диссоциирующие в растворах с образованием только гидроксид-анионов (OH 1-). Растворимые в воде основания называют щелочами (КОН, NaOH). Характерное свойство оснований – взаимодействие с кислотами с образованием соли и воды.

    Оксиды – это соединения двух элементов, один из которых кислород. Различают оксиды основные, кислотные и амфотерные. Основные оксиды образованы только металлами (CaO, K 2 O), им соответствуют основания (Ca(OH) 2 , KOH). Кислотные оксиды образуются неметаллами (SO 3 , P 2 O 5) и металлами, проявляющими высокую степень окисления (Mn 2 O 7), им соответствуют кислоты (H 2 SO 4 , H 3 PO 4 , HMnO 4). Амфотерные оксиды в зависимости от условий проявляют кислотные и основные свойства, взаимодействуют с кислотами и основаниями. К ним относятся Al 2 O 3 , ZnO, Cr 2 O 3 и ряд других. Существуют оксиды, не проявляющие ни основных, ни кислотных свойств. Такие оксиды называются безразличными (N 2 O, CO и др.)

    Классификация органических соединений

    Углерод в органических соединениях, как правило, образует устойчивые структуры, в основе которых лежат углерод-углеродные связи. В способности образовывать такие структуры углерод не имеет себе равных среди других элементов. Большинство органических молекул состоит из двух частей: фрагмента, который в ходе реакции остаётся без изменения, и группы, подвергающейся при этом превращениям. В связи с этим определяется принадлежность органических веществ к тому или иному классу и ряду соединений.

    Неизменный фрагмент молекулы органического соединения принято рассматривать в качестве остова молекулы. Он может иметь углеводородную или гетероциклическую природу. В связи с этим можно условно выделить четыре больших ряда соединений: ароматический, гетероциклический, алициклический и ациклический.

    В органической химии также выделяют дополнительные ряды: углеводороды, азотсодержащие соединения, кислородосодержащие соединения, серосодержащие соединения, галогеносодержащие соединения, металлоорганические соединения, кремнийорганические соединения.

    В результате комбинации этих основополагающих рядов образуются составные ряды, например: "Ациклические углеводороды", "Ароматические азотсодержащие соединения".

    Наличие тех или иных функциональных групп либо атомов элементов определяет принадлежность соединения к соответствующему классу. Среди основных классов органических соединений выделяют алканы, бензолы, нитро- и нитрозосоединения, спирты, фенолы, фураны, эфиры и большое количество других.

    Типы химических связей

    Химическая связь – это взаимодействие, удерживающее два или несколько атомов, молекул или любую комбинацию из них. По своей природе химическая связь представляет собой электрическую силу притяжения между отрицательно заряженными электронами и положительно заряженными атомными ядрами. Величина этой силы притяжения зависит главным образом от электронной конфигурации внешней оболочки атомов.

    Способность атома образовывать химические связи характеризуется его валентностью. Электроны, участвующие в образовании химической связи, называются валентными.

    Различают несколько типов химических связей: ковалентную, ионную, водородную, металлическую.

    При образовании ковалентной связи происходит частичное перекрывание электронных облаков взаимодействующих атомов, образуются электронные пары. Ковалентная связь оказывается тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

    Различают полярную и неполярную ковалентные связи.

    Если двухатомная молекула состоит из одинаковых атомов (H 2 , N 2), то электронное облако распределяется в пространстве симметрично относительно обоих атомов. Такая ковалентная связь называется неполярной (гомеополярной). Если же двухатомная молекула состоит из разных атомов, то электронное облако смещено к атому с большей относительной электроотрицательностью. Такая ковалентная связь называется полярной (гетерополярной). Примерами соединений с такой связью могут служить HCl, HBr, HJ.

    В рассмотренных примерах каждый из атомов обладает одним неспаренным электроном; при взаимодействии двух таких атомов создается общая электронная пара – возникает ковалентная связь. В невозбужденном атоме азота имеется три неспаренных электрона, за счет этих электронов азот может участвовать в образовании трех ковалентных связей (NH 3). Атом углерода может образовать 4 ковалентных связи.

    Перекрывание электронных облаков возможно только при их определенной взаимной ориентации, при этом область перекрывания располагается в определенном направлении по отношению к взаимодействующим атомам. Другими словами, ковалентная связь обладает направленностью.

    Энергия ковалентных связей находится в пределах 150–400 кДж/моль.

    Химическая связь между ионами, осуществляемая электростатическим притяжением, называется ионной связью . Ионную связь можно рассматривать как предел полярной ковалентной связи. В отличие от ковалентной связи ионная связь не обладает направленностью и насыщаемостью.

    Важным типом химической связи является связь электронов в металле. Металлы состоят из положительных ионов, которые удерживаются в узлах кристаллической решетки, и свободных электронов. При образовании кристаллической решетки валентные орбитали соседних атомов перекрываются и электроны свободно перемещаются из одной орбитали в другую. Эти электроны уже не принадлежат определенному атому металла, они находятся на гигантских орбиталях, которые простираются по всей кристаллической решетке. Химическая связь, осуществляемая в результате связывания положительных ионов решетки металла свободными электронами, называется металлической.

    Между молекулами (атомами) веществ могут осуществляться слабые связи. Одна из самых важных – водородная связь , которая может быть межмолекулярной и внутримолекулярной . Водородная связь возникает между атомом водорода молекулы (он заряжен частично положительно) и сильно электроотрицательным элементом молекулы (фтор, кислород и т.п.).

    Энергия водородной связи значительно меньше энергии ковалентной связи и не превышает 10 кДж/моль. Однако этой энергии оказывается достаточно для создания ассоциаций молекул, затрудняющих отрыв молекул друг от друга. Водородные связи играют важную роль в биологических молекулах (белках и нуклеиновых кислотах), во многом определяют свойства воды.

    Силы Ван-дер-Ваальса также относятся к слабым связям. Они обусловлены тем, что любые две нейтральных молекулы (атома) на очень близких расстояниях слабо притягиваются из-за электромагнитных взаимодействий электронов и ядер одной молекулы с электронами и ядрами другой.

    Классификация неорганических веществ и их номенклатура основаны на наиболее простой и постоянной во времени характеристике - химическом составе , который показывает атомы элементов, образующих данное вещество, в их числовом отношении. Если вещество из атомов одного химического элемента, т.е. является формой существования этого элемента в свободном виде, то его называют простым веществом ; если же вещество из атомов двух или большего числа элементов, то его называют сложным веществом . Все простые вещества (кроме одноатомных) и все сложные вещества принято называть химическими соединениями , так как в них атомы одного или разных элементов соединены между собой химическими связями.

    Номенклатура неорганических веществ состоит из формул и названий. Химическая формула - изображение состава вещества с помощью символов химических элементов, числовых индексов и некоторых других знаков. Химическое название - изображение состава вещества с помощью слова или группы слов. Построение химических формул и названий определяется системой номенклатурных правил .

    Символы и наименования химических элементов приведены в Периодической системе элементов Д.И. Менделеева. Элементы условно делят на металлы инеметаллы . К неметаллам относят все элементы VIIIА-группы (благородные газы) и VIIА-группы (галогены), элементы VIА-группы (кроме полония), элементы азот, фосфор, мышьяк (VА-группа); углерод, кремний (IVА-группа); бор (IIIА-группа), а также водород. Остальные элементы относят к металлам.

    При составлении названий веществ обычно применяют русские наименования элементов, например, дикислород, дифторид ксенона, селенат калия. По традиции для некоторых элементов в производные термины вводят корни их латинских наименований:

    Например : карбонат, манганат, оксид, сульфид, силикат.

    Названия простых веществ состоят из одного слова - наименования химического элемента с числовой приставкой, например:

    Используются следующие числовые приставки :

    Неопределенное число указывается числовой приставкой n - поли.

    Для некоторых простых веществ используют также специальные названия, такие, как О 3 - озон, Р 4 - белый фосфор.

    Химические формулы сложных веществ составляют из обозначения электроположительной (условных и реальных катионов) и электроотрицательной (условных и реальных анионов) составляющих, например, CuSO 4 (здесь Cu 2+ - реальный катион, SO 4 2 - - реальный анион) и PCl 3 (здесь P +III - условный катион, Cl -I - условный анион).

    Названия сложных веществ составляют по химическим формулам справа налево. Они складываются из двух слов - названий электроотрицательных составляющих (в именительном падеже) и электроположительных составляющих (в родительном падеже), например:

    CuSO 4 - сульфат меди(II)
    PCl 3 - трихлорид фосфора
    LaCl 3 - хлорид лантана(III)
    СО - монооксид углерода

    Число электроположительных и электроотрицательных составляющих в названиях указывают числовыми приставками, приведенными выше (универсальный способ), либо степенями окисления (если они могут быть определены по формуле) с помощью римских цифр в круглых скобках (знак плюс опускается). В ряде случаев приводят заряд ионов (для сложных по составу катионов и анионов), используя арабские цифры с соответствующим знаком.

    Для распространенных многоэлементных катионов и анионов применяют следующие специальные названия:

    H 2 F + - фтороний

    C 2 2 - - ацетиленид

    H 3 O + - оксоний

    CN - - цианид

    H 3 S + - сульфоний

    CNO - - фульминат

    NH 4 + - аммоний

    HF 2 - - гидродифторид

    N 2 H 5 + - гидразиний(1+)

    HO 2 - - гидропероксид

    N 2 H 6 + - гидразиний(2+)

    HS - - гидросульфид

    NH 3 OH + - гидроксиламиний

    N 3 - - азид

    NO + - нитрозил

    NCS - - тиоционат

    NO 2 + - нитроил

    O 2 2 - - пероксид

    O 2 + - диоксигенил

    O 2 - - надпероксид

    PH 4 + - фосфоний

    O 3 - - озонид

    VO 2 + - ванадил

    OCN - - цианат

    UO 2 + - уранил

    OH - - гидроксид

    Для небольшого числа хорошо известных веществ также используют специальные названия:

    1. Кислотные и основные гидроксиды. Соли

    Гидроксиды - тип сложных веществ, в состав которых входят атомы некоторого элемента Е (кроме фтора и кислорода) и гидроксогруппы ОН; общая формула гидроксидов Е(ОН) n , где n = 1÷6. Форма гидроксидов Е(ОН) n называется орто -формой; при n > 2 гидроксид может находиться также в мета -форме, включающей кроме атомов Е и групп ОН еще атомы кислорода О, например Е(ОН) 3 и ЕО(ОН), Е(ОН) 4 и Е(ОН) 6 и ЕО 2 (ОН) 2 .

    Гидроксиды делят на две противоположные по химическим свойствам группы: кислотные и основные гидроксиды.

    Кислотные гидроксиды содержат атомы водорода, которые могут замещаться на атомы металла при соблюдении правила стехиометрической валентности. Большинство кислотных гидроксидов находится в мета -форме, причем атомы водорода в формулах кислотных гидроксидов ставят на первое место, например H 2 SO 4 , HNO 3 и H 2 CO 3 , а не SO 2 (OH) 2 , NO 2 (OH) и CO(OH) 2 . Общая формула кислотных гидроксидов - Н х ЕО у , где электроотрицательную составляющую ЕО у х - называют кислотным остатком. Если не все атомы водорода замещены на металл, то они остаются в составе кислотного остатка.

    Названия распространенных кислотных гидроксидов состоят из двух слов: собственного названия с окончанием "ая" и группового слова "кислота". Приведем формулы и собственные названия распространенных кислотных гидроксидов и их кислотных остатков (прочерк означает, что гидроксид не известен в свободном виде или в кислом водном растворе):

    кислотный гидроксид

    кислотный остаток

    HAsO 2 - метамышьяковистая

    AsO 2 - - метаарсенит

    H 3 AsO 3 - ортомышьяковистая

    AsO 3 3 - - ортоарсенит

    H 3 AsO 4 - мышьяковая

    AsO 4 3 - - арсенат

    В 4 О 7 2 - - тетраборат

    ВiО 3 - - висмутат

    HBrO - бромноватистая

    BrO - - гипобромит

    HBrO 3 - бромноватая

    BrO 3 - - бромат

    H 2 CO 3 - угольная

    CO 3 2 - - карбонат

    HClO - хлорноватистая

    ClO - - гипохлорит

    HClO 2 - хлористая

    ClO 2 - - хлорит

    HClO 3 - хлорноватая

    ClO 3 - - хлорат

    HClO 4 - хлорная

    ClO 4 - - перхлорат

    H 2 CrO 4 - хромовая

    CrO 4 2 - - хромат

    НCrO 4 - - гидрохромат

    H 2 Cr 2 О 7 - дихромовая

    Cr 2 O 7 2 - - дихромат

    FeO 4 2 - - феррат

    HIO 3 - иодноватая

    IO 3 - - иодат

    HIO 4 - метаиодная

    IO 4 - - метапериодат

    H 5 IO 6 - ортоиодная

    IO 6 5 - - ортопериодат

    HMnO 4 - марганцовая

    MnO 4 - - перманганат

    MnO 4 2 - - манганат

    MоO 4 2 - - молибдат

    HNO 2 - азотистая

    NO 2 - - нитрит

    HNO 3 - азотная

    NO 3 - - нитрат

    HPO 3 - метафосфорная

    PO 3 - - метафосфат

    H 3 PO 4 - ортофосфорная

    PO 4 3 - - ортофосфат

    НPO 4 2 - - гидроортофосфат

    Н 2 PO 4 - - дигидроотофосфат

    H 4 P 2 O 7 - дифосфорная

    P 2 O 7 4 - - дифосфат

    ReO 4 - - перренат

    SO 3 2 - - сульфит

    HSO 3 - - гидросульфит

    H 2 SO 4 - серная

    SO 4 2 - - сульфат

    НSO 4 - - гидросульфат

    H 2 S 2 O 7 - дисерная

    S 2 O 7 2 - - дисульфат

    H 2 S 2 O 6 (O 2) - пероксодисерная

    S 2 O 6 (O 2) 2 - - пероксодисульфат

    H 2 SO 3 S - тиосерная

    SO 3 S 2 - - тиосульфат

    H 2 SeO 3 - селенистая

    SeO 3 2 - - селенит

    H 2 SeO 4 - селеновая

    SeO 4 2 - - селенат

    H 2 SiO 3 - метакремниевая

    SiO 3 2 - - метасиликат

    H 4 SiO 4 - ортокремниевая

    SiO 4 4 - - ортосиликат

    H 2 TeO 3 - теллуристая

    TeO 3 2 - - теллурит

    H 2 TeO 4 - метателлуровая

    TeO 4 2 - - метателлурат

    H 6 TeO 6 - ортотеллуровая

    TeO 6 6 - - ортотеллурат

    VO 3 - - метаванадат

    VO 4 3 - - ортованадат

    WO 4 3 - - вольфрамат

    Менее распространенные кислотные гидроксиды называют по номенклатурным правилам для комплексных соединений, например:

    Названия кислотных остатков используют при построении названий солей.

    Основные гидроксиды содержат гидроксид-ионы, которые могут замещаться на кислотные остатки при соблюдении правила стехиометрической валентности. Все основные гидроксиды находятся в орто -форме; их общая формула М(ОН) n , где n = 1,2 (реже 3,4) и М n + - катион металла. Примеры формул и названий основных гидроксидов:

    Важнейшим химическим свойством основных и кислотных гидроксидов является их взаимодействие их между собой с образованием солей (реакция солеобразования ), например:

    Ca(OH) 2 + H 2 SO 4 = CaSO 4 + 2H 2 O

    Ca(OH) 2 + 2H 2 SO 4 = Ca(HSO 4) 2 + 2H 2 O

    2Ca(OH) 2 + H 2 SO 4 = Ca 2 SO 4 (OH) 2 + 2H 2 O

    Соли - тип сложных веществ, в состав которых входят катионы М n + и кислотные остатки*.

    Соли с общей формулой М х (ЕО у ) n называют средними солями, а соли с незамещенными атомами водорода, - кислыми солями. Иногда соли содержат в своем составе также гидроксид - или(и) оксид - ионы; такие соли называют основными солями. Приведем примеры и названия солей:

    Ортофосфат кальция

    Дигидроортофосфат кальция

    Гидроортофосфат кальция

    Карбонат меди(II)

    Cu 2 CO 3 (OH) 2

    Дигидроксид-карбонат димеди

    Нитрат лантана(III)

    Оксид-динитрат титана

    Кислые и основные соли могут быть превращены в средние соли взаимодействием с соответствующим основным и кислотным гидроксидом, например:

    Ca(HSO 4) 2 + Ca(OH) = CaSO 4 + 2H 2 O

    Ca 2 SO 4 (OH) 2 + H 2 SO 4 = Ca 2 SO 4 + 2H 2 O

    Встречаются также соли, содерхащие два разных катиона: их часто называют двойными солями , например:

    2. Кислотные и оснόвные оксиды

    Оксиды Е х О у - продукты полной дегидратации гидроксидов:

    Кислотным гидроксидам (H 2 SO 4 , H 2 CO 3) отвечают кислотные оксиды (SO 3 , CO 2), а основным гидроксидам (NaOH, Ca(OH) 2) - основные оксиды (Na 2 O, CaO), причем степень окисления элемента Е не изменяется при переходе от гидроксида к оксиду. Пример формул и названий оксидов:

    Кислотные и основные оксиды сохраняют солеобразующие свойства соответствующих гидроксидов при взаимодействии с противоположными по свойствам гидроксидами или между собой:

    N 2 O 5 + 2NaOH = 2NaNO 3 + H 2 O

    3CaO + 2H 3 PO 4 = Ca 3 (PO 4) 2 + 3H 2 O

    La 2 O 3 + 3SO 3 = La 2 (SO 4) 3

    3. Амфотерные оксиды и гидроксиды

    Амфотерность гидроксидов и оксидов - химическое свойство, заключающееся в образовании ими двух рядов солей, например, для гидроксида и оксида алюминия:

    (а) 2Al(OH) 3 + 3SO 3 = Al 2 (SO 4) 3 + 3H 2 O

    Al 2 O 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 O

    (б) 2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

    Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

    Так, гидроксид и оксид алюминия в реакциях (а) проявляют свойства основных гидроксидов и оксидов, т.е. реагируют с кислотными гидроксидам и оксидом, образуя соответствующую соль - сульфат алюминия Al 2 (SO 4) 3 , тогда как в реакциях (б) они же проявляют свойства кислотных гидроксидов и оксидов, т.е. реагируют с основными гидроксидом и оксидом, образуя соль - диоксоалюминат (III) натрия NaAlO 2 . В первом случае элемент алюминий проявляет свойство металла и входит в состав электроположительной составляющей (Al 3+), во втором - свойство неметалла и входит в состав электроотрицательной составляющей формулы соли (AlO 2 -).

    Если указанные реакции протекают в водном растворе, то состав образующихся солей меняется, но присутствие алюминия в катионе и анионе остаётся:

    2Al(OH) 3 + 3H 2 SO 4 = 2 (SO 4) 3

    Al(OH) 3 + NaOH = Na

    Здесь квадратными скобками выделены комплексные ионы 3+ - катион гексаакваалюминия(III), - - тетрагидроксоалюминат(III)-ион.

    Элементы, проявляющие в соединениях металлические и неметаллические свойства, называют амфотерными, к ним относятся элементы А-групп Периодической системы - Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп - Cr, Mn, Fe, Zn, Cd, Au и др. Амфотерные оксиды называют так же, как и основные, например:

    Амфотерные гидроксиды (если степень окисления элемента превышает + II) могут находиться в орто - или (и) мета - форме. Приведем примеры амфотерных гидроксидов:

    Амфотерным оксидам не всегда соответствуют амфотерные гидроксиды, поскольку при попытке получения последних образуются гидратированные оксиды, например:

    Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента - металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элемента - неметаллических свойств, поэтому он почти всегда входит в состав анионов. Так, у оксида и гидроксида марганца(II) доминируют основные свойства, а сам марганец входит в состав катионов типа 2+ , тогда как у оксида и гидроксида марганца(VII) доминируют кислотные свойства, а сам марганец входит в состав аниона типа MnO 4 - . Амфотерным гидроксидам с большим преобладанием кислотных свойств приписывают формулы и названия по образцу кислотных гидроксидов, например НMn VII O 4 - марганцовая кислота.

    Таким образом, деление элементов на металлы и неметаллы - условное; между элементами (Na, K, Ca, Ba и др.) с чисто металлическими и элементами (F, O, N, Cl, S, C и др.) с чисто неметаллическими свойствами существует большая группа элементов с амфотерными свойствами.

    4. Бинарные соединения

    Обширный тип неорганических сложных веществ - бинарные соединения. К ним относятся, в первую очередь все двухэлементные соединения (кроме основных, кислотных и амфотерных оксидов), например H 2 O, KBr, H 2 S, Cs 2 (S 2), N 2 O, NH 3 , HN 3 , CaC 2 , SiH 4 . Электроположительная и электроотрицательная составляющие формул этих соединений включают отдельные атомы или связанные группы атомов одного элемента.

    Многоэлементные вещества, в формулах которых одна из составляющих содержит не связанные между собой атомы нескольких элементов, а также одноэлементные или многоэлементные группы атомов (кроме гидроксидов и солей), рассматривают как бинарные соединения, например CSO, IO 2 F 3 , SBrO 2 F, CrO(O 2) 2 , PSI 3 , (CaTi)O 3 , (FeCu)S 2 , Hg(CN) 2 , (PF 3) 2 O, VCl 2 (NH 2). Так, CSO можно представить как соединение CS 2 , в котором один атом серы заменен на атом кислорода.

    Названия бинарных соединений строятся по обычным номенклатурным правилам, например:

    OF 2 - дифторид кислорода

    K 2 O 2 - пероксид калия

    HgCl 2 - хлорид ртути(II)

    Na 2 S - сульфид натрия

    Hg 2 Cl 2 - дихлорид диртути

    Mg 3 N 2 - нитрид магния

    SBr 2 O - оксид-дибромид серы

    NH 4 Br - бромид аммония

    N 2 O - оксид диазота

    Pb(N 3) 2 - азид свинца(II)

    NO 2 - диоксид азота

    CaC 2 - ацетиленид кальция

    Для некоторых бинарных соединений используют специальные названия, список которых был приведен ранее.

    Химические свойства бинарных соединений довольно разнообразны, поэтому их часто разделяют на группы по названию анионов, т.е. отдельно рассматривают галогениды, халькогениды, нитриды, карбиды, гидриды и т. д. Среди бинарных соединений встречаются и такие, которые имеют некоторые признаки других типов неорганических веществ. Так, соединения CO, NO, NO 2 , и (Fe II Fe 2 III)O 4 , названия которых строятся с применением слова оксид, к типу оксидов (кислотных, основных, амфотерных) отнесены быть не могут. Монооксид углерода СО, монооксид азота NO и диоксид азота NO 2 не имеют соответствующих кислотных гидроксидов (хотя эти оксиды образованы неметаллами С и N), не образуют они и солей, в состав анионов которых входили бы атомы С II , N II и N IV . Двойной оксид (Fe II Fe 2 III)O 4 - оксид дижелеза(III)-железа(II) хотя и содержит в составе электроположительной составляющей атомы амфотерного элемента - железа, но в двух разных степенях окисления, вследствие чего при взаимодействии с кислотными гидроксидами образует не одну, а две разные соли.

    Такие бинарные соединения, как AgF, KBr, Na 2 S, Ba(HS) 2 , NaCN, NH 4 Cl, и Pb(N 3) 2 , построены, подобно солям, из реальных катионов и анионов, поэтому их называют солеобразными бинарными соединениями (или просто солями). Их можно рассматривать как продукты замещения атомов водорода в соединениях НF, НCl, НBr, Н 2 S, НCN и НN 3 . Последние в водном растворе обладают кислотной функцией, и поэтому их растворы называют кислотами, например НF(aqua) - фтороводородная кислота, Н 2 S(aqua) - сероводородная кислота. Однако они не принадлежат к типу кислотных гидроксидов, а их производные - к солям в рамках классификации неорганических веществ.

    При изучении материала предыдущих параграфов, вы уже познакомились с некоторыми веществами. Так, например, молекула газа водорода, состоит из двух атомов химического элемента водорода –

    Простые вещества – вещества, в состав которых входят атомы одного вида

    К простым веществам, из числа известных вам веществ, относят: кислород, графит, серу, азот, все металлы: железо, медь, алюминий, золото и т.д. Сера состоит только из атомов химического элемента серы, а графит состоит из атомов химического элемента углерода. Нужно четко различать понятия «химический элемент» и «простое вещество» .

    Например, алмаз и углерод – не одно и тоже.

    Углерод – химический элемент, а алмаз – простое вещество, образованное химическим элементов углеродом. В данном случае химический элемент (углерод) и простое вещество (алмаз) называются по-разному.

    Часто химический элемент и отвечающее ему простое вещество называются одинаково. Например, элементу кислороду, соответствует простое вещество – кислород. Различать, где идет речь об элементе, а где о веществе, необходимо научиться! Например, когда говорят, что кислород входит в состав воды – речь идет об элементе кислороде. Когда говорят, что кислород – это газ, необходимый для дыхания – здесь идет речь о простом веществе кислороде. Простые вещества химических элементов подразделяют на две группы – металлы и неметаллы.

    Металлы и неметаллы кардинально отличаются по своим физическим свойствам. Все металлы при нормальных условиях твердые вещества, исключение составляет ртуть – единственный жидкий металл .

    Металлы непрозрачны, обладают характерным металлическим блеском. Металлы пластичны, хорошо проводят тепло и электрический ток.Неметаллы не похожи друг на друга по физическим свойствам. Так, водород, кислород, азот – газы, кремний, сера, фосфор – твердые вещества. Единственный жидкий неметалл – бром – жидкость коричнево-красного цвета.Если провести условную линию от химического элемента бора к химическому элементу астату, то в длинном варианте

    Периодической Системы над линией расположены неметаллические элементы, а под ней – металлические . В коротком варианте Периодической Системы под этой линией расположены неметаллические элементы, а над ней – как металлические, так и неметаллические элементы. Значит, определять, является элемент металлическим или неметаллическим, удобнее по длинному варианту Периодической Системы.

    Это деление условное, поскольку все элементы так или иначе проявляют как металлические, так и неметаллические свойства, но в большинстве случаев такое распределение соответствует действительности.

    Сложные вещества и их классификация

    Если в состав простых веществ входят атомы только одного вида, несложно догадаться, что в состав сложных веществ будут входить несколько видов различных атомов, как минимум двух. Примером сложного вещества является вода, ее химическая формула вам известна – Н2О .

    Молекулы воды состоят из двух видов атомов: водорода и кислорода.

    Сложные вещества – вещества, в состав которых входят атомы различных видов

    Проведем следующий эксперимент. Смешаем порошки серы и цинка. Поместим смесь на металлический лист и подожжем при помощи деревянной лучины. Смесь загорается и быстро сгорает ярким пламенем. После завершения химической реакции образовалось новое вещество, в состав которого входят атомы серы и цинка. Свойства этого вещества совершенно другие, нежели свойства исходных веществ – серы и цинка.

    Сложные вещества принято делить на две группы: неорганические вещества и их производные и органические вещества и их производные. Например, каменная соль – это неорганическое вещество, а крахмал, содержащийся в картофеле – органическое вещество.

    Типы строения веществ

    По типу частиц, входящих в состав веществ, вещества делят на вещества молекулярного и немолекулярного строения. В состав вещества могут входить различные структурные частицы, такие как атомы, молекулы, ионы. Следовательно, существует три типа веществ: вещества атомного, ионного и молекулярного строения. Вещества различного типа строения будут иметь различные свойства.

    Вещества атомного строения

    Примером веществ атомного строения могут быть вещества, образованные элементом углеродом: графит и алмаз . В состав этих веществ входят только атомы углерода, но свойства этих веществ очень сильно отличаются. Графит – хрупкое, легко расслаивающееся вещество серо-черного цвета. Алмаз – прозрачный, один из самых твердых на планете, минерал. Почему вещества, состоящие из одного типа атомов, имеют различные свойства? Все дело в строении этих веществ. Атомы углерода в графите и алмазе соединяются различным способом. Вещества атомного строения имеют высокие температуры кипения и плавления, как правило, нерастворимы в воде, нелетучи. Кристаллическая решетка – вспомогательный геометрический образ, вводимый для анализа строения кристалла

    Вещества молекулярного строения – это практически все жидкости и большинство газообразных веществ. Существуют и кристаллические вещества, в состав кристаллической решетки которых входят молекулы. Вода – вещество молекулярного строения. Лед также имеет молекулярное строение, но в отличие от жидкой воды, имеет кристаллическую решетку, где все молекулы строго упорядочены. Вещества молекулярного строения имеют невысокие температуры кипения и плавления, как правило хрупкие, не проводят электрический ток.

    Вещества ионного строения

    Вещества ионного строения – это твердые кристаллические вещества. Примером вещества ионного соединения может быть поваренная соль. Ее химическая формула NaCl. Как видим, NaCl состоит из ионов Na+ и Cl⎺, чередующихся в определенных местах (узлах) кристаллической решетки. Вещества ионного строения имеют высокие температуры плавления и кипения, хрупкие, как правило, хорошо растворимы в воде, не проводят электрический ток. Понятия «атом», «химический элемент» и «простое вещество» не следует смешивать.

    • «Атом» – конкретное понятие, так как атомы существуют реально.
    • «Химический элемент» – это собирательное, абстрактное понятие; в природе химический элемент существует в виде свободных или химически связанных атомов, то есть простых и сложных веществ.

    Названия химических элементов и соответствующих простых веществ совпадают в большинстве случаев. Когда мы говорим о материале или компоненте смеси – например, колба наполнена газообразным хлором, водный раствор брома, возьмём кусочек фосфора, – мы говорим о простом веществе. Если же мы говорим, что в атоме хлора содержится 17 электронов, вещество содержит фосфор, молекула состоит из двух атомов брома, то имеем в виду химический элемент.

    Нужно различать свойства (характеристики) простого вещества (совокупности частиц) и свойства (характеристики) химического элемента (изолированного атома определенного вида), см. таблицу ниже:

    Сложные вещества необходимо отличать от смесей , которые тоже состоят из разных элементов. Количественное соотношение компонентов смеси может быть переменным, а химические соединения имеют постоянный состав. Например, в стакан чая вы можете внести одну ложку сахара, или несколько, а молекулы сахарозы С12Н22О11 содержит точно 12 атомов углерода, 22 атома водорода и 11 атомов кислорода.

    Таким образом, состав соединений можно описать одной химической формулой, а состав смеси – нет. Компоненты смеси сохраняют свои физические и химические свойства. Например, если смешать железный порошок с серой, то образуется смесь двух веществ.

    И сера, и железо в этой смеси сохраняют свои свойства: железо притягивается магнитом, а сера не смачивается водой и плавает по ее поверхности. Если же сера и железо прореагируют друг с другом, образуется новое соединение с формулой FeS , не имеющее свойств ни железа, ни серы, но обладающее набором собственных свойств. В соединении FeS железо и сера связаны друг с другом, и разделить их методами, которыми разделяют смеси, нельзя.

    Выводы из статьи по теме Простые и сложные вещества

    • Простые вещества – вещества, в состав которых входят атомы одного вида
    • Простые вещества делят на металлы и неметаллы
    • Сложные вещества – вещества, в состав которых входят атомы различных видов
    • Сложные вещества делят на органические и неорганические
    • Существуют вещества атомного, молекулярного и ионного строения, их свойства различны
    • Кристаллическая решетка – вспомогательный геометрический образ, вводимый для анализа строения кристалла

    Все вещества делятся на простые и сложные.

    Простые вещества - это вещества, которые состоят из атомов одного элемента.

    В некоторых простых веществах атомы одного элемента соединяются друг с другом и образуют молекулы. Такие простые вещества имеют молекулярное строение . К ним относятся: , . Все эти вещества состоят из двухатомных молекул. (Обратите внимание, что названия простых веществ совпадают с названиями элементов!)

    Другие простые вещества имеют атомное строение , т. е. состоят из атомов, между которыми существуют определенные связи. Примерами таких простых веществ являются все ( , и т. д.) и некоторые ( , и др.). Не только названия, но и формулы этих простых веществ совпадают с символами элементов.

    Существует также группа простых веществ, которые называются . К ним относятся: гелий Не, неон Ne, аргон Аr, криптон Kr, ксенон Хе, радон Rn. Эти простые вещества состоят из не связанных друг с другом атомов.

    Каждый элемент образует как минимум одно простое вещество. Некоторые элементы могут образовывать не одно, а два или несколько простых веществ. Это явление называется аллотропией.

    Аллотропия - это явление образования нескольких простых веществ одним элементом.

    Разные простые вещества, которые образуются одним и тем же химическим элементом, называются аллотропными видоизменениями (модификациями).

    Аллотропные модификации могут отличаться друг от друга составом молекул. Например, элемент кислород образует два простых вещества. Одно из них состоит из двухатомных молекул О 2 и имеет такое же название, как и элемент- . Другое простое вещество состоит из трехатомных молекул О 3 и имеет собственное название - озон.

    Кислород О 2 и озон О 3 имеют различные физические и химические свойства.

    Аллотропные модификации могут представлять собой твердые вещества, которые имеют различное строение кристаллов. Примером являются аллотропные модификации углерода С - алмаз и графит.

    Число известных простых веществ (примерно 400) значительно больше, чем число химических элементов, так как многие элементы могут образовывать две или несколько аллотропных модификаций.

    Сложные вещества - это вещества, которые состоят из атомов разных элементов.

    Примеры сложных веществ: НCl, Н 2 O, NaCl, СО 2 , H 2 SO 4 и т. д.

    Сложные вещества часто называют химическими соединениями. В химических соединениях свойства простых веществ, из которых образуются эти соединения, не сохраняются. Свойства сложного вещества отличаются от свойств простых веществ, из которых оно образуется.

    Например, хлорид натрия NaCl может образоваться из простых веществ - металлического натрия Na и газообразного хлора Сl Физические и химические свойства NaCl отличаются от свойств Na и Cl 2 .

    В природе, как правило, встречаются не чистые вещества, а смеси веществ. В практической деятельности мы также обычно используем смеси веществ. Любая смесь состоит из двух или большего числа веществ, которые называются компонентами смеси .

    Например, воздух представляет собой смесь нескольких газообразных веществ: кислорода О 2 (21 % по объему), (78%), и др. Смесями являются растворы многих веществ, сплавы некоторых металлов и т. д.

    Смеси веществ бывают гомогенными (однородными) и гетерогенными (неоднородными).

    Гомогенные смеси - это смеси, в которых между компонентами нет поверхности раздела.

    Гомогенными являются смеси газов (в частности, воздух), жидкие растворы (например, раствор сахара в воде).

    Гетерогенные смеси - это смеси, в которых компоненты разделяются поверхностью раздела.

    К гетерогенным относятся смеси твердых веществ (песок + порошок мела), смеси нерастворимых друг в друге жидкостей (вода + масло), смеси жидкостей и нерастворимых в нем твердых веществ (вода + мел).

    Важнейшие отличия смесей от химических соединений:

    1. В смесях свойства отдельных веществ (компонентов) сохраняются.
    2. Состав смесей не является постоянным.