Плазма 4 состояния вещества или жидкие кристаллы. Реферат: Плазма - четвертое состояние вещества. Плазма в полупроводниках

Возвращение чародея Келер Владимир Романович

Плазменное - четвертое состояние вещества

Возьмем металлическое тело, скажем пулю, и, положив ее в жароупорный тигелек, поставим тигелек в электропечь. Пройдет немного времени, и пуля расплавится, превратится в жидкость, вещество перейдет во второе состояние.

Но будем повышать нагрев. Если возможности печи позволят, металл в конце концов закипит и испарится. Вещество перейдет в свое третье состояние.

Не так еще давно даже самые осведомленные физики на этот вопрос отвечали, что ничего особенного не произойдет. Газ просто нагреется сильнее, вот и все. Его молекулы приобретут высокую кинетическую энергию и станут еще быстрее метаться между стенками сосуда.

В таком ответе не было ничего удивительного. Люди не умели тогда получать особенно высоких температур и не могли знать, что будет с веществом, допустим, при 6000 градусов. В обычных топливных печах максимальная температура достигает только 2000, а в электрических - 3000 градусов.

Теперь положение изменилось. Даже в промышленных условиях добиваются иногда температур порядка 12 000 градусов. А физики по «добыванию» высоких температур превзошли пределы самых невероятных фантазий.

В Институте атомной энергии научным сотрудником М. С. Иоффе были произведены эксперименты, в которых удалось получить температуру для дейтерия 60 миллионов градусов - в три раза более высокую, чем в центре Солнца (по современным представлениям, температура в центре Солнца несколько менее 20 миллионов градусов). Академик Евгений Константинович Завойский добился еще более эффектных результатов: в своих опытах ему вместе с сотрудниками удалось нагреть потоки электронов до температуры свыше 100 миллионов градусов.

Сейчас уже известно точно: выше 6000 градусов газы, даже что ни на есть устойчивые, как бы испаряются.

Что же с ними происходит?

Когда при бешеных скоростях, вызванных сильным нагревом, атомы вещества сталкиваются один с другим, из них выбиваются электроны. Утрачивая часть электронов, атомы превращаются в положительные ионы, то есть в «осколки», заряженные положительным электричеством. Электроны, как известно, заряжены отрицательно. В результате получается смесь из отрицательных электронов, положительных ионов и не успевших «испариться» нейтральных атомов. Так как положительное электричество в такой смеси равно отрицательному электричеству, смесь в целом остается нейтральной. Но электроны сталкиваются между собой и с ионами и заставляют «испаренный газ» светиться (что бывает, впрочем, не всегда, а лишь при достаточном количестве частиц; если разрежение высокое, вещество может стать совсем невидимым).

Облако материи в таком особо возбужденном состоянии и называется плазмой. Открыл ее в 1920 году выдающийся индийский астрофизик Мег Над Сага.

Что плазма уже не газ, а качественно совсем иное, новое состояние вещества, ученые убедились довольно быстро.

Каждое состояние вещества имеет свои особые свойства, не похожие на свойства остальных состояний. Имеет их и плазма.

Свойства плазмы резко отличаются от свойств газа. Газ, например, - электрический изолятор. Плазма, хотя она в целом и нейтральна, как газ, наоборот, прекрасно проводит электрический ток. В отличие от металлов, которые проводят ток тем хуже, чем больше они нагреты, электропроводность плазмы растет с увеличением температуры.

Теория говорит, что при очень высокой температуре плазма практически должна обладать свойством сверхпроводимости, то есть ее электрическое сопротивление должно быть близко к нулю. Кроме того, плазма - идеальный проводник тепла, она - сверхтеплопроводящий материал.

В плазме очень много тепла, но есть и то, чего нет ни в одном теплоносителе, - порядок . Сильное магнитное поле, в котором добывается плазма, вносит в ее движение порядок, причем необыкновенный: винтовой, или иначе - гиротропный.

Острый интерес к плазме в наши дни вызван многими причинами. Первая, конечно, заключается в том, что, как оказалось, плазма гораздо больше распространена в природе, чем это можно было бы предполагать. Почти вся Вселенная состоит из плазмы. Из плазмы состоят Солнце, горячие звезды, туманности, межзвездный газ.

Выяснилось, что с плазмой люди имели дело задолго до ее открытия.

Вода начинает испаряться еще до того, как достигает температуры своего кипения. И плазма образуется не обязательно при температуре 6 и выше тысяч градусов. Она возникает, например, под воздействием сильного облучения газа рентгеновыми или ультрафиолетовыми лучами. Поместив газ в мощное электрическое поле, его также можно привести в состояние ионизации, частично обратить в плазму.

Слабо горит свеча. И все же ее пламя хоть в малой степени, но ионизировано. Это еще не настоящая плазма, но уже намек на нее. А вот ослепительный свет электрической дуга и мягкое свечение неоновой трубки прямо исходят от плазмы. Близко к настоящей плазме пламя сварочной горелки и форсунки дизеля, пламя в цилиндре двигателя внутреннего сгорания.

Кратковременное плазменное состояние возникает в стволе орудия при выстреле. Вообще при всяком взрыве большой массы взрывчатого вещества происходит образование плазмы.

Плазма образует канал электрической искры и молнии. Ионизированные слои в атмосфере Земли состоят из плазмы. Полярное сияние есть не что иное, как свечение ионизированного газа, то есть тоже плазмы.

Юрий Гагарин совершил свой подвиг буквально в объятиях плазмы. Когда космический корабль «Восток», взметнувшись с площадки космодрома, с грохотом пробивал плотные слои атмосферы, сопла ракетного двигателя извергали плазму.

Плазма широко распространена повсюду, но, пожалуй, еще сильнее привлекает она внимание ученых своими возможностями для техники будущего.

Плазма - самое перспективное состояние вещества для преобразования тепла непосредственно в электричество. По-видимому, в безмашинных электростанциях будущего в движении будет находиться только плазма. Проходя между полюсами сверхмощных магнитов, потоки плазмы будут превращать энергию своего движения в энергию электрического тока.

Не за горами создание и космических кораблей с плазменными двигателями. С такими двигателями, выбрасывающими реактивную плазменную струю со скоростями в десятки или даже сотни тысяч километров в секунду, можно отправиться на исследование самых далеких планет Солнечной системы.

Весной 1965 года советские ученые провели первые успешные испытания плазменных двигателей в космических условиях - на борту космического корабля «Зонд-2».

Велики перспективы плазмы и в области управляемых термоядерных реакций. Академик Л. Н. Арцимович считает даже, что это важнейшая задача плазмы. Он писал:

«Физика плазмы не относится к магистральным направлениям науки, но тем не менее за последнее десятилетие она разрабатывается весьма интенсивно, так как с ней связаны надежды на решение задач исключительного перспективного значения. Первое место среди них занимает общеизвестная проблема управляемого термоядерного синтеза, решение которой должно полностью устранить угрозу энергетического голода на нашей планете».

Из книги Медицинская физика автора Подколзина Вера Александровна

26. Стационарное состояние Принцип производства энтропии. Организм как открытая системаВыше была описана направленность термодинамических процессов в изолированной системе. Однако реальные процессы и состояния в природе и технике являются неравновесными, а многие

Из книги Возвращение чародея автора Келер Владимир Романович

Твердое - первое состояние вещества Древнегреческий философ Эмпедокл (490–430 гг. до н. э.) считал, что мир построен из четырех стихий, или элементов: земли, воды, воздуха и огня. Учение Эмпедокла разделяли многие ученые древности, в том числе и Аристотель. Потом оно проникло

Из книги Теория относительности для миллионов автора Гарднер Мартин

Жидкое - второе состояние вещества Помня о силах, действующих между молекулами или атомами твердых тел, нетрудно догадаться, почему эти тела плавятся. Потому что при повышении температуры колебания каждого отдельного атома около его нормального положения становятся

Из книги Атомная энергия для военных целей автора Смит Генри Деволф

Газообразное - третье состояние вещества Не задумывались ли вы когда-нибудь над тем, какое состояние вещества для нас всего важнее? Почти все, кому я задавал такой вопрос, прося ответить не подумав, ответить сразу, ошибались. Потом лишь, в следующий момент спохватывались:

Из книги Гиперпространство автора Каку Мичио

10. Взрыв или устойчивое состояние Представьте себе картину постепенного расширения космоса, а затем пустите эту картину в обратном направлении, как это делают в кино. Ясно, что в «скрытом мраком прошлом и бездне времен», как однажды сказал Шекспир, должен был быть такой

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

СОВРЕМЕННОЕ СОСТОЯНИЕ 13.1. В результате работы организаций Манхэттенского Округа в Вашингтоне и Тенесси, групп ученых в Беркли, Чикаго, Колумбии, Лос-Аламосе и в других местах, промышленных групп в Клинтоне, Хэнфорде и многих других местах, конец июня 1945 г. застает нас в

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

3. Человек, который «видел» четвертое измерение К 1910 г. четвертое измерение стало практически обиходным выражением… Видоизменяясь от идеальной платоновской или кантовской реальности - или даже небес! - этот ответ на все проблемы, озадачивающие современную науку, -

Из книги автора

Четвертое измерение как искусство Период с 1890 по 1910 г. можно считать золотым веком четвертого измерения. Именно в это время идеи, высказанные Гауссом и Риманом, распространились в литературных кругах, внедрились в сознание широкой публики, оказали воздействие на

Из книги автора

Большевики и четвертое измерение в Царской России четвертое измерение приобрело известность благодаря трудам мистика Петра Успенского, познакомившего российских интеллектуалов с тайнами этого измерения. Влияние этой темы ощущалось настолько отчетливо, что Федор

Из книги автора

Двоеженцы и четвертое измерение В конце концов идея четвертого измерения пересекла Атлантический океан и попала в Америку. Ее вестником стала колоритная фигура - английский математик Чарльз Хауард Хинтон. Если Альберт Эйнштейн в 1905 г. корпел за письменным столом в

Из книги автора

Бесполезное четвертое измерение Оглядываясь назад, можно сделать вывод, что знаменитый доклад Римана был популяризован стараниями мистиков, философов и людей искусства и стал доступным широкой аудитории, но почти никак не углубил наше понимание природы. Рассматривая

Из книги автора

Четвертое измерение и встречи выпускников Разумеется, теория Эйнштейна уже не раз была представлена в популярных изложениях, авторы которых делали акценты на разных аспектах теории. Но лишь некоторые из них уловили сущность специальной теории относительности: время -

Из книги автора

Из книги автора

21. Четвертое и пятое измерения Время как четвертое измерение Пространство нашей Вселенной обладает тремя осями координат: «верх – низ», «восток – запад» и «север – юг». Однако чтобы пообедать с подругой, придется договориться не только о месте встречи,

Из книги автора

Время как четвертое измерение Пространство нашей Вселенной обладает тремя осями координат: «верх – низ», «восток – запад» и «север – юг». Однако чтобы пообедать с подругой, придется договориться не только о месте встречи, но и о времени. В этом смысле время –

Из книги автора

Глава 21. Четвертое и пятое измерения Подробнее об унификации пространства и времени см. [Торн 2009]. О «суперструнной революции» Джона Шварца и Майкла Грина и о том, как физики приняли концепцию многомерного балка, см. «Элегантная Вселенная. Суперструны, скрытые

Одно и тоже вещество в природе имеет возможность кардинальным образом варьировать свои свойства в зависимости от показателей температуры и давления. Прекрасным примером тому может служить вода, которая существует в виде твёрдого льда, жидкости и пара. Это три агрегатных состояния данной субстанции, имеющей химическую формулу Н 2 О. Другие вещества в естественных условиях способны менять свои характеристики аналогическим образом. Но кроме перечисленных, в природе существует и другое агрегатное состояние - плазма. Это достаточно редкая в земных условиях наделённая особыми качествами.

Молекулярное строение

От чего зависят 4 состояния вещества, в котором пребывает материя? От взаимодействия элементов атома и самих молекул, наделённых свойствами взаимного отталкивания и притяжения. Указанные силы самокомпенсируются в твёрдом состоянии, где атомы располагаются геометрически правильно, образуя кристаллическую решётку. При этом материальный объект способен сохранять обе упомянутые выше качественные характеристики: объём и форму.

Но стоит кинетической энергии молекул увеличится, хаотично двигаясь, они разрушают установленный порядок, превращаясь в жидкости. Они обладают текучестью и характеризуются отсутствием геометрических параметров. Но при этом данная субстанция сохраняет свою способность не менять общий объём. В газообразном состоянии взаимное притяжение между молекулами полностью отсутствует, поэтому газ не имеет формы и обладает возможностью неограниченного расширения. Но концентрация вещества при этом значительно падает. Сами молекулы в обычных условиях не меняются. В этом заключается основная особенность первых 3 из 4 состояний вещества.

Трансформация состояний

Процесс превращения твёрдого тела в другие формы возможно осуществить, постепенно увеличивая температуру и варьируя показатели давления. При этом переходы будут происходить скачкообразно: расстояние между молекулами заметно увеличится, разрушатся межмолекулярные связи с изменением плотности, энтропии, количества свободной энергии. Вероятна также трансформация твёрдого тела сразу в газообразную форму, минуя промежуточные этапы. Она носит название сублимации. Подобный процесс вполне возможен в обычных земных условиях.

Но когда показатели температуры и давления достигают критического уровня, образуется Внутренняя энергия вещества настолько увеличивается, что электроны, двигаясь с бешенной скоростью, покидают свои внутриатомные орбиты. При этом образуются положительные и отрицательные частицы, но плотность их в получившейся структуре остаётся практически одинаковой. Таким образом возникает плазма - агрегатное состояние вещества, представляющего, по сути, газ, полностью или частично ионизированный, элементы которого наделены способностью на больших расстояниях взаимодействовать между собой.

Высокотемпературная плазма космоса

Плазма, как правило, субстанция нейтральная, хотя и состоит из заряженных частиц, потому что положительные и отрицательные элементы в ней, будучи приблизительно равными по количеству, компенсируют друг друга. Это агрегатное состояние в обычных земных условиях встречается реже других, упомянутых ранее. Но несмотря на это, большинство космических тел состоит именно из природной плазмы.

Примером тому могут служить Солнце и прочие многочисленные звёзды Вселенной. Там показатели температуры фантастический высоки. Ведь на поверхности главного светила нашей планетарной системы они достигают 5 500°С. Это более чем в полсотни раз превышает те параметры, которые необходимы для того, чтобы закипела вода. В центре же огнедышащего шара температура составляет 15 000 000°С. Неудивительно, что газы (в основном это водород) там ионизируются, достигая агрегатного состояния плазмы.

Низкотемпературная плазма в природе

Межзвёздная среда, заполняющая галактическое пространство, также состоит из плазмы. Но она отличается от высокотемпературной её разновидности, описанной ранее. Подобная субстанция состоит из ионизированного вещества, возникающего вследствие излучения, испускаемого звёздами. Это низкотемпературная плазма. Таким же образом солнечные лучи, достигая пределов Земли, создают ионосферу и находящийся над ней радиационный пояс, состоящий из плазмы. Различия лишь в составе вещества. Хотя в подобном состоянии могут находится все элементы, представленные в таблице Менделеева.

Плазма в условиях лаборатории и её применение

Согласно законам легко получается в привычных для нас условиях. При проведения лабораторных опытов достаточно конденсатора, диода и сопротивления, подключённых последовательно. Подобная цепь на секунду подсоединяется к источнику тока. И если прикоснуться проводами к металлической поверхности, то частицы её самой, а также расположенные вблизи молекулы паров и воздуха ионизируются и оказываются в агрегатном состоянии плазмы. Аналогичные свойства материи используются при создании ксеноновых и неоновых экранов и сварочных аппаратов.

Плазма и природные явления

В естественных условиях плазму можно наблюдать в свете Северного сияния и во время грозы в виде шаровой молнии. Объяснение некоторым природным явлениям, которым ранее приписывались мистические свойства, ныне дала современная физика. Плазма, образующаяся и светящаяся на концах высоких и острых предметов (мачтах, башнях, огромных деревьях) при особом состоянии атмосферы, столетия назад принималась моряками за вестник удачи. Именно поэтому данное явление получило название «Огни святого Эльма».

Видя коронный разряд в облике светящихся кисточек или пучков во время грозы в шторм, путешественники принимали это за доброе предзнаменование, понимая, что избежали опасности. Неудивительно, ведь возвышающиеся над водой объекты, подходящие для «знаков святого», могли говорить о приближении судна к берегу или пророчить встречу с другими кораблями.

Неравновесная плазма

Приведённые выше примеры красноречиво свидетельствуют о том, что не обязательно нагревать вещество до фантастических температур, чтобы добиться состояния плазмы. Для ионизации достаточно использовать силу электромагнитного поля. При этом тяжёлые составные элементы материи (ионы) не приобретают значительную энергию, ведь температура при осуществлении этого процесса вполне может не превышать по Цельсию нескольких десятков градусов. В таких условиях лёгкие электроны, отрываясь от основного атома, движутся значительно быстрее более инертных частиц.

Подобная холодная плазма называется неравновесной. Кроме плазменных телевизоров и неоновых ламп, она используется также при очистке воды и продуктов питания, применяется для дезинфекции в медицинских целях. К тому же холодная плазма способна содействовать ускорению химических реакций.

Принципы использования

Прекрасным примером того, как применяется во благо человечества искусственно созданная плазма, является изготовление плазменных мониторов. Ячейки такого экрана наделены способностью излучать свет. Панель представляет собой некий «бутерброд» из стеклянных листов, близко расположенных друг к другу. Между ними размещаются коробочки со смесью инертных газов. Ими могут быть неон, ксенон, аргон. А на внутреннюю поверхность ячеек наносятся люминофоры синего, зелёного, красного цвета.

Снаружи ячеек подведены токопроводящие электроды, между которыми создаётся напряжение. В результате этого возникает электрическое поле и, как следствие, молекулы газа ионизируются. Образующаяся плазма испускает ультрафиолетовые лучи, поглощаемые люминофорами. Ввиду это возникает явление флуоресценции посредством испускаемых при этом фотонов. За счёт сложного соединения лучей в пространстве возникает яркое изображение самых разнообразных оттенков.

Плазменные ужасы

Смертоносный облик принимает эта форма материи во время ядерного взрыва. Плазма в больших объёмах образуется во время течения данного неуправляемого процесса с высвобождением огромного количества различных видов энергии. возникшая в результате запуска в действие детонатора, вырывается наружу и нагревает в первые секунды до гигантских температур окружающий воздух. На этом месте возникает смертоносный огненный шар, нарастающий с внушительной скоростью. Видимая область яркой сферы увеличивается за счёт ионизированного воздуха. Сгустки, клубы и струи плазмы взрыва формируют ударную волну.

Первое время светящийся шар, наступая, мгновенно поглощает всё на своём пути. В пыль превращаются не только кости и ткани человека, но и твёрдые скалы, разрушаются даже самые прочные искусственные сооружения и объекты. Не спасают бронированные двери в надёжные убежища, расплющиваются танки и другая боевая техника.

Плазма по своим свойствам напоминает газ тем, что не обладает определёнными формами и объёмом, в следствие этого она способна неограниченно расширяться. По данной причине многие физики высказывают мнение, что считать её отдельным агрегатным состоянием не следует. Однако существенные отличия её от просто горячего газа налицо. К ним относятся: возможность проводить электрические токи и подверженность влиянию магнитных полей, неустойчивость и способность составных частиц иметь разные показатели скоростей и температур, при этом коллективно взаимодействовать между собой.

Помимо трех основных состояний вещества: жидкого, твердого и газообразного, существует еще и четвертое состояние вещества. Это состояние называется плазма. Плазма - частично или полностью ионизированный газ. Плазму можно получить путем дальнейшего нагревания газа. При достаточно больших температурах начинается ионизация газа. И он переходит в состояние плазмы.

Степень ионизации плазмы может быть различной, в зависимости от того сколько атомов и молекул ионизировано. Помимо нагревания газа, плазму можно получить и другими путями. Например, с помощью излучений или бомбардировкой газа быстрыми заряженными частицами. В таких случаях говорят о низкотемпературной плазме.

Свойства плазмы

Плазму выделили в отдельное четвертое состояние вещества, так как она обладает специфическими свойствами. Плазма в целом является электрически нейтральной системой. Любое нарушение нейтральности устраняется путем скопления частиц одного знака.

Это происходит потому, что заряженные частицы плазмы обладают очень высокой подвижностью и легко поддаются воздействию электрических и магнитных полей. Под действием электрических полей заряженные частицы перемещаются к области, где нарушена нейтральность, до тех пор, пока электрическое поле не станет равным нулю, то есть восстановится нейтральность.

Между молекулами плазмы действуют силы кулоновского притяжения. При этом каждая частица взаимодействует сразу с многими другими окружающими её частицами. Вследствие чего, частицы плазмы помимо хаотичного теплового движения, могут участвовать в различных упорядоченных движениях. Поэтому в плазме легко возбудить различные колебания и волны.
По мере увеличения степени ионизации плазмы, её проводимость увеличивается. При достаточно высоких температурах, плазму можно считать сверхпроводником.

Плазма в природе

Огромная часть вещества Вселенной находится именно в состоянии плазмы. Например, Солнце и другие звезды вследствие высокой температуры состоят, в основном, из полностью ионизированной плазмы. Межзвездная среда тоже состоит из плазмы. Здесь ионизация атомов вызывается излучением самих звезд.

Межзвездная плазма является примером низкотемпературной плазмы. Наша планета тоже окружена плазмой. Например, ионосфера. В ионосфере ионизация газа вызывается излучением солнца. Выше ионосферы, расположены радиационные пояса Земли, которые тоже состоят из плазмы.

В данном случае плазма также является низкотемпературной. Большей частью свойств плазмы обладают также свободные электроны в металлах. Но их ограничением является тот факт, что они не могут свободно перемещаться по всему объему тела.

Агрега́тное состоя́ние - состояние вещества, характеризующееся определёнными качественными свойствами: способностью или неспособностью сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других основных физических свойств.

Известно, что любое вещество может существовать только в одном из трех состояний: твердом, жидком или газообразном, классическим примером чему является вода, которая может быть в виде льда, жидкости и пара. Однако веществ, пре­бывающих в этих считающихся бесспорными и общераспространенными состояниях, если брать всю Вселенную в целом, очень мало. Они вряд ли пре­вышают то, что в химии считается ничтожно малыми следами. Все остальное вещество Вселенной пребывает в так называемом плазменном состоянии.

Словом «плазма» (от греч. «плазма» - «оформленное») в середине XIX

в. стали именовать бесцветную часть крови (без красных и белых телец) и

жидкость, наполняющую живые клетки. В 1929 г. американские физики Ирвинг Лёнгмюр (1881-1957) и Леви Тонко (1897-1971) назвали плазмой ионизованный газ в газоразрядной трубке.

Английский физик Уильям Крукс (1832-1919), изучавший электрический

разряд в трубках с разрежённым воздухом, писал: «Явления в откачанных

трубках открывают для физической науки новый мир, в котором материя может существовать в четвёртом состоянии».

В зависимости от температуры любое вещество изменяет своё

состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твёрдом состоянии, в интервале от 0 до 100 "С - в жидком, выше 100 °С-в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны - ионизуются и газ превращается в плазму. При температурах более 1000000 °С плазма абсолютно ионизована - она состоит только из электронов и положительных ионов. Плазма - наиболее распространённое состояние вещества в природе, на неё приходится около 99 % массы Вселенной. Солнце, большинство звёзд, туманности - это полностью ионизованная плазма. Внешняя часть земной атмосферы (ионосфера) тоже плазма.

Ещё выше располагаются радиационные пояса, содержащие плазму.

Полярные сияния, молнии, в том числе шаровые, - всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле. И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии - планеты, астероиды и пылевые туманности.

Под плазмой в физике понимают газ, состоящий из электрически

заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, т. с. выполнено условие квазинейтральности (поэтому, например, пучок электронов, летящих в вакууме, не плазма: он несет отрицательный заряд).

1.1. Наиболее типичные формы плазмы

Наиболее типичные формы плазмы

Искусственно созданная плазма

Плазменная панель (телевизор, монитор)

Вещество внутри люминесцентных (в т. ч. компактных) и неоновых ламп

Плазменные ракетные двигатели

Газоразрядная корона озонового генератора

Исследования управляемого термоядерного синтеза

Электрическая дуга в дуговой лампе и в дуговой сварке

Плазменная лампа (см. рисунок)

Дуговой разряд от трансформатора Теслы

Воздействие на вещество лазерным излучением

Светящаяся сфера ядерного взрыва

Земная природная плазма

Огни святого Эльма

Ионосфера

Языки пламени (низкотемпературная плазма)

Космическая и астрофизическая плазма

Солнце и другие звезды (те, которые существуют за счет термоядерных реакций)

Солнечный ветер

Космическое пространство (пространство между планетами, звездами игалактиками)

Межзвездные туманности

Наиболее широко плазма применяется в светотехнике - в газоразрядныхлампах, освещающих улицы, и лампах дневного света, используемых впомещениях. А кроме того, в самых разных газоразрядных приборах:выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах сверхвысоких частот (СВЧ), счётчиках космических частиц. Все так называемые газовые лазеры (гелий-неоновый, криптоновый, надиоксиде углерода и т. п.) на самом деле плазменные: газовые смеси в нихионизованы электрическим разрядом. Свойствами, характерными для плазмы, обладают электроныпроводимости в металле (ионы, жестко закрепленные в кристаллическойрешётке, нейтрализуют их заряды), совокупность свободных электронов иподвижных «дырок» (вакансий) в полупроводниках. Поэтому такие системы называют плазмой твёрдых тел. Газовую плазму принято разделять на низкотемпературную - до 100тыс. градусов и высокотемпературную - до 100 млн градусов. Существуют генераторы низкотемпературной плазмы - плазмотроны, в которых используется электрическая дуга. С помощью плазмотрона можно нагреть почти любой газ до 7000-10000 градусов за сотые и тысячные доли секунды. С созданием плазмотрона возникла новая область науки - плазменная химия: многие химические реакции ускоряются или идут только в плазменной струе.Плазмотроны применяются и в горнорудной промышленности, и для резкиметаллов. Созданы также плазменные двигатели, магнитогидродинамическиеэлектростанции. Разрабатываются различные схемы плазменного ускорениязаряженных частиц. Центральной задачей физики плазмы является проблема управляемого термоядерного синтеза. Термоядерными называют реакции синтеза более тяжёлых ядер из ядерлёгких элементов (в первую очередь изотопов водорода - дейтерия D и тритияТ), протекающие при очень высоких температурах (» 108 К и выше). В естественных условиях термоядерные реакции происходят на Солнце:ядра водорода соединяются друг с другом, образуя ядра гелия, при этомвыделяется значительное количество энергии. Искусственная реакциятермоядерного синтеза была осуществлена в водородной бомбе.

Плазма – ещё малоизученный объект не только в физике, но и в химии (плазмохимии), астрономии и многих других науках. Поэтому важнейшие технические положения физики плазмы до сих пор не вышли из стадии лабораторной разработки. В настоящее время плазма активно изучается т.к. имеет огромное значение для науки и техники. Эта тема интересна ещё и тем, что плазма – четвёртое состояние вещества, о существовании которого люди не подозревали до XX века.

1. Вурзель Ф.Б., Полак Л.С. Плазмохимия, М, Знание, 1985.

2. Ораевский Н.В. Плазма на Земле и в космосе, К, Наукова думка, 1980.

В первых трех состояниях - твердом, жидком и газообразном - электрические и магнитные силы глубоко запрятаны в недрах вещества. Они целиком уходят на то, чтобы связывать ядра и электроны в , атомы в и в кристаллы. Вещество в этих состояниях оказывается в целом электрически нейтральным. Другое дело - плазма. Электрические и магнитные силы здесь выступают на первый план и определяют все ее основные свойства. Плазма соединяет в себе свойства трех состояний: твердого (), жидкого (электролит) и газообразного. От металла она берет высокую электропроводность, от электролита - ионную проводимость, от газа - большую подвижность частиц. И все эти свойства переплетаются так сложно, что плазма оказывается очень трудной для изучения.

И все-таки ученым удается с помощью тонких физических приборов заглянуть в ослепительно светящееся газовое облако. Их интересует количественный и качественный состав плазмы, взаимодействие ее частей друг с другом.

До раскаленной плазмы руками не дотронешься. Ее ощупывают с помощью очень чувствительных «пальцев» - электродов, вводимых в плазму. Эти электроды называются зондами. Измеряя силу тока, идущего на зонд, при разных напряжениях, можно узнать степень концентрации электронов и ионов, их температуру и ряд других характеристик плазмы.(К слову интересно, что даже бумага А4 при определенных с ней манипуляций также может перейти в плазму)

Состав плазмы узнают, беря пробы плазменного вещества. Специальными электродами вытягивают небольшие порции ионов, которые затем сортируют по массам с помощью остроумного физического прибора - масс-спектрометра. Этот анализ дает возможность узнать также знак и степень ионизации, то есть отрицательно или положительно, однократно или многократно ионизированы атомы.

Плазму ощупывают также радиоволнами. В отличие от обычного газа плазма их сильно отражает, подчас сильнее, чем металлы. Это связано с наличием в плазме свободных электрических зарядов. До недавнего времени такое радиоощупывание было единственным источником сведений об ионосфере - замечательном плазменном «зеркале», которое природа поместила высоко над Землей. Сегодня ионосфера исследуется также с помощью искусственных спутников и высотных ракет, которые берут пробы ионосферного вещества и «на месте» производят его анализ.

Плазма - очень неустойчивое состояние вещества. Обеспечить согласованное движение всех ее составных частей - весьма нелегкое дело. Часто кажется, что это достигнуто, плазма усмирена, но внезапно по каким-то не всегда известным причинам в ней образуются сгущения и разрежения, возникают сильные колебания, и ее спокойное поведение резко нарушается.

Иногда же «игра» электрических и магнитных сил в плазме сама приходит на помощь ученым. Эти силы могут образовывать из плазмы тела компактной и правильной формы, названные плазмоидами. Форма плазмоидов может быть очень разнообразной. Здесь и кольца, и трубки, и сдвоенные кольца, и перекрученные шнуры. Плазмоиды довольно устойчивы. Например, если «выстрелить» навстречу друг другу двумя плазмоидами, то они при столкновении отлетят друг от друга, как бильярдные шары.

Изучение плазмоидов позволяет лучше понять процессы, происходящие с плазмой в гигантских масштабах вселенной. Один из видов плазмоидов - шнур - играет очень важную роль в попытках ученых создать управляемую . Плазмояды, видимо, будут использованы также в плазменной химии и металлургии.

НА ЗЕМЛЕ И В КОСМОСЕ

На Земле плазма - довольно редкое состояние вещества. Но уже на небольших высотах плазменное состояние начинает преобладать. Мощное ультрафиолетовое, корпускулярное и рентгеновское излучение ионизирует воздух в верхних слоях атмосферы и вызывает образование плазменных «облаков» в ионосфере. Верхние слои атмосферы - это защитная броня Земли, предохраняющая все живое от губительного действия солнечных излучений. Ионосфера - отличное зеркало для радиоволн (за исключением ультракоротких), позволяющее осуществлять земную радиосвязь на далекие расстояния.

Верхние слои ионосферы не исчезают и ночью: слишком разрежена в них плазма, чтобы возникшие днем ионы и электроны успели воссоединиться. Чем дальше от Земли, тем меньше в атмосфере нейтральных атомов, а на расстоянии в полтораста миллионов километров находится ближайший к нам колоссальный сгусток плазмы - .

Из него постоянно вылетают фонтаны плазмы - подчас на высоту в миллионы километров, - так называемые протуберанцы. По поверхности перемещаются вихри несколько менее горячей плазмы - солнечные пятна. Температура на поверхности Солнца около 5 500°, пятен - на 1 000° ниже. На глубине 70 тысяч километров - уже 400 000°, а еще дальше температура плазмы достигает более 10 миллионов градусов.

В этих условиях ядра атомов солнечного вещества совершенно оголены. Здесь при гигантских давлениях все время идут термоядерные реакции слияния ядер и превращения их в ядра . Выделяющаяся при этом энергия восполняет ту, что Солнце так щедро излучает в мировое пространство, «отапливая» и освещая всю свою систему планет.

Звезды во вселенной находятся на разных стадиях развития. Одни умирают, медленно превращаясь в холодный несветящийся газ, другие взрываются, выбрасывая в пространство огромные облака плазмы, которые спустя миллионы и миллиарды лет достигают в виде космических лучей других звездных миров. Есть области, где силы притяжения сгущают газовые облака, в них растут давление и температура, пока не создаются благоприятные условия для появления плазмы и возбуждения термоядерных реакций, - и тогда вспыхивают новые звезды. Плазма в природе находится в непрерывном круговороте.

НАСТОЯЩЕЕ И БУДУЩЕЕ ПЛАЗМЫ

Ученые стоят на пороге овладения плазмой. На заре человечества величайшим достижением было умение получать и поддерживать огонь. А сегодня понадобилось создать и сохранить на длительное время другую, гораздо более «высокоорганизованную» плазму.

Мы уже говорили о применении плазмы в хозяйстве: вольтова дуга, лампы дневного света, газотроны и тиратроны. Но здесь «работает» сравнительно негорячая плазма. В вольтовой дуге, например, ионная температура составляет около четырех тысяч градусов. Однако сейчас появляются сверхжаропрочные сплавы, которые выдерживают температуру до 10-15 тысяч градусов. Чтобы обрабатывать их, нужна плазма с более высокой ионной температурой. Применение ее сулит немалые перспективы и для химической промышленности, так как многие реакции протекают тем быстрее, чем выше температура.

До какой же температуры пока удалось разогреть плазму? До десятков миллионов градусов. И это не предел. Исследователи уже находятся на подступах к управляемой термоядерной реакции синтеза, в ходе которой выделяются огромные количества энергии. Представьте себе искусственное солнце. И не одно, а несколько. Ведь они изменят климат нашей планеты, навсегда снимут с человечества заботу о топливе.

Вот какие применения ожидают плазму. А пока ведутся исследования. Большие коллективы ученых напряженно работают, приближая тот день, когда четвертое состояние вещества станет для нас таким же обычным, как и три остальных.