§10. Расчет сопротивления электрических цепей

Условия скачивания работ (лицензионное соглашение).
Работы с данного сайта предназначены исключительно для ознакомления. Все права в отношении работы принадлежат ее законному правообладателю. Оплата доступа не предполагает продажу работы или прав на неё. Мы оказываем услуги подбора и систематизации информации. Сайт не несет ответственности за правильность теоретической и (или) практической частей в работе. Ответственность за неправомерное и незаконное использование работы лежит на пользователе. Полное или частичное воспроизведение и распространение учебных материалов сайта запрещено. Услуга предоставляется «как есть» ("as is") и в том виде, в котором она доступна на момент предоставления, при этом никаких гарантий прямых или косвенных, не предоставляется (включая, но не ограничиваясь, гарантии по использованию Услуги в конкретных целях). Копирование материалов с сайта запрещено.
Политика конфиденциальности: Мы высоко ценим Ваш интерес к нашему проекту. Защита персональных данных для нас очень важна. Мы соблюдаем правила защиты персональных данных и защиты ваших данных от несанкционированного доступа третьих лиц (защита персональных данных).
Заполнение формы с контактными данными означает безоговорочное согласие с настоящей Политикой конфиденциальности и указанными в ней условиями обработки персональной информации.
Ниже приводится информация об обработке персональных данных.
1. Персональные данные. Цель сбора и обработки персональных данных.
1.1. Вы всегда можете посетить данную страницу, не раскрывая никакой персональной информации.
1.2. Под персональными данными понимается любая информация, относящаяся к определенному или определяемому на основании такой информации физическому лицу.
1.3. Мы собираем и используем персональные данные, необходимые для выполнения Вашего запроса, это – фамилия, имя, телефон и электронный адрес.
1.4. Мы не проверяем достоверность персональных данных, предоставляемых физическими лицами, и не проверяет их дееспособность.
2. Условия обработки персональной информации покупателя и её передачи третьим лицам.
2.1. При обработке персональных данных посетителей сайта мы руководствуется Федеральным законом РФ «О персональных данных».
2.2. В отношении персональной информации покупателя сохраняется ее конфиденциальность.
2.3. Мы не передаем персональные данные третьим лицам.
3. Меры, применяемые для защиты персональной информации пользователей.
Мы принимаем необходимые и достаточные организационные и технические меры для защиты персональной информации пользователя от неправомерного или случайного доступа, уничтожения, изменения, блокирования, копирования, распространения, а также от иных неправомерных действий с ней третьих лиц.
ИП Сатаев Тимур Сагитович ОГРН 311028003900327

о TKV Т, к

16

Зависимость удельного сопротивления провод ника и сверхпроводника от температуры

Отличие движения заряженных частиц в проводнике и сверхпроводнике. В чем же принципиальное отличие движения заряженных частиц в сверхпроводнике от их движения в обычном проводнике?

Электрическое сопротивление обычного проводника определяется взаимодействием электронов с хаотически колеблющимися ионами, находящимися в узлах кристаллической решетки. В таком проводнике электроны движутся под действием внешнего электрического поля независимо друг от друга. Каждый электрон, столкнувшийся с ионом, изменяет направление скорости и выбывает из общего направленного движения электрических зарядов (носителей тока). С уменьшением температуры частота столкновений электронов с ионами убывает.

Резкий спад сопротивления сверхпроводника при критической температуре означает, что электроны не выбывают из общего направленного движения, т. е. столкновения с ионами внезапно прекращаются. Ключом к объяснению этого факта послужило открытие в 1950 г. изотопического эффекта.

Изотопический эффект - зависимость критической температуры от массы ионов в кристаллической решетке.

Для разных изотопов с массой mi одного и того же химического элемента критическая температура их перехода в сверхпроводящее состояние оказалась различной:

Электродинамика

Это означало, что на резкое изменение характера движения электрона при критической температуре оказывает влияние структура кристаллической решетки.

Практическое исчезновение удельного электрического сопротивления связано с возникновением при температуре меньше критической сил притяжения между парами электронов, расположенных друг от друга на расстоянии, в тысячи раз превышающем расстояние между узлами решетки. Эти силы значительно превосходят силы кулоновского отталкивания электронов на этом расстоянии и обусловлены согласованными колебаниями ионов кристаллической решетки.

Куперовские пары. Рассмотрим подробнее механизм возникновения электронных пар, связанных силами притяжения, которые чаще называют куперовскими парами (по имени одного из создателей теории сверхпроводимости)1.

При движении электрона в сверхпроводнике при Т < Гкр положительные ионы, находящиеся в узлах кристаллической решетки (пересечения пунктирных линий на рисунке 17), притягиваются к электрону, смещаясь от положения равновесия в его сторону. Последующее кулоновское отталкивание положительных ионов приводит к распространению по решетке упругой волны. Второй электрон, находящийся достаточно далеко от первого, притягивается в его сторону смещающимся навстречу положительным ионом решетки.

Подобное притяжение между парой электронов может возникать, даже если они находятся друг от друга на расстоянии, в тысячи раз превышающем период решетки (расстояние между соседними узлами).

Движение электронов в паре перестает быть независимым. Благодаря притяжению между электронами в паре оно становится согласованным.

Ф--\--ф\- ---В1,- - ф

t = t

Образование куперовских пар

1 Теория сверхпроводимости была предложена в 1957 г. Дж. Бардином, Л. Купером, Дж. Шриффером (Нобелевская премия 1972 г.).

Постоянный электрический ток

Притяжение между электронами препятствует столкновению каждого из них в отдельности с ионами решетки.

Электроны в сверхпроводнике (в отличие от обычного проводника) являются «единым коллективом » куперовских пар.

Электрический ток в сверхпроводнике обусловлен согласованным движением куперовских пар электронов.

Механической аналогией движения зарядов в сверхпроводнике является скатывание по наклонной плоскости с выступающими цилиндрическими штырями пары шариков, связанных пружиной (рис. 18). Если один из шариков ударяется о штырь, он не отскакивает назад, так как второй шарик, связанный с ним пружиной, А 18 продолжает движение и подтягивает первый. В Моделирование движе- результате пара продолжает скатываться с на - ния куперовских пар клонной плоскости. Подобным же образом взяв - в сверхпроводнике шиеся за руки в парах учащиеся младших классов организованно гуляют. При этом роль колебаний кристаллической решетки, укрепляющей их связи (рукопожатия), периодически играет властный голос учительницы.

Чем сильнее взаимодействие электронов с решеткой, тем сильнее их притяжение друг к другу, тем легче образуются куперовские пары. Для хороших проводников (Ag, Си, Аи) это взаимодействие мало, поэтому такие проводники не переходят в сверхпроводящее состояние. При Т > Т хаотическое движение ионов доминирует над упорядоченным: куперовские пары разрушаются, и электроны движутся по кристаллу независимо, как в обычном проводнике.

Основным препятствием для широкого применения металлических сверхпроводников является необходимость их эксплуатации при очень низкой температуре. Использование для их охлаждения жидкого гелия при Т = 4 К создает значительные технические трудности и не всегда оправдано экономически.

Поиск сверхпроводников с большой критической температурой привел к получению в 1988-1989 гг. высокотемпературных металлокера-мических сплавов (Ва-Yt-Си-О) и (Т1-Са-Ва-Си-О) с большой критической температурой (см. табл. 3). Получение сверхпроводящих состояний для этих сплавов возможно с помощью недорогого и безопасного в эксплуатации жидкого азота , имеющего температуру кипения 77 К.

Электродинамика

В настоящее время усилия физиков направлены на получение сверх-юводников с критической температурой, близкой к комнатной. Эти ерхпроводники должны удовлетворять высоким требованиям к меха-гческой прочности и химической стабильности.

Техническое использование таких сверхпроводников позволяет 1еныпить потери энергии в линиях электропередачи, совершенствует ектронику, увеличивает быстродействие компьютеров, существенно;ешевляет электроэнергию.

Какое физическое явление называют сверхпроводимостью? Дайте определение сверхпроводника.

Какую температуру называют критической?

Какой эффект называют изотопическим? Почему изотопический эффект является ключом к объяснению сверхпроводимости?

Чем отличается характер движения электронов в сверхпроводнике от их движения в проводнике? Как механически можно промоделировать движение куперовских пар в сверхпроводнике?

Почему сверхпроводимость исчезает при температуре выше критической? Чем объясняется перспективность разработок высокотемпературных сверхпроводников?

9. Соединения проводников

>следовательное соединение. В реальной электрической цепи к зажи-м источника тока может быть подключено несколько соединительных оводников, а также лампы, нагревательные и измерительные прибо-[, обладающие определенным сопротивлением.

Основными типами соединений элементов электрической цепи являйся последовательное и параллельное соединения.

Последовательное соединение проводников - соединение, при кото-м конец предыдущего проводника соединяется с началом только одно-- последующего.

На рисунке 19, а резистор R 1, подключенный между точками а и с, здинен последовательно с резистором R 2, включенным между точками

а) схема соединения;
б) б) эквивалентная схема

Постоянный электрический ток

cab . Найдем результирующее сопротивление - R между точками а и b (рис. 19, б).

При последовательном соединении проводников сила тока, протекающего через оба резистора, остается постоянной:

/1 = /2 = /. (14)

Это следует из закона сохранения заряда. Если бы заряд, протекающий в единицу времени через второй резистор, оказался бы меньше соответствующего заряда, протекающего через первый резистор, то это означало бы, что заряд куда-то пропал. Соответственно, если бы сила тока через второй резистор превосходила бы силу тока через первый, то где-то между сопротивлениями должна была бы происходить генерация зарядов, чего нет на самом деле.

Гидродинамическим аналогом силы тока, про - а с. ----- -\&

Труба 2

Ш\ Насос

т

текающего через последовательно соединенные резисторы, является масса жидкости, протекающей в единицу времени по последовательно соединенным трубам (рис. 20).

Работа, совершаемая электрическим полем
при перемещении единичного положительного ж ~~
заряда из точки а в точку Ь, т. е. напряжение U , ^^

складывается из напряжения Ux на участке а -с Гидродинамическая
и напряжения U 2 на участке с -Ъ: аналогия последова-

тельного соединения
и = и1 + и2. (15) проводников

При последовательном соединении проводников общее напряжение цепи равно сумме напряжений на каждом проводнике.

Выразим напряжение из закона Ома с учетом условия (14):

IR = IR 1 + IR 2 .

При последовательном соединении резисторов общее сопротивление цепи равно сумме их сопротивлений:

R = Rl + R 2 . (16)

Если электрическая цепь содержит п последовательно соединенных проводников с сопротивлениями Rlt R 2 , ■■ , Rn , то

R = R 1 + R 2 + ...+ Rn . (17)

Сопротивление последовательного соединения проводников больше сопротивления любого из этих проводников.

8 Электродинамика

J = U 1 = U 2

г R 1

R 2

л __ :

к 21

г араллельное соедине- ие проводников: I схема соединения; эквивалентная сема

Труба 1

Труба 2 \ Насос

L 22

"дродинамическая алогия параллель-го соединения оводников

Параллельное соединение. Параллельное соединение проводников - соединение, при котором проводники подключены между одной и той же парой точек (узлами).

Точку разветвления цепи, в которой соединяются не менее трех проводников называют узлом электрической цепи.

Найдем результирующее сопротивление цепи R , образованной двумя резисторами с сопротивлениями Rx и R 2 (рис. 21), параллельно соединенными между узлами аиЬ.

В соответствии с законом сохранения электрического заряда заряд, поступающий в единицу времени в точку разветвления а, равен сумме зарядов, уходящих из этой точки за это же время, поэтому:

Суммарная сила тока, втекающего в узел, равна сумме сил токов, вытекающих из узла. Подобным образом вода растекается по трубам (рис. 22). Если за 1 с из 10 кг воды, поступающей в точку а, 2 кг воды попадает в трубу 1, то в трубу 2 за это же время пройдет 8 кг воды.

Так как работа электрических потенциальных сил не зависит от формы пути единичного положительного заряда между двумя точками, напряжение на каждом из параллельно соединенных проводников одно и то же:

U = U ^ U 2 . (19)

Выразим силу тока для каждого проводника в формуле (18) из закона Ома с учетом равенства (19):

U R

и + и.

едовательно,

R1R2 Ri + R2

Постоянный электрический ток

Сопротивление параллельного соединения проводников меньше сопротивления любого из этих проводников.

Величина G = 1/ R называется электрической проводимостью проводника. Единица проводимости - сименс (1 См):

1 См = 10мг1.

При параллельном соединении резисторов проводимость цепи равна сумме их проводимостей:

G = G 1 + G 2 + ...+ Gn , (22)

где G ^^, G 2 =^,..., Gn =^.

Как следует из равенства (19),

" frRt - <23>

Сила тока в каждом из двух проводников, соединенных параллельно, обратно пропорциональна сопротивлению соответствующего проводника.

Параллельное соединение труб (см. рис. 22) подобно параллельному соединению сопротивлений. Короткая труба с большим сечением имитирует малое сопротивление, а длинная узкая труба - большое сопротивление. Масса жидкости, протекающей через короткую трубу за 1 с, больше, чем через длинную.

Смешанное соединение проводников - соединение, сводящееся к последовательному и параллельному соединениям проводников.

1. Какое соединение проводников называют последовательным?

2. Какие физические величины сохраняются при последовательном соединении проводников? Чему равно общее сопротивление при последовательном соединении проводников?

3. Какое соединение проводников называют параллельным?

4. Какие физические величины сохраняются при параллельном соединении проводников? Чему равна проводимость цепи при параллельном соединении проводников?

5. Какую гидродинамическую аналогию можно использовать для моделирования последовательного и параллельного соединений проводников?

Электродинамика


т


X


R3


R2


X


4 23


4 24

> Г 1

о 2 Ом

4 25


1. Найдите сопротивление Rab , если Д1 = 12 0м, Д2 = = 20 Ом, Д3 = 30 Ом (рис. 23).

2. Найдите Rab , если Д, = 12 0м; Д2 = 18 0м; Д3 = 50м; Д4=10Ом(рис.24).

3. Найдите Да& (рис. 25).

4. Найдите ДаЬ (рис. 26). [R]

5. Сила тока, протекающего по сопротивлениям 3 0м, в схеме к задаче 4, равна 3 А. Найдите разность потенциалов и силу тока, протекающего через сопротивления 6 Ом и 8 Ом.

R

R

R

R

R

Hzi>rcz>Hiz>H




2 R





А 26

§10. Расчет сопротивления электрических цепей

Смешанное соединение проводников. Расчет сопротивления смешанного соединения проводников проводится следующим образом. В электриче-жой цепи сначала находят резисторы, соединенные друг с другом либо траллельно, либо последовательно. При замене их эквивалентным ре-шстором получается более простая эквивалентная схема. Этот процесс упрощения схемы продолжается до тех пор, пока общее сопротивление 1,епи не сводится к одному эквивалентному сопротивлению. Рассмотрим, например, расчет смешанного сопротивления проводников.

1. Три резистора, сопротивления которых i?1 = 8 Ом, R 2 = 3 Ом, R 3 = = 12 Ом, соединены по схеме, приведенной на рисунке 27, а. Найдем со-1ротивление цепи между точками а и Ъ.

Постоянный электрический ток

Как видно из рисунка, резисторы R 2 и R 3 соединены параллельно, поэтому сопротивление

Rcb = R 2 - Rs /(R 2 + R 3 )-

В эквивалентной схеме, приведенной на рисунке 27, б, два резистора с сопротивлениями R 1 и RCb соединены последовательно. Следовательно, общее сопротивление цепи (рис. 27, в)

R 9 До

R ab ~ R\ +

R%" R3 R2 + R3

Rl h Л2+Д3


Rj Д 3 Ri^Rs

e )

Rx + a

А 27

Смешанное соединение проводников

2. Три резистора с одинаковым сопротивлением R - 60 Ом соединены по схеме, показанной на рисунке 28, а. Найдем сопротивление Rad . Характерной особенностью представленной схемы является наличие перемычек, обладающих пренебрежимо малым сопротивлением, т. е. Rac = Rbd = 0. Это означает, что (согласно закону Ома) Uac = Ubd = 0. Следовательно, (ра = фс; ф6 = (pd.

Потенциалы точек, соединенных перемычками, одинаковы.

Точку а на схеме можно совместить с точкой с, а точку Ъ с точкой d . Тогда эквивалентная схема (рис. 28, б) представляет собой параллельное соединение трех резисторов, а сопротивление i? ad определяется формулой (22):

1+1 = R R R

Следовательно,

к «* 3

Точки с равным потенциалом в электрических схемах. Расчет сопротивления электрических схем существенно упрощается, если в схеме можно найти точки с равными потенциалами. Между такими точками, согласно закону Ома, ток не протекает. Поэтому в эквивалентной схеме сопротивления проводников, соединяющих эти точки, можно либо не Учитывать, либо заменить перемычкой.

а

R h R

R d

a R b

Последовательное соединение проводников Напряжение U, по определению – это работа по перемещению единичного заряда электрическим полем. Тогда напряжение (работа) на концах последовательного участка будет складываться из напряжений на отдельных элементах

Последовательное соединение проводников При последовательном соединении проводников сила тока, протекающая через резисторы, остается постоянной. Эту закономерность можно легко объяснить используя определение силы тока и закон сохранения заряда. Как? Сила тока это заряд протекающий через поперечное сечение проводника в единицу времени. Изменение силы тока означает изменение заряда, т.е. он куда-то исчез или откуда-то взялся.

Последовательное соединение проводников По закону Ома Сила тока на всех участках одинакова, поэтому на нее можно сократить При последовательном соединении резисторов, общее сопротивление цепи равно сумме их сопротивлений. Общее сопротивление увеличивается

Параллельное соединение проводников Посчитаем общее сопротивление для конкретных значений сопротивлений. Воспользуемся полученной формулой. =0,989 Ом Важно: Общее сопротивление резисторов при параллельном соединении меньше самого малого сопротивления цепи.

Параллельное соединение проводников Так как напряжение на каждом резисторе параллельной цепи одинаково, то Сила тока обратно пропорциональна величине сопротивления участка. Другими словами через самое маленькое сопротивление идет самый большой ток! Ток идет по пути наименьшего сопротивления.

Задачи Задача 1. Найдите сопротивление Rab, если R1=12 Ом, R2=20 Ом, R3=30 Ом. R1 R23 Дано: R1=12 Ом R2=20 Ом R3=30 Ом Rab-? Резисторы R2 и R3 соединены параллельно, поэтому их можно заменить сопротивлением R23 значение которого можно посчитать по формуле: Резисторы R23 и R1 соединены последовательно, поэтому их можно заменить сопротивлением Rab значение которого можно посчитать по формуле:

Задача 2. Найдите сопротивление Rab, если R1=12 Ом, R2=18 Ом, R3=5 Ом R4=10 Ом. Задачи R2 R1 R3 R4 Дано: R1=12 Ом R2=18 Ом R3=5 Ом R4=10 Ом Rab-? Резисторы R1 и R2 соединены последовательно, поэтому их можно заменить сопротивлением R12 значение которого можно посчитать по формуле: Резисторы R3 и R4 соединены последовательно, поэтому их можно заменить сопротивлением R34 значение которого можно посчитать по формуле: Из исходной схемы получаем следующую схему (эквивалентную) R12 R34

Задача 3. Найдите сопротивление Rab, см рис. Задачи a R1 b R6 R 5 Дано: R1=R6 = 3 Ом R2=R4 = 2 Ом R3=8 Ом R5= 6 Ом Rab-? R 2 R 4 a R 3 R1 Резисторы R2 , R3 и R4 соединены последовательно, поэтому их можно заменить сопротивлением R234 значение которого можно посчитать по формуле: Резисторы R234 и R5 соединены параллельно, поэтому их можно заменить сопротивлением R2345 значение которого можно посчитать по формуле: b R6 R234 5

Задачи Задача 4. Найдите сопротивление Rab, см рис. b R R R R a R Дано: Rab-? 2 R 2 R 2 R 2 R 2 R 2 R 2 R Выделенные сопротивления одинаковы по величине и параллельны, следовательно можно заменить эквивалентной схемой Помним! Общее сопротивление двух одинаковых параллельно включенных резисторов в два раза меньше величины каждого из них, общее сопротивление выделенного участка 2R/2=R

Задачи Задача 4. Найдите сопротивление Rab, см рис. b R R R R R R a Дано: Rab-? Помним! Общее сопротивление двух одинаковых последовательно включенных резисторов в два раза больше величины каждого из них, общее сопротивление выделенного участка R+R=2R 2 R 2 R 2 R 2 R 2 R Выделенные сопротивления одинаковы по величине и последовательны, следовательно можно заменить эквивалентной схемой

Задачи Задача 4. Найдите сопротивление Rab, см рис. b R R R R a 2 R Дано: Rab-? Помним! Общее сопротивление двух одинаковых параллельно включенных резисторов в два раза меньше величины каждого из них, общее сопротивление выделенного участка 2R/2=R Если продолжить эти рассуждения, то докажем, что общее сопротивление участка = R 2 R 2 R 2 R 2 R 2 R Выделенные сопротивления одинаковы по величине и параллельны, следовательно можно заменить эквивалентной схемой

Задачи Задача 5. Сила тока протекающего по сопротивлениям 3 Ом равна 3 А. Найдите разность потенциалов и силу тока, протекающего через сопротивления 6 Ом и 8 Ом. Напомним решение задачи 3 R 3 a R1 c b R6 Дано: R1=R6 = 3 Ом R2=R4 = 2 Ом R3=8 Ом R5= 6 Ом Rab-? R 5 d R 2 R 4 a Резисторы R2 , R3 и R4 соединены последовательно, поэтому их можно заменить сопротивлением R234 значение которого можно посчитать по формуле: Резисторы R234 и R5 соединены параллельно, поэтому их можно заменить сопротивлением R2345 значение которого можно посчитать по формуле: R1 b R6 R234 5