Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа. Презентация к уроку "Идеальный газ в молекулярно-кинетической теории (МКТ). Среднее значение квадрата скорости молекул

Запишем уравнение состояния идеального газа (уравнение Менделеева-Клайпейрона) в виде

где R - универсальная газовая постоянная R = 8,31×10 3 .

В одном киломоле любого вещества находится одно и то же количество молекул, равное числу Авогадро N A = 6,023×10 23 моль -1 .

Объем одного киломоля идеального газа при нормальных условиях

V км = 22,4 м 3 /кмоль.

Часто употребляется еще одна физическая константа - постоянная Больцмана k=R/N A =1.38×10 -23 Дж/К. Для одного киломоля идеального газа можно записать

и . (11.48)

Откуда следует

Или , , (11.49)

где - средняя кинетическая энергия поступательного движения одной молекулы газа. Абсолютная температура T лишь постоянным множителем отличается от .

С точки зрения молекулярно-кинетической теории , абсолютная температура есть величина, пропорциональная средней энергии поступательного движения молекулы.:

=3/2kT. (k –постоянная Больцмана k=R/N A =1.38×10 -23 Дж/К.)

Абсолютный нуль (-273,15 0С) - температура, при которой поступательное движение молекул идеального газа замирает.

Средняя квадратичная скорость молекул - среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа

, где - Масса одной молекулы, - Молярная масса (масса одного моля вещества).

Число степеней свободы. Принцип равнораспределения энергии по степеням свободы. Внутренняя энергия идеального газа.

Рис. 9.4

Числом степеней свободы называется число независимых координат, которыми описывается движение тела в пространстве. Материальная точка имеет три степени свободы, поскольку при ее движении в пространстве изменяются три координаты: x, y, z. Система из двух материальных точек, расстояние между которыми остается постоянным, имеет пять степеней свободы: три из них приходится на поступательное движение и две – на вращательное (рис. 9.4) вокруг осей x и z. Вращение вокруг оси y не дает дополнительной степени свободы, так как при этом положения материальных точек в пространстве не изменяется.

Средняя кинетическая энергия поступательного движения молекулы равна – формула (8.12) (к – постоянная Больцмана, Т - температура). Это движение можно рассматривать как движение с тремя степенями свободы, поскольку молекулы идеального газа можно принять как материальные точки. Все три степени свободы равноправны, поэтому можно считать, что на одну степень свободы приходится энергия

Подсчитаем теперь внутреннюю энергию (U) одного киломоля идеального газа. Эта энергия может быть найдена умножением средней энергии одной молекулы на их число, т.е. на число Авогадро:

Из (9.10) видно, что внутренняя энергия идеального газа полностью определяется его температурой. Из-за отсутствия взаимодействия между молекулами идеального газа внутренняя энергия его зависит от числа частиц, температуры и не зависит от объема (закон Джоуля).

Средняя скорость движения молекул

средняя скорость движения молекул $\left\langle v\right\rangle $, которая определяется как:

где N -- число молекул. Или, среднюю скорость можно найти как:

где $F\left(v\right)=4\pi {\left(\frac{m_0}{2\pi kT}\right)}^{\frac{3}{2}}exp\left(-\frac{m_0v^2}{2kT}\right)v^2$ -- функция распределения молекул по модулю скорости, указывающая долю молекул со скоростями, находящимися в единичном интервале $dv$ около величины скорости $v$, $m_0$- масса молекулы, $k$- постоянная Болцмана, T -- термодинамическая температура. Для того, чтобы определить, как средняя скорость молекулы связана с макропараметрами газа, как системы частиц, найдем значение интеграла (2).

Произведем замену:

Следовательно:

Подставим (4) и (5) в (3), получим:

Проведем интегрирование по частям, получим:

где R -- универсальная газовая постоянная, $\mu $- молярная масса газа.

Среднюю скорость движения молекул называют также скоростью теплового движения молекул.

Средняя относительная скорость молекул:

\[\left\langle v_{otn}\right\rangle =\sqrt{2}\sqrt{\frac{8kT}{\pi m_0}}=\sqrt{2}\left\langle v\right\rangle \left(7\right).\]

Средняя квадратичная скорость

Средней квадратичной скоростью движения молекул газа называют величину:

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{1}{N}\sum\limits^N_{i=1}{{v_i}^2}}\left(8\right).\]

\[{\left\langle v_{kv}\right\rangle }^2=\int\nolimits^{\infty }_0{v^2F\left(v\right)dv\ \left(9\right).}\]

Проводя интегрирование, которое аналогично интегрированию при получении связи средней скорости с температурой газа, получим:

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{3kT}{m_0}}=\sqrt{\frac{3RT}{\mu }}\left(10\right).\]

Именно средняя квадратичная скорость поступательного движения молекул газа входит в основное уравнение молекулярно-кинетической теории:

где $n=\frac{N}{V}$ -- концентрация частиц вещества, $N$- число частиц вещества, V- объем.

Пример 1

Задание: Определите, как изменяется средняя скорость движения молекул идеального газа при увеличении давления в процессе, представленном на графике (рис.1).

Запишем выражение для средней скорости движения молекул газа в виде:

\[\left\langle v\right\rangle =\sqrt{\frac{8kT}{\pi m_0}}\ \left(1.1\right)\]

По графику видим, что $p\sim \rho \ или\ p=C\rho ,\ $ где C- некоторая константа.

Подставим (1.2) в (1.1), получим:

\[\left\langle v\right\rangle =\sqrt{\frac{8kT}{\pi m_0}}=\sqrt{\frac{8C\rho }{\pi n}\frac{n}{\rho }}=\sqrt{\frac{8C}{\pi }}\left(1.3\right)\]

Ответ: В процессе, изображенном на графике, с ростом давления средняя скорость движения молекул не изменяется.

Пример 2

Задание: Можно ли вычислить среднюю квадратичную скорость молекулы идеального газа, если известны: давление газа (p), молярная масса газа ($\mu $) и концентрация молекул газа (n)?

Используем выражение для $\left\langle v_{kv}\right\rangle:$

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{3RT}{\mu }}\left(2.1\right).\]

Кроме того, из уравнения Менделеева -- Клайперона и зная, что $\frac{m}{\mu }=\frac{N}{N_A}$:

Разделим правую и левую части (2.2) на V, зная, что $\frac{N}{V}=n$ получим:

Подставим (2.3) в выражение для среднеквадратичной скорости (2.1), имеем:

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{3pN_A}{\mu n}}\ \left(2.4\right).\]

Ответ: По заданным в условии задачи параметрам среднеквадратичную скорость движения молекул газа вычислить можно с помощью формулы $\left\langle v_{kv}\right\rangle =\sqrt{\frac{3pN_A}{\mu n}}.$

Средняя квадратичная скорость молекул - среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа

Таблица значений средней квадратичной скорости молекул некоторых газов

Для того чтоб понять, откуда же у нас получается эта формула, мы выведем среднюю квадратичную скорость молекул. Вывод формулы начинается с основного уравнения молекулярно кинетический теории (МКТ):

Где у нас количество вещества, для более легкого доказательства, возьмем на рассмотрение 1 моль вещества, тогда у нас получается:

Если посмотреть, то PV это две третьих средней кинетической энергии всех молекул (а у нас взят 1 моль молекул):

Тогда, если приравнять правые части, у нас получается, что для 1 моля газа средняя кинетическая энергия будет равняться:

Но средняя кинетическая энергия, так же находится, как:

А вот теперь, если мы приравняем правые части и выразим из них скорость и возьмем квадрат,Число Авогадро на массу молекулы, получается Молярная масса то у нас и получится формула для средней квадратичной скорости молекулы газа:

А если расписать универсальную газовую постоянную, как , и за одно молярную массу , то у нас получится?

В Формуле мы использовали:

Средняя квадратичная скорость молекул

Постоянная Больцмана

Поставим перед собой задачу: пользуясь упрощенными представлениями о движении и взаимодействии газовых молекул, выразить давление газа через величины, характеризующие молекулу.

Рассмотрим газ, заключенный в сферическом объеме с радиусом и объемом Отвлекаясь от соударений газовых молекул, мы вправе принять следующую простую схему движения каждой молекулы.

Молекула движется прямолинейно и равномерно с некоторой скоростью ударяется о стенку сосуда и отскакивает от нее под углом, равным углу падения (рис. 83). Проходя все время хорды одинаковой длины молекула наносит стенке сосуда ударов за 1 с. При каждом ударе импульс молекулы меняется на (см. стр. 57). Изменение импульса за 1 с будет равно

Мы видим, что угол падения сократился. Если молекула падает на стенку под острым углом, то удары будут частые, но слабые; при падении под углом, близким к 90°, молекула будет наносить стенке удары реже, но зато сильнее.

Изменение импульса при каждом ударе молекулы о стенку дает свой вклад в общую силу давления газа. Можно принять в соответствии с основным законом механики, что сила давления есть не что

иное как изменение импульса всех молекул, происходящее за одну секунду: или, вынося постоянный член за скобки,

Пусть в газе содержится молекул, тогда можно ввести в рассмотрение средний квадрат скорости молекулы, который определяется формулой

Выражение для силы давления запишется теперь кратко:

Давление газа мы получим, разделив выражение силы на площадь сферы Получим

Заменяя на получим следующую интересную формулу:

Итак, давление газа пропорционально числу молекул газа и среднему значению кинетической энергии поступательного движения молекулы газа.

К важнейшему выводу мы приходим, сравнивая полученное уравнение с уравнением газового состояния. Сопоставление правых частей равенств показывает, что

т. е. средняя кинетическая энергия поступательного движения молекул зависит только от абсолютной температуры и притом прямо пропорциональна ей.

Проделанный вывод показывает, что газы, подчиняющиеся закону газового состояния, являются идеальными в том смысле, что приближаются к идеальной модели собрания частиц, взаимодействие которых не существенно. Далее, этот вывод показывает, что введенное эмпирическим путем понятие абсолютной температуры как величины, пропорциональной давлению разреженного газа, имеет простой молекулярно-кинетический смысл. Абсолютная температура пропорциональна кинетической энергии поступательного движения молекул. есть число Авогадро - число молекул в одной грамм-молекуле, оно является универсальной постоянной: Обратная величина будет равна массе атома водорода:

Универсальной является также величина

Она называется постоянной Больцмана Тогда

Если представить квадрат скорости через сумму квадратов составляющих, очевидно, на любую составляющую придется в среднем энергия

Эту величину называют энергией, приходящейся на одну степень свободы.

Универсальная газовая постоянная хорошо известна из опытов с газами. Определение числа Авогадро или постоянной Больцмана (выражающихся друг через друга) является относительно сложной задачей, требующей проведения тонких измерений.

Проделанный вывод дает в наше распоряжение полезные формулы, позволяющие вычислять средние скорости молекул и число молекул в единице объема.

Так, для среднего квадрата скорости получим

Нас будет интересовать средний квадрат проекции скорости. Он находится так же, как квадрат модуля скорости (см. выражение (4.1.2)):

Скорости молекул принимают непрерывный ряд значений. Определить точные значения скоростей и вычислить среднее значение (статистическое среднее) с помощью формулы (4.3.2) практически невозможно. Определим несколько иначе, более реалистично. Обозначим черезп 1 число молекул в объеме 1 см 3 , имеющих проекции скоростей, близкие к v ; через п 2 - число молекул в том же объеме, но со скоростями, близкими к v kx , и т. д.* Число молекул со скоростями, близкими к максимальной v kx , обозначим через n k (скорость v k x может быть сколь угодно велика). При этом должно выполняться условие: п 1 + п 2 + ... + n i + ... + n k = п, где п - концентрация молекул. Тогда для среднего значения квадрата проекции скорости вместо формулы (4.3.2) можно написать следующую эквивалентную формулу:

* О том, как эти числа могут быть определены, будет рассказано в §4.6.

Так как направление X ничем не отличается от направлений Y и Z (опять-таки из-за хаоса в движении молекул), справедливы равенства:

(4.3.4)

Для каждой молекулы квадрат скорости равен:

Значение среднего квадрата скорости, определяемое так же, как средний квадрат проекции скорости (см. формулы (4.3.2) и (4.3.3)), равно сумме средних квадратов ее проекций:

(4.3.5)

Из выражений (4.3.4) и (4.3.5) следует, что

(4.3.6)

т. е. средний квадрат проекции скорости равен среднего квадрата самой скорости. Множительпоявляется вследствие трехмерности пространства и, значит, существования трех проекций у любого вектора.

Скорости молекул беспорядочно меняются, но среднее значение проекций скорости на любое направление и средний квадрат скорости - вполне определенные величины.

§ 4.4. Основное уравнение молекулярно-кинетической теории

Вычислим с помощью молекулярно-кинетической теории давление газа. На основе проделанных расчетов можно будет сделать очень важный вывод о связи температуры газа со средней кинетической энергией молекул.

Пусть газ находится в прямоугольном сосуде с твердыми стенками. Газ и сосуд имеют одинаковые температуры, т. е. находятся в состоянии теплового равновесия. Будем считать столкновения молекул со стенками абсолютно упругими. При этом условии кинетическая энергия молекул в результате столкновения не меняется.

Требование того, чтобы столкновения были абсолютно упругими, не является строго обязательным. В точности оно и не реализуется. Молекулы могут отражаться от стенки под разными углами и со скоростями, не равными по модулю скоростям до соударения. Но в среднем кинетическая энергия отраженных стенкой молекул будет равна кинетической энергии падающих молекул, если только существует тепловое равновесие. Результаты расчета не зависят от детальной картины столкновений молекул со стенкой. Поэтому вполне допустимо считать столкновения молекул подобными столкновениям упругих шаров с абсолютно гладкой твердой стенкой.

Вычислим давление газа на стенку сосуда CD , имеющую площадь S и расположенную перпендикулярно оси X (рис. 4.3).