Сопряжение острого угла. Построение сопряжений. Сопряжение параллельных прямых линий

Плавный переход прямой линии в дугу или одной дуги в другую называют сопряжением. Для построения сопряжения надо найти центры, из которых проводят дуги, т. е. центры сопряжений (рис. 63). Затем нужно найти точки, в которых одна линия переходит в другую, т. е. точки сопряжений. При построении контура изображения сопрягающиеся линии нужно доводить точно до этих точек. Точка сопряжения лежит на перпендикуляре, опущенном из центра О дуги на сопрягаемую прямую (рис. 64, а), или на линии О 1 О 2 , соединяющей центры сопрягаемых дуг (рис. 64, б). Следовательно, для построения любого сопряжения дугой заданного радиуса нужно найти центр сопряжения и точку сопряжения.

Сопряжение двух пересекающихся прямых дугой заданного радиуса. Даны пересекающиеся под прямым, острым и тупым углами прямые линии (рис. 65, а). Нужно построить сопряжения этих прямых дугой заданного радиуса R.

Для всех трех случаев применяют общий способ построения.

1. Находят точку О - центр сопряжения, который должен лежать на расстоянии R от сторон угла в точке пересечения прямых, проходящих параллельно сторонам угла на расстоянии R от них (рис. 65, б).

Для построения прямых, параллельных сторонам угла, из произвольных точек, взятых на прямых, раствором циркуля, равным R, делают засечки и к ним проводят касательные.

2. Находят точки сопряжений (рис. 65, в). Для этого опускают перпендикуляры из точки О на заданные прямые.

3. Из точки О, как из центра, описывают дугу заданного радиуса R между точками сопряжений (рис. 65, в).

Сопряжение двух параллельных прямых. Заданы две параллельные прямые и на одной из них точка сопряжения т (рис. 66, а). Требуется построить сопряжение.

Построение выполняют следующим образом:

1. Находят центр сопряжения и радиус дуги (рис. 66, б). Для этого из точки m на одной прямой восставляют перпендикуляр до пересечения с другой прямой в точке п. Отрезок делят пополам (см. рис. 56).

2. Из точки О - центра сопряжения радиусом Оm = Оn описывают дугу до точек сопряжения тип (рис. 66, в).

Проведение касательной к окружности. Задана окружность с центром О и точка А (рис. 67, а). Требуется провести из точки А касательную к окружности.

1. Точку А соединяют прямой с заданным центром О окружности.

Строят вспомогательную окружность диаметром, равным ОА (рис. 67, а). Чтобы найти центр О 1 делят отрезок ОА пополам (см. рис. 56).

2. Точки m и n пересечения вспомогательной окружности с заданной - искомые точки касания. Точку А соединяют прямой с точками m или n (рис. 67, б). Прямая Am будет перпендикулярна к прямой Оm, так как угол АmО опирается на диаметр.

Проведение прямой, касательной к двум окружностям. Заданы две окружности радиусом R и R 1 . Требуется построить касательную к ним.

Различают два случая касания: внешнее (рис. 68, б) и внутреннее (рис. 68, в).

При внешнем касании построение выполняют следующим образом:

1. Из центра О проводят вспомогательную окружность радиусом, равным разности радиусов заданных окружностей, т. е. R - R 1 (рис. 68, а). К этой окружности из центра О 1 проводят касательную Оm. Построение касательной показано на рис. 67.

2. Радиус, проведенный из точки О в точку n, продолжают до пересечения в точке m с заданной окружностью радиусом R. Параллельно радиусу Оm проводят радиус 0 1 р меньшей окружности. Прямая, соединяющая точки сопряжений m и р,- касательная к заданным окружностям (рис. 68, б).

При внутреннем касании построение проводят аналогично, но вспомогательную окружность проводят радиусом, равным сумме радиусов R + R 1 (см. рис. 68, в). Затем из центра O 1 проводят касательную к вспомогательной окружности (см. рис. 67). Точку n соединяют радиусом с центром О. Параллельно радиусу On проводят радиус O 1 р меньшей окружности. Искомая касательная проходит через точки сопряжений m и р.

Сопряжение дуги и прямой линии дугой заданного радиуса. Заданы дуга окружности радиусом R и прямая. Требуется соединить их дугой радиусом R 1 .

1. Находят центр сопряжения (рис. 69, а), который должен находиться на расстоянии R 1 от дуги и от прямой. Такому условию соответствует точка пересечения прямой линии, параллельной заданной прямой, проходящей от нее на расстоянии R 1 , и вспомогательной дуги, отстоящей от заданной также на расстоянии R 1 . Поэтому проводят вспомогательную прямую, параллельную заданной прямой, на расстоянии, равном радиусу сопрягающей дуги R 1 (рис. 69, а). Раствором циркуля, равным сумме заданных радиусов R + R 1 , описывают из центра О дугу до пересечения с вспомогательной прямой. Полученная точка O 1 - центр сопряжения.

2. По общему правилу находят точки сопряжения (рис. 69, б). Соединяют прямой центры сопрягаемых дуг O 1 и О. Опускают из центра сопряжения O 1 перпендикуляр на заданную прямую.

3. Из центра сопряжения O 1 между точками сопряжения m и n проводят дугу, радиус которой равен R 1 (см. рис. 69, б).

Сопряжение двух дуг окружности дугой заданного радиуса. Заданы две дуги радиусами R 1 и R 2 . Требуется построить сопряжение дугой, радиус которой задан.

Различают два случая касания: внешнее (рис. 70, б) и внутреннее (рис. 70, в). В обоих случаях центры сопряжений должны быгь расположены на расстоянии, равном радиусу дуги сопряжения, от заданных дуг. По общему правилу на прямых, соединяющих центры сопрягаемых дуг, находят точки сопряжения.

Ниже приведен порядок построения для внешнего и внутреннего касаний.

Для внешнего касания. 1. Из центров O 1 и О 2 раствором циркуля, равным сумме радиусов заданной и сопрягающей дуг, проводят вспомогательные дуги (рис. 70, а); радиус дуги, проведенной из центра O 1 , равен R + R 3 , а радиус дуги, проведенной из центра O 2 , равен R 2 + R 3 . На пересечении вспомогательных дуг расположен центр сопряжения - точка О 3 ,.

2. Соединив прямыми точку O 1 с точкой O 3 и точку O 2 с точкой O 3 , находят точки сопряжения m и n (см. рис. 70, б),

3. Из точки О 3 раствором циркуля, равным R 3 , между точками m и n описывают сопрягающую дугу.

Для внутреннего касания выполняют те же построения, но радиусы дуг берут равными разности радиусов сопрягающей и заданной дуг, т.е. R 4 -R 1 и R 4 -R 2 . Точки сопряжения р и k лежат на продолжении линий, соединяющих точку О 4 с точками O 1 и O 2 .

Глава 3. НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ

§ 14. Общие сведения

При выполнении графических работ приходится решать многие задачи на построение. Наиболее встречающиеся при этом задачи - деление отрезков прямой, углов и окружностей на равные части, построение различных сопряжений прямых с дугами окружностей и дуг окружностей между собой. Сопряжением называют плавный переход дуги окружности в прямую или в дугу другой окружности.

Наиболее часто встречаются задачи на построение следующих сопряжений: двух прямых дугой окружности (скруглением углов); двух дуг окружностей прямой линией; двух дуг окружностей третьей дугой; дуги и прямой второй дугой.

Построение сопряжений связано с графическим определением центров и точек сопряжения. При построении сопряжения широко используются геометрические места точек (прямые, касательные к окружности; окружности, касательные друг к другу). Это объясняется тем, что они основаны на положениях и теоремах геометрии.

10. Вопросы для самопроверки

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

15. Какая плоская кривая называется эвольвентой?

15. Деление отрезка прямой

§ 15. Деление отрезка прямой

Чтобы разделить заданный отрезок АВ на две равные части, точки его начала и конца принимают за центры, из которых проводят дуги радиусом, по величине превышающим половину отрезка АВ. Дуги проводят до взаимного пересечения, где получают точки С и D. Линия, соединяющая эти точки, разделит отрезок в точке К на две равные части (рис. 30, а).

Чтобы разделить отрезок АВ на заданное количество равных участков п, под любым острым углом к АВ проводят вспомогательную прямую, на которой из общей заданной прямой точки откладывают п равных участков произвольной длины (рис. 30, б). Из последней точки (на чертеже - шестой) проводят прямую до точки В и через точки 5, 4, 3, 2, 1 проводят прямые, параллельные отрезку 6В. Эти прямые и отсекут на отрезке АВ заданное число равных отрезков (в данном случае 6).

Рис. 30 Деление заданного отрезка АВ на две равные части

Изображение:

16. Деление окружности

§ 16. Деление окружности

Чтобы разделить окружность на четыре равные части, проводят два взаимно перпендикулярных диаметра: на пересечении их с окружностью получаем точки, разделяющие окружность на четыре равные части (рис. 31, а).

Чтобы разделить окружность на восемь равных частей, дуги, равные четвертой части окружности, делят пополам. Для этого из двух точек, ограничивающих четверть дуги, как из центров радиусов окружности выполняют засечки за ее пределами. Полученные точки соединяют с центром окружностей и на пересечении их с линией окружности получают точки, делящие четвертные участки пополам, т. е. получают восемь равных участков окружности (рис. 31, б).

На двенадцать равных частей окружность делят следующим образом. Делят окружность на четыре части взаимно перпендикулярными диаметрами. Приняв точки пересечения диаметров с окружностью А, В, С, D за центры, величиной радиуса проводят четыре дуги до пересечения с окружностью. Полученные точки 1, 2, 3, 4, 5, 6, 7, 8 и точки А, В, С, D разделяют окружность на двенадцать равных частей (рис. 31, в).

Пользуясь радиусом, нетрудно разделить окружность и на 3, 5, 6, 7 равных участков.

Рис. 31 Пользуясь радиусом, нетрудно разделить окружность и на несколько равных участков.

Изображение:

17. Округление углов

§ 17. Скругление углов

Сопряжение двух пересекающихся прямых дугой заданного радиуса называют скруглением углов. Его выполняют следующим образом (рис. 32). Параллельно сторонам угла, образованного данными

прямыми, проводят вспомогательные прямые на расстоянии, равном радиусу. Точка пересечения вспомогательных прямых является центром дуги сопряжения.

Из полученного центра О опускают перпендикуляры к сторонам данного угла и на пересечении их получают точки сопряжения А а В. Между этими точками проводят сопрягающую дугу радиусом R из центра О.

Рис. 32 Сопряжение двух пересекающихся прямых дугой заданного радиуса называют скруглением углов

Изображение:

18. Сопряжение дуг окружностей прямой линией

§ 18. Сопряжение дуг окружностей прямой линией

При построении сопряжения дуг окружностей прямой линией можно рассмотреть две задачи: сопрягаемая прямая имеет внешнее или внутреннее касание. В первой задаче (рис. 33, а) из центра дуги

меньшего радиуса R1 проводят касательную вспомогательной окружности, проведенной радиусом R - RI. Ее точку касания Ко используют для построения точки сопряжения А на дуге радиуса R.

Для получения второй точки сопряжения А 1 на дуге радиуса R 1 проводят вспомогательную линию О 1 А 1 параллельно О А. Точками A и А 1 будет ограничен участок внешней касательной прямой.

Задача построения внутренней касательной прямой (рис. 33, б) решается, если вспомогательную окружность построить радиусом, равным R + R 1 ,

Рис. 33 Сопряжение дуг окружностей прямой линией

Изображение:

19. Сопряжение двух дуг окружностей третьей дугой

§ 19. Сопряжение двух дуг окружностей третьей дугой

При построении сопряжения двух дуг окружностей третьей дугой заданного радиуса можно рассмотреть три случая: когда сопрягающая дуга радиуса R касается заданных дуг радиусов R 1 и R 2 с внешней стороны (рис. 34, а); когда она создает внутреннее касание (рис. 34, б); когда сочетаются внутреннее и внешнее касания (рис. 34, в).

Построение центра О сопрягающей дуги радиуса R при внешнем касании осуществляется в следующем порядке: из центра О 1 радиусом, равным R + R 1 , проводят вспомогательную дугу, а из центра O 2 проводят вспомогательную дугу радиусом R + R 2 . На пересечении дуг получают центр О сопрягаемой дуги радиуса R, а на пересечении радиусом R + R 1 и R + R 2 с дугами окружностей получают точки сопряжения А и А 1 .

Построение центра О при внутреннем касании отличается тем, что из центра О 1 R - R 1 а из центра О 2 радиусом R - R 2 . При сочетании внутреннего и внешнего касания из центра О 1 проводят вспомогательную окружность радиусом, равным R - R 1 , а из центра О 2 - радиусом, равным R + R 2 .

20. Сопряжение дуги окружности и прямой линии второй дугой

§ 20. Сопряжение дуги окружности и прямой линии второй дугой

Здесь может быть рассмотрено два случая: внешнее сопряжение (рис. 35, а) и внутреннее (рис. 35, б). В том и в другом случае при построении сопрягающей дуги радиуса R центр сопряжения О лежит на пересечении геометрических мест точек, равно удаленных от прямой и дуги радиуса R на величину R 1 .

При построении внешнего сопряжения параллельно заданной прямой на расстоянии R 1 в сторону окружности проводят вспомогательную прямую, а из центра О радиусом,равным R + R 1 , - вспомогательную окружность, и на их пересечении получают точку О 1 - центр сопрягающей окружности. Из этого центра радиусом R проводят сопрягающую дугу между точками А и А 1 , построение которых видно из чертежа.

Построение внутреннего сопряжения отличается тем, что из центра О проводят вспомогательную дугу радиусом, равным R - R 1 .

Рис 34 Внешнее сопряжение дуги окружности и прямой линии второй дугой

Изображение:

Рис 35 Внутреннее сопряжение дуги окружности и прямой линии второй дугой

Изображение:

21. Овалы

§21. Овалы

Плавные выпуклые кривые, очерченные дугами окружностей разных радиусов, называют овалами. Овалы состоят из двух опорных окружностей с внутренними сопряжениями между ними.

Различают овалы трехцентровые и многоцентровые. При вычерчивании многих деталей, например кулачков, фланцев, крышек и других, контуры их очерчивают овалами. Рассмотрим пример построения овала по заданным осям. Пусть для четырехцентрового овала, очерченного двумя опорными дугами радиуса R и двумя сопрягающими дугами радиуса r , заданы большая ось АВ и малая ось CD. Величину радиусов R u r надо определить путем построений (рис. 36). Соединим концы большой и малой оси отрезком AС, на котором отложим разность СЕ большой и малой полуосей овала. Проведем перпендикуляр к середине отрезка AF, который пересечет большую и малую оси овала в точках О 1 и О 2 . Эти точки будут центрами сопрягающихся дуг овала, а точка сопряжения будет лежать на самом перпендикуляре.

Рис. 36 Плавные выпуклые кривые, очерченные дугами окружностей разных радиусов, называют овалами

22. Лекальные кривые

§ 22. Лекальные кривые

Лекальными называют плоские кривые, вычерченные с помощью лекал по предварительно построенным точкам. К лекальным кривым относят: эллипс параболу, гиперболу, циклоиду, синусоиду эвольвенту и др.

Эллипс представляет собой замкнутую плоскую кривую второго порядка. Она характеризуется тем, что сумма расстояний от любой ее


Рис. 37

точки до двух точек фокусов есть величина постоянная, равная большей оси эллипса. Построить эллипс можно несколькими способами. Например, можно построить эллипс по его большой АВ и малой CD осям (рис. 37, а). На осях эллипса как на диаметрах строят две окружности, которые можно разделить радиусами на несколько частей. Через точки деления большой окружности проводят прямые, параллельные малой оси эллипса, а через точки деления малой окружности - прямые, параллельные большой оси эллипса. Точки пересечения этих прямых и являются точками эллипса.

Можно привести пример построения эллипса по двум сопряженным диаметрам (рис. 37,б) MN и KL. Сопряженными два диаметра называют, если каждый из них делит пополам хорды, параллельные другому диаметру. На сопряженных диаметрах строят параллелограмм. Один из диаметров MN делят на равные части; на такие же части делят и стороны параллелограмма, параллельные другому диаметру, нумеруя их, как показано на чертеже. Из концов второго сопряженного диаметра KL через точки деления проводят лучи. В пересечении одноименных лучей получают точки эллипса.

Параболой называют незамкнутую кривую второго порядка, все точки которой равно удалены от одной точки - фокуса и от данной прямой - директрисы.

Рассмотрим пример построения параболы по ее вершине О и какой-либо точке В (рис. 38, а). С этой целью строят прямоугольник ОABC и делят его стороны на равные части, из точек деления проводят лучи. В пересечении одноименных лучей получают точки параболы.

Можно привести пример построения параболы в виде кривой, касательной прямой с заданными на них точками А и В (рис. 38, б). Стороны угла, образованного этими прямыми, делят на равные части и ну-

меруют точки деления. Одноименные точки соединяют прямыми. Параболу вычерчивают как огибающую этих прямых.

Гиперболой называют плоскую незамкнутую кривую второго порядка, состоящую из двух веток, концы которых удаляются в бесконечность, стремясь к своим асимптотам. Гипербола отличается тем, что каждая точка ее обладает особым свойством: разность ее расстояний от двух данных точек-фокусов есть величина постоянная, равная расстоянию между вершинами кривой. Если асимптоты гиперболы взаимно перпендикулярны, она называется равнобокой. Равнобокая гипербола широко применяется для построения различных диаграмм, когда задана своими координатами одна точка М (рис. 38, в). В этом случае через заданную точку проводят линии АВ и KL параллельно координатным осям. Из полученных точек пересечения проводят линии, параллельные координатным осям. В их пересечении получают точки гиперболы.

Урок № 23.

Сопряжения

Показать несколько деталей, имеющих скругления.

Рассматривая детали, видим, что в их конструкции часто одна поверхность переходит в другую. Обычно эти переходы делают плавными, что повышает прочность деталей и делает их более удобными в работе.

На чертеже поверхности изображаются линиями, которые также плавно переходят одна в другую.

Такой плавный переход одной линии (поверхности) в другую линию (поверхность) называют сопряжением.

При построении сопряжения необходимо определить границу, где кончается одна линия и начинается другая, т.е. найти на чертеже точку перехода, которая называется точкой сопряжения или точкой касания .

Задачи на сопряжения условно можно разделить на 3 группы.

Первая группа задач включает в себя задачи на построение сопряжений, где участвуют прямые линии. Это может быть непосредственное касание прямой и окружности, сопряжение двух прямых дугой заданного радиуса, а также проведение касательной прямой к двум окружностям.

Построим окружность, касательную к прямой.

Построение окружности, касательной к прямой , связано с нахождением точки касания и центра окружности.

Задана горизонтальная прямая АВ , требуется построить окружность радиусом R , касательную к данной прямой (рис. 1).


Точка касания выбирается произвольно.

Так как точка касания не задана, то окружность радиуса R может коснуться данной прямой в любой точке. Таких окружностей можно провести множество. Центры этих окружностей (О 1 , О 2 и т.д.) будут находиться на одинаковом расстоянии от заданной прямой, т.е. на линии, расположенной параллельно заданной прямой АВ на расстоянии, равном радиусу заданной окружности (рис. 1). Назовем эту линию линией центров .

Проведем линию центров параллельно прямой АВ на расстоянии R . Так как центр касательной окружности не задан, возьмем любую точку на линии центров, например, точку О.

Прежде чем проводить касательную окружность, следует определить точку касания. Точка касания будет лежать на перпендикуляре, опущенном из точки О на прямую АВ . В пересечении перпендикуляра с прямой АВ получим точку К, которая будет точкой касания. Из центра О радиусом R от точки К проведем окружность. Задача решена.

Запишите в свои тетради в клетку следующие правила:

Если в сопряжении участвует прямая линия, то:

1)

центр окружности, касательной к прямой, лежит на прямой (линия центров), проведенной параллельно заданной прямой, на расстоянии, равном радиусу данной окружности;

2) точка касания лежит на перпендикуляре, проведенном из центра окружности к заданной прямой.

Сопряжение двух прямых.

На плоскости две прямые могут располагаться параллельно или под углом друг к другу.

Чтобы построить сопряжение двух прямых, необходимо провести окружность, касательную к этим двум прямым.

Откройте рабочие тетради на странице 31.

Рассмотрим сопряжение двух непараллельных прямых.

Две непараллельные прямые располагаются друг к другу под углом, который может быть прямым, тупым или острым. При выполнении чертежей деталей часто такие углы необходимо скруглить дугой заданного радиуса (рис.1). Скругление углов на чертеже есть не что иное, как сопряжение двух непараллельных прямых дугой окружности заданного радиуса. Для выполнения сопряжения необходимо найти центр дуги сопряжения и точки сопряжения.

Известно, что если в сопряжении участвует прямая линия, то центр дуги сопряжения находится на линии центров, которая проводится параллельно заданной прямой на расстоянии, равном радиусу R дуги сопряжения.

Поскольку угол образован двумя прямыми, то проводят две линии центров параллельно каждой прямой на расстоянии, равном радиусу R дуги сопряжения. Точка их пересечения будет центром дуги сопряжения.


Для нахождения точек сопряжения из точки О опускают перпендикуляры на заданные прямые и получают точки сопряжения К и К 1 . Зная точки и центр сопряжения, из точки О радиусом R проводят дугу сопряжения. При обводке чертежа следует сначала обвести дугу, а затем касательные прямые.

При построении сопряжения прямого угла упрощается проведение линии центров, так как стороны угла взаимно перпендикулярны. От вершины угла откладывают отрезки, равные радиусу R дуги сопряжения, и через полученные точки К и К 1 , которые будут точками касания, проводят две линии центров, параллельные сторонам угла. Они будут являться одновременно и линиями центров, и перпендикулярами, определяющими точки сопряжения К и К 1 (стр. 31, рис.1).

Стр. 31, задание 4. Сопряжение двух параллельных прямых.

Чтобы построить сопряжение двух параллельных прямых, необходимо провести дугу окружности, касательной к этим прямым (рис.3).



Рис.3

Радиус этой окружности будет равен половине расстояния между заданными прямыми. Так как точка касания не задана, подобных окружностей можно провести множество. Центры их будут находиться на прямой, проведенной параллельно заданным прямым на расстоянии, равном половине расстояния между ними. Эта прямая будет линией центров.

Точки касания (К 1 и К 2 ) лежат на перпендикуляре, опущенном из центра касательной окружности на заданные прямые (рис. 3а). Так как центр касательной окружности не задан, перпендикуляр проводится произвольно. Отрезок КК 1 делят пополам (рис.3б), проводят через точки пересечения засечек прямую линию параллельно заданным прямым, на которой будут располагаться центры окружностей, касательных к заданным параллельным прямым, т.е. эта линия будет линией центров. Поставив ножку циркуля в точку О , проводят дугу сопряжения (рис. 3в) от точки К до точки К 1 .

Построение прямых, касательных к окружностям

(Р.Т. стр.33).

Задание 1 . Проведите прямую, касательную к окружности через точку А , лежащую на окружности.

Из точки О проводим прямую OB через точку А . Из точки А любым радиусом проводим окружность. При пересечении с прямой получили точки 1 и 2. Из этих точек любым радиусом проводим дуги до пересечения между собой в точках C и D . Из точки C или D проводим прямую через точку А .

Она и будет касательной к окружности, так как касательная всегда перпендикулярна радиусу, проведенному в точку касания.

Задание 2 .

Это построение аналогично построению перпендикуляра к прямой через заданную точку, которое можно выполнить с помощью двух угольников.

Сначала угольник 1 кладется так, чтобы его гипотенуза совпадала с точками O и A . Затем к угольнику 1 прикладывается угольник 2 , который будет направляющим, т.е. по которому будет сдвигаться угольник 1 . Потом угольник 1 приставляем другим катетом к угольнику 2. Затем катаем угольник 1 по угольнику 2 до тех пор, пока гипотенуза не совпадет с точкой A . И проводим прямую, касательную к окружности через точку A .

Задание 3 . Проведите прямую, касательную к окружности через точку, не лежащую на этой окружности.

Даны окружность радиусом R и точка А , не лежащая на окружности, требуется провести из точки А прямую, касательную к данной окружности в верхней ее части. Для этого необходимо найти точку касания. Мы знаем, что точка касания лежит на перпендикуляре, проведенном из центра окружности к касательной прямой. Следовательно, касательная и перпендикуляр образуют прямой угол.

Зная, что всякий угол, вписанный в окружность и опирающийся на ее диаметр, является прямым, соединив точки А и О , принимают отрезок АО за диаметр описанной окружности. В пересечении описанной окружности и окружности радиуса R будет находиться вершина прямого угла (точка К ). Отрезок АО делим пополам при помощи циркуля, получаем точку О 1 (рис.4, б).

Из центра О 1 радиусом, равным отрезку АО 1 , проводим окружность, получаем точки К и К 1 в пересечении с окружностью радиуса R (рис.4 ,в).

Так как нужно провести только одну касательную к верхней части окружности, выбирают нужную точку касания. Этой точкой будет точка К . Точку К соединяем с точками А и О , получаем прямой угол, который опирается на диаметр АО описанной окружности радиусом R 1 . Точка К – вершина этого угла (рис.4, г), отрезки ОК и АК – стороны прямого угла, следовательно, точка К будет искомой точкой касания, а прямая АК – искомой касательной.

Рис.4

Проведение прямой, касательной к двум окружностям.

Даны две окружности радиусами R и R 1 , требуется построить касательную к ним. Возможны два случая касания: внешнее и внутреннее.

При внешнем касании касательная прямая находится с одной стороны от окружностей и не пересекает отрезок, соединяющий центры данных окружностей.

При внутреннем касании касательная прямая находится с разных сторон от окружностей и пересекает отрезок, соединяющий центры окружностей.

Стр. 33. Задание 5 . Проведите прямую, касательную к двум окружностям. Касание внешнее.

Прежде всего необходимо найти точки касания. Известно, что они должны лежать на перпендикулярах, проведенных из центров окружностей (О и О 1 ) к касательной.

Из точки О проводим окружность радиусом R - R 1 ,так как касание внешнее.

Разделим расстояние ОО 1 пополам и проведем окружность радиусом R =ОО 2 1 О 2

Эта окружность пересекает окружность с радиусом R - R 1 в точке К. Соединяем эту точку с О 1 .

Из точки О через точку К проводим прямую до пересечения с окружностью радиусом R . Получили точку К 1 – первую точку касания.

Из точки О 1 проводим прямую, параллельную КК 1 , до пересечения с окружностью радиусом R 1 . Получили вторую точку касания К 2 . Соединяем точки К 1 и К 2 . Это и есть касательная к двум окружностям.

Задание 6 . Проведите прямую, касательную к двум окружностям. Касание внутреннее.

Построение аналогичное, только при внутреннем касании радиус вспомогательной окружности, проводящейся из точки О равен сумме радиусов окружностей R + R 1 .

Вторая группа задач на сопряжения включает в себя задачи, в которых участвуют только окружности и дуги. Плавный переход одной окружности в другую может происходить или непосредственно касанием, или через третий элемент – дугу окружности.

Касание двух окружностей может быть внешним (РТ: стр.32, рис.3) или внутренним (РТ: стр.32, рис.4).

Задание 3 (стр. 32)

При внешнем касании двух окружностей расстояние между центрами этих окружностей будет равно сумме их радиусов.

Из точки О радиусом R + R C проведем дугу. Из точки О 1 радиусом R 1 + R C О С - центр сопряжения.

Соединяем точки О и О 1 с центром сопряжения О С . На окружностях получили точки касания (сопряжения).

Из точки О С радиусом сопряжения R C 30 соединяем точки касания.

Задание 4 (стр. 32)

При внутреннем касании двух окружностей одна из касательных окружностей находится внутри другой окружности, и расстояние между центрами этих окружностей будет равно разности их радиусов.

Из точки О радиусом (R C R ) проведем дугу. Из точки О 1 радиусом (R C R 1 ) проведем дугу до пересечения с первой дугой. Получили точку О С - центр сопряжения.

Центр сопряжения О С соединяем с точками О и О 1 с и продлеваем прямую дальше.

На окружностях получили точки касания (сопряжения).

Из точки О С радиусом сопряжения R C 60 соединяем точки касания.

Третья группа задач на сопряжения включает в себя задачи на сопряжения прямой и дуги окружности дугой заданного радиуса.

Выполняя такое задание, решают как бы две задачи: проведение касательной дуги к прямой и касательной дуги к окружности. Касание в этом случае может быть как внешним, так и внутренним.

РТ: стр. 32. Задание 1. Сопряжение окружности и прямой. Касание внешнее. R C 20 .

Заданы прямая и окружность радиусом R , требуется построить сопряжение дугой радиуса R C 20 .

Так как в сопряжении участвует прямая линия, то центр дуги сопряжения находится на прямой, проведенной параллельно заданной прямой на расстоянии, равном радиусу сопряжения R C 20 . Поэтому параллельно заданной прямой на расстоянии 20 мм проводим еще одну прямую.

А центр дуги сопряжения при внешнем касании двух окружностей находится на окружности радиуса, равного сумме радиусов R и R C . Поэтому из точки О радиусом (R + R C О С

Затем находим точки касания. Первая точка касания - это перпендикуляр, опущенный из центра сопряжения на заданную прямую. Вторую точку сопряжения находим, соединив центр сопряжения О С и центр окружности R . Точка касания будет лежат на первом пересечении с окружностью, так как касание внешнее.

Затем из точки О С радиусом R C 20 соединяем точки сопряжения.

РТ: стр. 32. Задание 2. Сопряжение окружности и прямой. Касание внутреннее. R C 60 .

Параллельно заданной прямой проводим линию центров на расстоянии 60 мм. Из точки О радиусом (R с - R ) проводим дугу до пересечения с новой прямой (линией центров). Получим точку О С , которая является центром сопряжения.

Из О С проводим прямую через центр окружности точку О и перпендикуляр на заданную прямую. Получаем две точки касания. И затем из центра сопряжения радиусом 60 мм соединяем точки касания.

Часто при изображении на чертеже контура детали приходится выполнять плавный переход одной линии в другую (плавный переход между прямыми линиями или окружностями) для выполнения конструктивных и технологических требований. Плавный переход одной линии в другую называют сопряжением.

Для построения сопряжений необходимо определить:

  • центры сопряжений (центры, из которых проводят дуги);
  • точки касания/точки сопряжения (точки, в которых одна линия переходит в другую);
  • радиус сопряжения (если он нс задан).

Рассмотрим основные типы сопряжений.

Сопряжение (касание) прямой и окружности

Построение прямой, касательной к окружности. При построении сопряжения прямой и окружности используется известный признак касания этих линий: прямая, касательная к окружности, составляет прямой угол с радиусом, проведенным в точку касания (рис. 1.12).

Рис. 1.12.

К - точка касания

Для проведения касательной к окружности через точку Л, лежащую вне окружности, необходимо:

  • 1) соединить заданную точку А (рис. 1.13) с центром окружности О;
  • 2) отрезок ОА разделить пополам (ОС = СА, см. рис. 1.7) и провести вспомогательную окружность радиусом СО (или СА);

Рис. 1.13.

3) точку /С, (или К.» поскольку задача имеет два решения) соединить с точкой А.

Линия АК^ (или АК.,) является касательной к заданной окружности. Точки K i и К 2 - точки касания.

Следует отметить, что рис. 1.13 иллюстрирует также один из способов точного графического построения двух перпендикулярных прямых (касательной и радиуса).

Построение прямой, касательной к двум окружностям. Обращаем внимание читателя на то, что задачу построения прямой, касательной к двум окружностям, можно рассматривать как обобщенный случай предыдущей задачи (построение касательной из точки к окружности). Сходство этих задач прослеживается из рис. 1.13 и 1.14.

Внешнее касание двух окружностей. При внешнем касании (см. рис. 1.14) обе окружности лежат но одну сторону от прямой.

На рис. 1.14 изображены малая окружность радиусом R с центром в точке А и большая окружность радиусом R { с центром в точ-


Рис. 1.14. Построение внешней касательной к двум окружностям ке О. Чтобы построить внешнюю касательную к этим окружностям, необходимо выполнить следующие действия:

  • 1) через центр О большей окружности провести вспомогательную окружность радиусом (/?, - R);
  • 2) построить касательные к вспомогательной окружности из точки А (центр малой окружности). Точки К { и К., - точки касания прямых и окружности (заметим, что задача имеет два решения);
  • 3) точки К { и К 2 соединить с центром О и продолжить эти линии до пересечения с окружностью радиусом R v Точки пересечения К л и /С, являются точками касания (сопряжения);
  • 4) через точку А провести радиусы, параллельные линиям ()К Л и ОК г Точки пересечения этих радиусов с малой окружностью - точки К- и К л являются точками касания (сопряжения);
  • 5) соединив точки К л и /С (; , а также К л и К 5 , получить искомые касательные.

Внутреннее касание двух окружностей (окружности лежат по разные стороны от прямой, рис. 1.15) выполняется по аналогии с внешнем касанием, с той лишь разницей, что через центр О большей окружности проводится вспомогательная окружность радиусом /?, + R. Па рис. 1.15 изображено два возможных решения задачи.


Рис. 1.1

Сопряжение пересекающихся прямых дугой окружности заданным радиусом. Построение (рис. 1.16) сводится к построению окружности радиусом R, касающейся одновременно обеих заданных линий.

Для нахождения центра этой окружности проводим две вспомогательные прямые, параллельные заданным, на расстоянии R от каждой из них. Точка пересечения этих прямых является центром О дуги сопряжения. Перпендикуляры, опущенные из центра О на заданные прямые, определяют точки сопряжения (касания) /С, и К 2 .


Рис. 1.16.


Рис. 1.17. Построение сопряжения окружности и прямой дугой заданным радиусом R:

а - внутреннее касание; б - внешнее касание

Сопряжение окружности и прямой дугой заданным радиусом.

Примеры построения сопряжений окружности и прямой дугой заданным радиусом R приведены на рис. 1.17.

Центр сопряжения - точка, равноудаленная от сопрягаемых линий. А общая для этих линий точка называется точкой сопряжения .

Построение сопряжений выполняется с помощью циркуля.

Возможны следующие виды сопряжения:

1) сопряжение пересекающихся прямых с помощью дуги заданного радиуса R (скругление углов);

2) сопряжение дуги окружности и прямой с помощью дуги заданного радиуса R;

3) сопряжение дуг окружностей радиусов R 1 и R 2 прямой линией;

4) сопряжение дуг двух окружностей радиусов R 1 и R 2 дугой заданного радиуса R (внешнее, внутреннее и смешанное сопряжение).

При внешнем сопряжении центры сопрягаемых дуг радиусов R 1 и R 2 лежат вне сопрягающей дуги радиуса R. При внутреннем сопряжении центры сопрягаемых дуг лежат внутри сопрягающей дуги радиуса R. При смешанном сопряжении центр одной из сопрягаемых дуг лежит внутри сопрягающей дуги радиуса R, а центр другой сопрягаемой дуги - вне ее.

В табл. 1 показаны построения и даны краткие объяснения к построениям простых сопряжений.


Сопряжения Таблица 1

Пример простых сопряжений Графическое построение сопряжений Краткое объяснение к построению
1. Сопряжение пересекающихся прямых с помощью дуги заданного радиуса R. Провести прямые, параллельные сторонам угла на расстоянии R. Из точки О взаимного пересе­чения этих прямых, опустив перпендикуляры на стороны угла, получим точки сопряжения 1 и 2. Радиусом R провести дугу.
2. Сопряжение дуги окружности и пря­мой с помощью дуги заданного радиуса R. На расстоянии R провести прямую, параллель­ную заданной прямой, а из центра О 1 радиусом R+R 1 - дугу окружности. Точка О - центр дуги сопряжения. Точку 2 получим на перпенди­куляре, проведенном из точки О на заданную прямую, а точку 1 - на прямой OO 1 .
3. Сопряжение дуг двух окружностей ра­диусов R 1 и R 2 прямой линией. Из точки О 1 провести окружность радиусом R 1 -R 2 . Отрезок O 1 O 2 разделить пополам и из точки О 3 провести дугу радиусом 0,5O 1 O 2 . Сое­динить точки О 1 и O 2 с точкой А. Из точки О 2 опустить перпендикуляр к прямой АО 2 , Точки 1.2 - точки сопряжения.

Продолжение таблицы 1

4. Сопряжение дуг двух окружностей ра­диусов R 1 и R 2 дугой заданного радиуса R (внешнее сопряжение). Из центров O 1 и О 2 провести дуги радиусов R+R 1 и R+R 2 . O 1 и О 2 с точкой О. Точки 1 и 2 являются точками сопряжения.
5. Сопряжение дуг двух окружностей ра­диусов R 1 и R 2 дугой заданного радиуса R (внутреннее сопряжение). Из центров O 1 и О 2 провести дуги радиусов R -R 1 и R -R 2 . Получаем точку О - центр дуги сопряжения. Соединить точки O 1 и О 2 с точкой О до пересечения с заданными окружно­стями. Точки 1 и 2 - точки сопряжения.
6. Сопряжение дуг двух окружностей ра­диусов R 1 и R 2 дугой заданного радиуса R (смешанное сопряжение). Из центров O 1 и О 2 провести дуги радиусов R - R 1 и R+R 2 . Получаем точку О - центр дуги сопряжения. Соединить точки O 1 и О 2 с точкой О до пересечения с заданными окружностями. Точки 1и 2 - точки сопряжения.

Лекальные кривые

Это кривые линии, у которых на каждом их элементе непрерывно изменяется кривизна. Лекальные кривые не могут быть вычерчены с помощью циркуля, их построение выполняется по ряду точек. При вычерчивании кривой полученный ряд точек соединяют по лекалу, поэтому ее называют лекальной кривой линией. Точность построения лекальной кривой повышается с увеличением числа промежуточных точек на участке кривой.

К лекальным кривым относятся так называемые плоские сечения конуса – эллипс , парабола , гипербола , которые получаются в результате сечения кругового конуса плоскостью. Такие кривые рассматривались при изучении курса «Начертательная геометрия». К лекальным кривым также относят эвольвенту , синусоиду, спираль Архимеда , циклоидальные кривые .

Эллипс - геометрическое место точек, сумма расстояний которых до двух неподвижных точек (фокусов) есть величина постоянная.

Наиболее широко применяется способ построения эллипса по заданным полуосям АВ и СD. При построении проводят две концентрические окружности, диаметры которых равны заданным осям эллипса. Для построения 12 точек эллипса окружности делят на 12 равных частей и полученные точки соединяют с центром.

На рис. 15 показано построение шести точек верхней половины эллипса; нижняя половина вычерчивается аналогично.

Эвольвента - является траекторией точки окружности, образованной ее развертыванием и выпрямлением (развертка окружности).

Построение эвольвенты по заданному диаметру окружности показано на рис. 16. Окружность делится на восемь равных частей. Из точек 1,2,3 проводят касательные к окружности, направленные в одну сторону. На последней касательной откладывают шаг эвольвенты, равный длине окружности

(2 pR), и полученный отрезок делят также на 8 равных частей. Откладывая на первой касательной одну часть, на второй – две части, на третьей – три части и т.д, получают точки эвольвенты.

Циклоидальные кривые - плоские кривые линии, описываемые точкой, принадлежащей окружности, катящейся без скольжения по прямой линии или окружности. Если при этом окружность катится по прямой линии, то точка описывает кривую, называемую циклоидной.

Построение циклоиды по заданному диаметру окружности d показано на рис.17.

Рис. 17

Окружность и отрезок длиной 2pR делят на 12 равных частей. Через центр окружности проводят прямую, параллельную отрезку. Из точек деления отрезка к прямой проводят перпендикуляры. В точках их пересечения с прямой получаем О 1 , О 2 , О 3 и т.д. - центры перекатываемой окружности.

Из этих центров описываем дуги радиусом R. Через точки деления окружности проводим прямые параллельные прямой, соединяющей центры окружностей. На пересечении прямой, проходящей через точку 1 с дугой, описанной из центра О1, находится одна из точек циклоиды; через точку 2 с другой из центра О2 - другая точка и т.д.

Если же окружность катится по другой окружности, находясь внутри нее (по вогнутой части), то точка описывает кривую называемую гипоциклоидой. Если окружность катится по другой окружности, находясь вне ее (по выпуклой части), то точка описывает кривую, называемую эпициклоидой.

Построение гипоциклоиды и эпициклоиды аналогично, только вместо отрезка длиной 2pR берется дуга направляющей окружности.

Построение эпициклоиды по заданному радиусу подвижной и неподвижной окружностей показано на рис.18. Угол α, который вычисляется по формуле

α = 180°(2r/R), и окружность радиуса R делят на восемь равных частей. Проводится дуга окружности радиуса R+r и из точек О 1 , О 2 , О 3 .. – окружности радиуса r.

Построение гипоциклоиды по заданным радиусам подвижной и неподвижной окружности показано на рис.19. Угол α, который подсчитывается, и окружность радиуса R делятся на восемь равных частей. Проводится дуга окружности радиусом R - r и из точек О 1 , О 2 , О 3 … - окружности радиусом r.

Парабола - это геометрическое место точек, равноудаленных от неподвижной точки - фокуса F и неподвижной прямой - директрисы, перпендикулярной к оси симметрии параболы. Построение параболы по заданному отрезку ОО =АВ и хорде СD показано на рис.20

Прямые ОЕ и ОС разделены на одинаковое число равных частей. Дальнейшее построение ясно из чертежа.

Гипербола - геометрическое место точек, разность расстояний которых от двух неподвижных точек (фокусов) - есть величина постоянная. Представляет собой две разомкнутые, симметрично расположенные ветви.

Постоянные точки гиперболы F 1 и F 2 - это фокусы, а расстояние между ними называется фокусным. Отрезки прямых, соединяющие точки кривой с фокусами, называются радиус-векторами. Гипербола имеет две взаимно перпендикулярные оси - действительную и мнимую. Прямые, проходящие через центр пересечения осей, называются асимптотами.

Построение гиперболы по заданному фокусному расстоянию F 1 F 2 и углу α между асимптотами показано на рис.21. Проводится ось, на которой откладывается фокусное расстояние, которое делится пополам точкой О. Через точку О проводится окружность радиуса 0,5F 1 F 2 до пересечения в точках C, D, E, K. Соединяя точки C с D и E c K, получают точки А и В – вершины гиперболы. От точки F 1 влево отмечают произвольные точки 1, 2, 3… расстояния между которыми должны увеличиваться по мере удаления от фокуса. Из фокусных точек F 1 и F 2 радиусами R=B4 и r=A4 проводятся дуги до взаимного пересечения. Точки пересечения 4 являются точками гиперболы. Остальные точки строятся аналогично.

Синусоида - плоская кривая, выражающая закон изменения синуса угла в зависимости от изменения величины угла.

Построение синусоиды по заданному диаметру окружности d показано

на рис. 22.

Для ее построения делят данную окружность на 12 равных частей; на такое же число равных частей делится отрезок, равный длине данной окружности (2pR). Проводя через точки деления горизонтальные и вертикальные прямые, находят в пересечении их точки синусоиды.

Спираль Архимеда - э то плоская кривая, описываемая точкой, которая равномерно вращается вокруг заданного центра и вместе с тем равномерно удаляется от него.

Построение спирали Архимеда заданному диаметру окружности D показано на рис.23.

Окружность и радиус окружности поделен на 12 равных частей. Дальнейшее построение видно из чертежа.

При выполнении построении сопряжений и лекальных кривых приходится прибегать к простейшим геометрическим построениям - таким как деление окружности или прямой на несколько равных частей, деление угла и отрезка пополам, построение перпендикуляров, биссектрис и т.д. Все эти построения изучались в дисциплине «Черчение» школьного курса, поэтому подробно в данном пособии не рассматриваются.

1.5 Методические указания по выполнению