Микроворсинки животной клетки. Микроворсинки, реснички, межклеточные соединения. Строение клеточной стенки

Микроворсинка - вырост эукариотической (обычно животной) клетки, имеющий пальцевидную форму и содержащий внутри цитоскелет из актиновых микрофиламентов. Из микроворсинок состоит воротничок у клеток хоанофлагеллят и у воротничково-жгутиковых клеток губок и других многоклеточных животных. В организме человека микроворсинки имеют клетки эпителия тонкого кишечника, на которых микроворсинки формируют щеточную кайму, а также механорецепторы внутреннего уха - волосковые клетки. За упорядочение актинового цитоскелета микроворсинок отвечают вспомогательные белки, взаимодействующие с актином - фимбрин, спектрин, виллин и др. Микроворсинки также содержат цитоплазматический миозин нескольких разновидностей.

Органоиды: понятие, значение, классификация органоидов по распространенности.

Органоиды: понятие, значение, классификация органоидов по строению.

Органоиды: понятие, значение, классификация органоидов по функции.

Органоиды или органеллы - в цитологии постоянные структуры клеток. Каждый органоид осуществляет определённые функции, жизненно необходимые для клетки. Термин «Органоиды» объясняется сопоставлением этих компонентов клетки с органами многоклеточного организма. Органоиды противопоставляют временным включениям клетки, которые появляются и исчезают в процессе обмена веществ.

Классификация органоидов по распространенности:

Подразделяются на общие , характерные для различных клеток (ЭПС, рибосомы, лизосомы, митохондрии), и специальные (опорные нити тоно-фибрилы эпителиальных клеток), встречающиеся исключительно в клеточных элементах одного вида.

Классификация органоидов по строению:

Подразделяются на мембранные, в основе строения которых лежит биологическая мембрана, и немембранные (рибосомы, клеточный центр, микротрубочки).

Классификация органоидов по функции:

Синтетический аппарат (рибосомы, ЭПС, аппарат Гольджи)

Аппарат внутриклеточного переваривания (лизосома и пероксисома)

Энергетический аппарат (митохондрии)

Аппарат цитоскелета

Органоиды энергопроизводства: понятие, расположение, строение, значение.(см в 30 ответ)

Митохондрии: понятие, расположение в клетке, строение при световой и электронной микроскопии.

Митохондрия - двумембранная гранулярная или нитевидная органелла толщиной около 0,5 мкм.

Процесс энергообразования в митохондриях может быть разбит на четыре основные стадии, первые две из которых протекают в матриксе, а две последние - на кристах митохондрий:

1.Превращение поступивших из цитоплазмы в митохондрию пирувата и жирных кислот в ацетил-СоА;

2.Окисление ацетил-СоА в цикле Кребса, ведущее к образованию НАДН;

3.Перенос электронов с НАДН на кислород по дыхательной цепи;

4.Образование АТФ в результате деятельности мембранного АТФ-синтетазного комплекса.

Органоиды внутриклеточного переваривания: понятие, расположение, строение, значение(см в 32 и 33 ответ)

Лизосомы: понятие, строение, расположение, значение.

Лизосома - клеточный органоид размером 0,2 - 0,4 мкм, один из видов везикул. Эти одномембранные органоиды - часть вакуома (эндомембранной системы клетки)

Лизосомы формируются из пузырьков (везикул), отделяющихся от аппарата Гольджи, и пузырьков (эндосом), в которые попадают вещества при эндоцитозе. В образовании аутолизосом (аутофагосом) принимают участие мембраны эндоплазматического ретикулума. Все белки лизосом синтезируются на «сидячих» рибосомах на внешней стороне мембран эндоплазматического ретикулума и затем проходят через его полость и через аппарат Гольджи.

Функциями лизосом являются:

1.переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток)

2.аутофагия - уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки

3.автолиз - самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток). Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.

Пероксисомы: понятие, строение, расположение, значение.

Пероксисома - обязательная органелла эукариотической клетки, ограниченная мембраной, содержащая большое количество ферментов, катализирующих окислительно-восстановительные реакции (оксидазы D-аминокислот, уратоксидазы и каталазы). Имеет размер от 0,2 до 1,5 мкм, отделена от цитоплазмы одной мембраной.

Набор функций пероксисом различается в клетках разных типов. Среди них: окисление жирных кислот, фотодыхание, разрушение токсичных соединений, синтез желчных кислот, холестерина, а также эфиросодержащих липидов, построение миелиновой оболочки нервных волокон, метаболизме фитановой кислоты и т. д. Наряду с митохондриями пероксисомы являются главными потребителями O2 в клетке.

Органоиды синтеза: понятие, разновидности, расположение, строение, значение.(см в 35,36 и 37 ответ)

Рибосомы: понятие, строение, разновидности, значение.

Рибосома - важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 100-200 ангстрем, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.

В эукариотических клетках рибосомы располагаются на мембранах эндоплазматической сети, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой. Синтез рибосом у эукариот происходит в специальной внутриядерной структуре - ядрышке.

Эндоплазматическая сеть: понятие, строение, разновидности, значение.

Эндоплазматический ретикулум (ЭПР) или эндоплазматическая сеть (ЭПС) - внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев.

Выделяют два вида ЭПС:

Гранулярный эндоплазматический ретикулум;

Агранулярный (гладкий) эндоплазматический ретикулум.

Аппарат Гольджи: понятие, строение при световой и электронной миткроскопии, расположение.

Аппарат Гольджи (комплекс Гольджи) - мембранная структура эукариотической клетки, органелла, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме.

Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям, и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединённых трубками стопок.

Органоиды цитоскелета: понятие, разновидности, строение, значение.

Цитоскелет - это клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Он присутствует во всех клетках как у эукариот, так и у прокариот. Это динамичная, изменяющаяся структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление.Цитоскелет образован белками.

В цитоскелете выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты, промежуточные филаменты, микротрубочки), либо по основным белкам, входящим в их состав (актин-миозиновая система, кератины, тубулин-динеиновая система).

12,5 мкм. Функция микроворсинок пока не­известна.

Внутренние членики (сегменты) палочек имеют цилиндрическую форму. Гистологически различают две части внутреннего членика: эозинофильную наружную, называемую эллип­соидной частью, и внутреннюю базофильную, называемую миоидной частью (рис. 3.6.16- 3.6.19). Тинкториальные свойства этих двух об­ластей изменяются в зависимости от метаболи­ческой активности фоторецептора. Эллипсоид­ная часть окрашивается эозинофильно в связи с наличием в ней большого количества мито­хондрий. В одной палочке можно найти до 600 митохондрий. Цитоплазма также содержит гладкий эндоплазматический ретикулум, нейро-трубочки, свободные рибосомы и гранулы гли­когена. Базофилия миоидной части зависит от большой концентрации в ней свободных рибо­сом. Миоидная область является центром бел­кового синтеза. По этой причине в ней распола­гаются шероховатая эндоплазматическая сеть, аппарат Гольджи, микротрубочки, микрофила-менты и гранулы гликогена. Таким образом, основной функцией этой части фоторецептора является обеспечение метаболических и синте­тических функций клетки.

Наружные сегменты (членики) колбочек имеют различное строение в различных участках сетчатки. В области зубчатой линии и по пери­ферии сетчатки они короткие и конические, а в fovea centralis продолговатые, напоминают на­ружные сегменты палочек (рис. 3.6.16-3.6.18).

Ультраструктурными исследованиями уста­новлено, что наружный сегмент колбочки имеет больше дисков (1000-1200), чем наружный сегмент палочки. Междисковые пространства палочки более широкие (в колбочках - 3,5 мкм, в палочках- 16,5 мкм).

В отличие от дисков палочек диски колбо­чек соединены между собой и прикрепляются к плазматической мембране.

Внутренние сегменты (членики) колбо­чек. Наружные и внутренние членики колбочек связаны друг с другом посредством тонкого цитоплазматического перешейка, содержащего видоизмененную ресничку. Они изменяются в зависимости от их топографического располо­жения. В центральной ямке (fovea centralis) они более длинные и узкие. Ультраструктурная организация внутреннего сегмента палочек и колбочек одинаковая, за исключением того, что в колбочках значительно больше митохондрий (200-300 на срезе).



Наружная поверхность миоидной части па­лочек и колбочек покрыта волосоподобными цитоплазматическими отростками мюллеровс-ких клеток, формирующих «корзины Шульца». Благодаря этому никакого контакта между смежными клетками нет . Отростки мюл-леровских клеток участвуют также в регуля­ции состава внеклеточной среды фоторецепто-


ров и служат для жесткой пространственной фиксации палочек и колбочек.

Наружная пограничная мембрана. При све­товой микроскопии видно, что наружная погра­ничная мембрана (рис. 3.6.1) отделяет слой па­лочек и колбочек от подлежащего наружного ядерного слоя сетчатки. Она простирается от диска зрительного нерва до зубчатой линии, где превращается в базальную пластинку, распо­ложенную между пигментированными и бес­пигментными частями ресничного эпителия. Наружная пограничная мембрана представляет собой не что иное, как скопление в одной плос­кости терминальных пластинок (zonulae adhe-rentes), расположенных между мюллеровскими клетками и фоторецепторами, между смежны­ми мюллеровскими клетками и, редко, между соседними фоторецепторами.

Наружная пограничная мембрана, таким об­разом, не является истинной мембраной. Через нее проходят небольшие молекулы. Главной функцией мембраны является обеспечение функционирования избирательного барьера на пути питательных веществ, которые проходят между рядом расположенными мюллеровскими клетками, а также стабилизация положения фоторецепторов.

Наружный ядерный слой. Наружный ядер­ный слой находится кнутри от наружной погра­ничной мембраны и содержит тела и ядра фото-рецепторных клеток (рис. 3.6.1). В зависимости от участка сетчатки ширина этого слоя изме­няется, прежде всего, из-за изменения числа рядов ядер.

С назальной стороны диска наружный ядер­ный слой имеет толщину 45 мкм и состоит из 8-9 рядов ядер. С височной стороны он состо­ит только из четырех рядов ядер, истончаясь до 22 мкм. В желтом пятне наличие 10 рядов ядер колбочек увеличивают ширину наружного ядер­ного слоя до 50 мкм. В области зубчатой линии наружный ядерный слой состоит только из од­ного слоя ядер колбочковых клеток, которые плотно прилежат к наружной пограничной мем­бране и четырем рядам ядер палочек, располо­женным кнутри от них. Толщина ядерного слоя при этом приблизительно 27 мкм.

Ядра колбочек овальные и имеют диаметр 5-7 мкм. Расположены они на 3-4 мкм кнут­ри от наружной пограничной мембраны. Ядра палочек также овальные, диаметром 5,5 мкм.

Цитоплазма обоих типов клеток скудная. Тела палочек и колбочек окрашиваются по-раз­ному. При использовании метода Унна тело палочек не окрашивается, а колбочки окраши­ваются в интенсивно синий цвет. Используя трехцветный метод Маллори, после фиксации сетчатки жидкостью Ценкера можно четко диф­ференцировать центральную ямку. Централь­ная ямка окрашена в интенсивно красный цвет. Это связано с тем, что методом Маллори окра­шиваются только колбочки.


Сетчатка

Наружный сетчатый (плексиформный) слой (рис. 3.6.1) является местом соединения первого и второго нейронов, т. е. местом пере­дачи информации от первого нейрона (фоторе­цептора) второму (биполярной клетке). Помимо указанных клеток в нем располагаются ассо­циативные нейроны (горизонтальная клетка).

Две трети слоя состоит из внутренних воло­кон фоторецепторов, окруженных отростками мюллеровских клеток. Треть слоя состоит из дендритов биполярных и горизонтальных кле­ток, а также отростков мюллеровских клеток. Наружный плексиформный слой наиболее тол­стый в области желтого пятна (51 нм). Состоит он из косо идущих волокон, отклоняющихся от желтого пятна. Этот слой также известен как слой волокон Хенле.

Внутренние волокна в наружном плексифор-мном слое представляют собой аксоны палочек и колбочек. Диаметр аксона палочки приблизи­тельно в четыре раза больше, чем у колбочки. Они содержат типичные органоиды - единич­ные митохондрии, немного свободных рибосом, гладкий эндоплазматический ретикулум, гра­нулы гликогена и плотно упакованные микро­трубочки.

Синаптическая связь палочек со вторым нейроном происходит при помощи овальных расширений цитоплазмы диаметром 1 мкм. На­зываются они сферулами.

Синапсы колбочек отличаются. Эти отли­чия сводятся к тому, что колбочки образуют так называемую «ножку», т. е. ножкоподобное утолщение окончания цитоплазматического от­ростка колбочки. «Ножка» больше, чем сфе-рула (7-8 мкм в парафовеолярной области и 5 мкм в области фовеа). Теперь мы более под­робно остановимся на синаптических связях этого слоя.

Синапсы палочек. Синаптический комплекс палочек состоит из указанной выше пресинап-тической сферулы, синаптической ленты и постсинаптических отростков, принадлежащих горизонтальным или биполярным клеткам (рис. 3.6.20-3.6.23). Сферулы содержат много­численные пресинаптические пузырьки, а так­же митохондрии и нейротрубочки. Плотность пре- и постсинаптической мембраны увеличи­вается вблизи синаптической щели (ширина синаптической щели 15 мкм). Перпендикуляр, проходящий через пресинаптическую мембра­ну, называется синаптической лентой, состоя­щей из трех электронноплотных слоев, каждый из которых имеет толщину 12 мкм. Отделяется она светлой зоной, имеющей толщину 40 мкм, и окружена ореолом пузырьков. Сферулы па­лочек содержат только две синаптические лен­ты, которые ассоциируются с двумя боковыми элементами, являющимися терминалами аксо­нов горизонтальных клеток, и двумя дендри-тами биполярных клеток палочек (рис. 3.6.22).


С одной сферулой палочки может входить в контакт несколько различных горизонтальных клеток (1-4 клетки). Различают два основных типа контактов - с телодендритами горизон­тальной клетки и дендритом биполярной клет­ки. Каждая сферула входит в контакт с 4 би­полярными клетками. В то же время каждая биполярная клетка контактирует с 50 палочка­ми (вне фовеолы) и с несколькими сотнями палочек по периферии сетчатки .

Эти различия в характере межнейронных связей соответствуют различиям в разрешаю­щей способности зрительной системы.

Синапсы колбочек. «Ножка» колбочки пира­мидальной формы. Синаптические вдавления на «ножке» объединяют одновременно три нейро­на, контактирующие в то же самое время и между собой. Подобная структура получила на­звание «триада» (рис. 3.6.20, 3.6.21). Центральный аксон триады принадле-

Рис. 3.6.20. Ультраструктурные особенности сферул палочек (а) и «ножек» колбочек (б) (по Kolb, 1998):

НПС - наружный плексиформный слой; ГК-горизонтальная клетка; БК-биполярная клетка палочки; ИБК-инвагинирую-щая биполярная клетка; ПБК - плоская биполярная клетка

Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА

Палочки («сферулы»)

Рис. 3.6.21. Схематическое изображение синаптичес-ких тел палочки и колбочки:

/ - палочковые биполярные клетки; 2 - карликовая биполяр­ная клетка; 3 - плоская биполярная клетка; 4 - горизонталь­ная клетка. Отмечается наличие контакта между сферулой палочки и «ножкой» колбочки. Синаптические тела палочки и колбочки соединяются непосредственно, а также при помощи горизонтальной клетки

Рис. 3.6.22. Электроннограмма сферулы палочки:

/ - латеральные отростки горизонтальной клетки; 2 - отростки

биполярной клетки; 3 - синаптические пузырьки; 4 - синапти-

ческая лента

жит биполярной клетке. Это аксон может вхо­дить в контакт с той же самой колбочкой в 10-25 различных точках . Два ден­дрита с обеих сторон триады исходят из раз­личных горизонтальных клеток. Хотя только одна биполярная клетка входит в контакт с одной «ножкой» колбочки, контакт существует со многими горизонтальными клетками, число которых обычно б-8. Такая «ножка» имеет также множество маленьких поверхностных вдавлений (так называемых базальных соеди-


Рис. 3.6.23. Особенности синаптических связей пало­чек и колбочек с биполярными клетками и биполяр­ных клеток с ганглиозными:

видно, что одна биполярная клетка получает информацию от нескольких палочковых фоторецепторов и только от одной кол­бочки

нений), контактирующих с плоской диффуз­ной биполярной клеткой . По­добный тип синапсов биполярных клеток фор­мируется сразу с шестью колбочками . Базальные соединения представляют собой классические эксцитаторные (возбуждающие) синапсы и функционируют подобно щелевым контактам.

Присутствие многочисленных десмосом между отростками клеток наружного плекси-формного слоя (десмосомы) препятствует сво­бодному распространению в сетчатке метаболи­тов, жидкостей и экссудата.

Помимо биполярных и горизонтальных кле­ток, фоторецепторы контактируют и между со­бой. Палочки контактируют с палочками и кол­бочками. Происходит это благодаря так назы­ваемым щелевым контактам. От «ножки» кол­бочки отходят тонкие отростки, которые под­ходят к сферулам палочек и «ножкам» других колбочек. В тех местах, где эти отростки (на­зываемые телодендритами) образуют щелевой контакт, формируется «электрический кон­такт», т. е. происходит передача информации без использования нейротрансмиттера . 3-5 подобных контактов определя­ется на одной сферуле палочки, образованной телодендритами колбочки. Одна «ножка» кол­бочки может иметь до 10 контактов с соседни­ми палочками. «Ножки» S-колбочек («синих») не содержат такого большого количества кон­тактов . По этой причине S-колбочки до­вольно изолированы.


Сетчатка

Функциональное значение прямой электри­ческой связи между различными типами фото­рецепторов не совсем понятно. Первоначально многие исследователи предполагали, что такие связи разрушают пространственную интегра­цию фоторецепторов и соответственно воз­можность анализа функционирования цвето­вого зрения, «смешивая» информацию, полу­чаемую от палочек и колбочек. Тем не менее на основании многочисленных физиологических экспериментов установлено, что колбочки бла­годаря этим связям могут нести информацию палочек. Это, при определенных условиях, мо­жет иметь большое физиологическое значение . При этом изучены интим­ные механизмы этого процесса, правда, с ис­пользованием экспериментальных животных.

Внутренний ядерный слой. Внутренний ядерный слой состоит из 8-12 рядов плотно упакованных ядер биполярных, горизонталь­ных, амакриновых, межплексиформных и мюл-леровских клеток. При световой микроскопии можно различить четыре слоя, преимуществен­но содержащих тот или иной клеточный тип:

1. Слой горизонтальных клеток (наиболее
наружный).

2. Слой биполярных клеток (наружный про­
межуточный слой).

3. Слой мюллеровских клеток (внутренний
промежуточный).

4. Слой амакриновых и межплексиформных
клеток (самый внутренний).

Горизонтальные клетки (рис. 3.6.24- 3.6.25; 3.6.26, см. цв. вкл.). Отростки горизон-

Рис. 3.6.24. Особенности строения тел и дендритного поля различных типов горизонтальных клеток чело­века. Световая микроскопия (импрегнация серебром) (по Kolb, 1998)


Рис. 3.6.25. Схематическое изображение различных типов горизонтальных клеток:

а - горизонтальная клетка, контактирующая с колбочковым фоторецептором; б -горизонтальная клетка, контактирующая с палочковым фоторецептором; s - схематическое изображение характера контакта горизонтальных клеток различного типа в плоскости сетчатки

тальных клеток, в отличие от биполярных, об­разуют сеть, расположенную в горизонталь­ной плоскости и объединяющую фоторецепто­ры различных участков сетчатки.

Наибольшее количество горизонтальных клеток в области центральной ямки. Постепен­но по мере продвижения к периферии сетчатки их число снижается. Горизонтальные клетки имеют короткие отростки, а аксон не ветвит­ся вблизи тела клетки (на протяжении 200- 300 мкм). Длина аксона может достигать 2 мм.

В зависимости от размера клетки, особенно­стей строения синапсов между дендритами и аксонами, а также площади дендритного поля различают три типа горизонтальных клеток. Обозначаются они как клетки типов HI, НИ

Микроворсинки, специализированные выросты плазматической мембраны эпителиальных клеток у животных и человека. Длина М. 500-3000 нм, диаметр 50-100 нм. Количество М. в одной клетке достигает нескольких тыс. Иногда расположение их упорядочено, например, в исчерченных (щёточных) каёмках эпителиальных клеток тонкого кишечника (рис. ) М. находятся на расстоянии около 20 нм друг от друга. Служат для увеличения клеточной поверхности. Из М. состоят и кутикулы у позвоночных животных.

Щёточная каёмка эпителия тонкой кишки обезьяны: равномерное распределение микроворсинок (электронная микрофотограмма).

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978

Читайте также в БСЭ:

Микроглия
Микроглия, мезоглия (от микро... или мезо... и греч. glía - клей), мелкие округлые клетки в центральной нервной системе. Развиваются из клеток соединительной ткани и составляют ок...

Микроинтерферометр
Микроинтерферометр, прибор, применяемый для измерений неровностей на наружных поверхностях с направленными следами механической обработки, а также для определения толщины плёнок, величин...

Микроканонический ансамбль
Микроканонический ансамбль, статистический ансамбль для изолированных (не обменивающихся энергией с окружающими телами) макроскопических систем в постоянном объёме при постоянном числе ч...

Органеллы спец. назначения – это постоянно присутствующие и обязательные для отдельных клеток микроструктуры , выполняющие особые функции, которые обеспечивают специализацию ткани и органа . К ним относят: реснички, жгутики, микроворсинки, миофибриллы.

Реснички и жгутики – это специальные органеллы движения, встречающиеся в некоторых клетках различных организмов. Ресничка представляет собой цилиндрический вырост цитоплазмы. Внутри выроста располагается аксонема (осевая нить) , проксимальная часть реснички(базальное тело) погружена в цитоплазму. Систему микротрубочек реснички описывают по формуле – (9х2) + 2. Основной белок реснички- тубулин.

Тонофибриллы - тонкие белковые волокна, обеспечивающие сохранность формы в некоторых эпителиальных клетках.Тонофибриллы обеспечивают механическую прочность клеток.

Миофибриллы - это органеллы клеток поперечнополосатых мышц, обеспечивающие их сокращение. Служат для сокращений мышечных волокон. Миофибрилла - это нитевидная структура, состоящая из саркомеров. Каждый саркомер имеет длину около 2 мкм и содержит два типа белковых филаментов: тонкие микрофиламенты из актина и толстые филаменты из миозина. Границы между филаментами (Z-диски) состоят из особых белков, к которым крепятся ±концы актиновых филаментов. Миозиновые филаменты также крепятся к границам саркомера с помощью нитей из белка титина (тайтина). С актиновыми филаментами связаны вспомогательные белки - небулин и белки тропонин-тропомиозинового комплекса.

У человека толщина миофибрилл составляет 1-2 мкм, а их длина может достигать длины всей клетки (до нескольких сантиметров). Одна клетка содержит обычно несколько десятков миофибрилл, на их долю приходится до 2/3 сухой массы мышечных клеток.

Включения. Их классификация и морфо-функциональная характеристика.

Включения – это необязательные и непостоянные компоненты клетки, возникающие и исчезающие в зависимости от метаболического состояния клеток. Различают: трофические, секреторные, экскреторные, пигментные включения.

К трофическим относят капельки жиров., гликоген.

Секреторные вкл .- это округлые образования различных р-ров., содержащие БАВ.

Экскреторные вкл .- не содержат каких-либо ферментов. Это обычно продукты метаболизма, подлежащие удалению из кл.

Пигментные вкл.- могут быть экзогенными(каротин, пылевые частицы, красители) и эндогенными (гемоглобин, билирубин, меланин, липофусцин).

Ядро, его значение в жизнедеятельности кл. Основные компоненты ядра. Их структурно-функциональные характеристики. Ядерно-цитоплазматические отношения как показатель функционального состояния кл.

Ядро кл.- – это структура, обеспечивающая генетическую детерминацию, регуляцию белкового синтеза и выполнение других клеточных функций.


Структурные элементы ядра :1) хроматин; 2) ядрышко; 3) кариоплазма; 4) кариолемма.

Хроматин это вещество, хорошо воспринимающее краситель состоит из хроматиновых фибрилл, толщи­ной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. При подготовке клетки к делению в ядре происходят слирализация хроматиновых фи­брилл и превращение хроматина в хромосомы. После делания в Ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл Различают хроматин: ЭУХРОМАТИН – зоны полной деконденсации хромосом и их участков. Активные участки хромосом. ГЕТЕРОХРОМАТИН зоны конденсированного хроматина. Неактивные участки или целые хромосомы.ПОЛОВОЙ ХРОМАТИН – вторая неактивная Х хромосома в клетках женского организма.

По химическому строению хроматин состоит из:

1) дезоксирибонуклеиновой кислоты (ДНК);

2) белков;

3) рибонуклеиновой кислоты (РНК).

Ядрышко - сферическое образование (1-5 мкм в диаметре), хорошо воспринимающее основные кра­сители и располагающееся среди хроматина. Ядрышко не является самостоятельной структурой. Оно форми­руется только в интерфазе. В одном ядре содержится несколько ядрышек.

Микроскопически в ядрышке различают: 1) фибриллярный компонент (локализуется в цент­ральной части ядрышка и представляет собой нити рибонуклеопротеида); 2) гранулярный компонент (локализуется в перифе­рической части ядрышка и представляет собой Скопление субъединиц рибосом).Кириолемма – ядерная оболочка кот., отделяет содержимое ядра от цитоплазмы,обеспечивает регулируемый обмен веществ м/д ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.

Функции ядер соматических клеток :

1) хранение генетической информации, закодированной в молекулах ДНК;

2) репарация (восстановление) молекул ДНК повреждения с помощью специальных репаративных ферментов;

3)редупликация (удвоение) ДНК в синтетическом периоде интерфазы.

4) передача генетической информации дочерним клеткам во время митоза;

5) реализация генетической информации, закодиро­ванной в ДНК, для синтеза белка и небелковых мо­лекул: образование аппарата белкового синтеза (информационной, рибрсомальной и транспорт­ных РНК).

Функции ядер половых клеток:

1) хранение генетической информации;

2) передача генетической информации при слиянии женских и мужских половых кл.

В организме млекопитающих и человека различают следующие типы клеток:

1) часто делящиеся клетки клетки эпителия кишечника;

2) редко делящиеся клетки (клетки печени); .

3) неделящиеся клетки (нервные клетки). Жизненный цикл у этих клеточных типов различен. Клеточный цикл подразделяется на два основных

1) митоз, или период деления;

2) интерфазу - промежуток жизни клетки между дву­мя делениями.

Реснички и жгутики

Реснички и жгутики — органеллы специалъного значения, учасйвующие в процессах движения, — представляют собой выросты цитоплазмы, основу которых составляет картс из микротрубочек, называемй осевой нитью, или аксонемой (от греч. axis — ось и nema — нить). Длина ресничек равна 2-10 мкм, а их количество на поверхности одной реснитчатой клетки может достигать нескольких сотен. В единственном типе клеток человека, имеюпщх жгутик – спермиях – содержится только по одному жгутику длиноп 50-70 мкм. Аксонема образована 9 периферическими парами микротрубочек одной центрально расположенной парой; такое строение описьшается формулой (9 х 2) + 2 (рис. 3-16). Внутри каждой периферической пары за счет частичного слияния микротрубочек одна из них (А) полная, вторая (В) – неполная (2-3 димера обшие с микротрубочкой А).

Центральная пара микротрубочек окружена центральной оболоч-кой, от которой к периферическим дублетам расходятся радиальные сггицы- Периферические дублеты связаны друг с другом мостиками нексина, а от микротрубочки А к микротрубочке В соседнего дублета отходят "ручки" из белка динеина (см. рис. 3-16), который обладает активностью АТФазы.

Биение реснички и жгутика обусловлено скольжением соседних дублетов в аксонеме, которое опосредуется движением динеиновых ручек. Мутации, вызывающие изменения белков, входящих в состав ресничек и жгутиков, приводят к различным нарушениям функции соответствуюших клеток. При синдроме Картагенера (синдроме неподвижных ресничек), обычно обусловленном отсутствием динеиновых ручек; больные страдают хроническими заболеваниями дыхательной системы (связанными с нарушением функции очищения поверхности респираторного эпителия) и бесплодием (вследствие неподвижности спермиев).

Базальное тельце, по своему строению сходное с центриолью, лежит в основании каждой реснички или жгутика. На уровне апикального конца тельца микротрубочка С триплета заканчивается, а микротрубочки А и В продолжаются в соответствующие микротрубочки аксонемы реснички или жгутика. При развитии ресничек или жгутика базальное тельце играет роль матрицы, на которой поисходит сборка компонентов аксонемы.

Микрофиламенты — тонкие белковые нити диаметром 5-7 нм, лежащие в цитоплазме поодиночке, в виде септей или пучками. В скелетной мышце тонкие микрофиламенты образуют упорядоченные пучки, Взаимодействуя с более толстыми миозиновыми филаментами.

Кортикольноя (терминальная) сеть — зона сгущения микрофиламентов под плазмолеммой, характерная для болышнства клеток. В этой сети микрофиламенты переплетены между собой и "сшиты" друг с другом с помощью особых белков, самым распространенным из которых является филамин. Кортикальная сеть препятствует резкой и внезапной деформацш клетки при механических воздействиях и обеспечивает плавные изменения ее формы путем перестройки, которая облегчается актин-ростворяющими (преобразующими) ферментами.

Прикрепление микрофиламентов к плазмолемме осуществляется благодаря их связи с ее интегральными ("якорными") белками интегринами) — непосредственно или через ряд промежуточных белков талин, винкулин и α-актинин (см. рис. 10-9). Помимо этого, актиновые микрофиламенты прикрепляются к трансмембранным белкам в особых участках плазмолеммы, называемых адгезионными соединениями или, фокальными контактами, которые связывают клетки друг с другом или клетки с компонентами межклеточного вещества.

Актин — основной белок микроиламентов — встречается в мономерной форме (G-, или глобулярный актин), которая способна в присутствии цАМФ и Са2+ полимеризоваться в длишые цепи (F-, или фибриллярный актин). Обычно молекула актина имеет вид двух спирально скрученных нитей (см. рис. 10-9 и 13-5).

В микрофиламентах актин взаимодействует с рядом актин-связывающих белков (до нескольких десятков видов), выполняющих различные функции. Некоторые из них регулируют степень полимеризации актина, другие (например, филамин в кортикальной сети или фимбрин и виллин в микроворсинке) способствуют связьшанию отдельных микрофиламентов в системы. В немышечных клетках на актин приходится примерно 5-10% содержания белка, лишь около половины его организовано в филаменты. Микрофиламенты более устойчивы к физическим и химическим воздействиям, чем микротрубочки.

Функции микрофиламентов:

(1) обеспечение сократимости мышечных клеток (при взаимодействиис миозином);

(2) обеспечение функций, связанных с кортикальным слоем цитоплазмы и плазмолеммой (экзо- и эндоцитоз, образование псевдоподий и миграция клетки);

(3) перемещение внутри цитоплазмы органелл, транспортных пузырьков и других структур благодаря взаимодействию с некоторьай белками (минимиозином), связанными с поверхностью этих структур;

(4) обеспечение определенной жесткости клетки за счет наличия кортикальной сети, которая препятствует действию деформаций, но сама, перестраиваясь, способствует изменениям клеточной формы;

(5) формирование сократимой перетяжки при цитотомии, завершающей клеточное деление;

(6) образование основы ("каркаса") некоторых органелл (микроворсинок, стереоцилий);

(7) участие в организации структуры межклеточных соединений (опоясывающих десмосом).

Микроворсинки – пальцевидные выросты цитоплазмы клетки диаметром 0.1 мкм и длиной 1 мкм, основу которых образуют актиновые микрофиламенты. Микроворсинки обеспечивают многократное увеличение площади поверхности клетки, на которой происходит расщепление и всасывание веществ. На апикальной поверхности некоторых клеток, активно участвуюхщх в указанных процессах (в эпителии тонкой кишки и почечных канальцев) имеется до нескольких тысяч микроворсинок, образующих в совокупности щеточную каемку.

Рис. 3-17. Схема ультраструктурной организации микроворсинки. АМФ – актиновые микрофиламенты, АВ – аморфное вещество (апикальной части микроворсинки), Ф, В – фимбрин и виллин (белки, образующие поперечные сшивки в пучке АМФ), мм – молекулы минимиозина (прикрепляющие пучок АМФ к плазмолемме микроворсинки), ТС – терминальная сеть АМФ, С – спектриновые мостики (прикрепляют ТС к плазмолемме), МФ – миозиновые филаменты, ПФ – промежуточные филаменты, ГК – гликокаликс.

Каркас каждой микроворсинки образован пучком, содержащим около 40 микрофиламентов, лежащих вдоль ее длинной оси (рис. 3-17). В апикалъной части микроворсинки этот пучок закреплен в аморфном веществе. Его жесткость обусловлена поперечными сшивками из белков фимбрина и виллина, изнутри пучок прикрешюн к плазмолемме микроворсинки особыми белковыми мостиками (молекулами минимиозина. У основания микроворсинки микрофиламенты пучка вплетаются в терминальную сеть, среди элементов которой имеются миозиновые филаменты. Взаимодействие актиновых и миозиновых филаментов терминальной сети, вероятно, обусловливает тонус и конфигурацию микроворсинки.

Стереоцилии – видоизмененные длинные (в некоторых клетках – ветвяшиеся) микроворсинки – выявляются значительно реже, чем микроворсинки и, подобно последним, содержат пучок микрофиламентов.

⇐ Предыдущая123

Читайте также:

Микрофиламенты, микротрубочки и промежуточные филаменты как основные компоненты цитоскелета.

Актиновые микрофиламенты — структура, функции

Актиновые микрофиламенты представляют собой полимерные нитевидные образования диаметром 6-7 нм, состоящие из белка актина. Эти структуры обладают высокой динамичностью: на конце микрофиламента, обращенном к плазматической мембране (плюс-конец), идет полимеризация актина из его мономеров в цитоплазме, тогда как на противоположном (минус-конец) происходит деполимеризация.
Микрофиламенты , таким образом, обладают структурной полярностью: рост нити идет с плюс-конца, укорочение - с минус-конца.

Организация и функционирование актинового цитоскелета обеспечиваются целым рядом актинсвязывающих белков, которые регулируют процессы полимеризации -деполимеризации микрофиламентов, связывают их друг с другом и придают контрактильные свойства.

Среди таких белков особое значение имеют миозины.

Взаимодействие одного из их семейства - миозина II с актином лежит в основе мышечного сокращения, а в немышечных клетках придает актиновым микрофиламентам контрактильные свойства - способность к механическому напряжению. Эта способность играет исключительно важную роль во всех адгезионных взаимодействиях.

Формирование новых актиновых микрофиламентов в клетке происходит путем их ответвления от предшествующих нитей.

Чтобы новый микрофиламент смог образоваться, необходима своеобразная «затравка». В ее формировании ключевую роль играет белковый комплекс Аф 2/3, включающий два белка, весьма сходных с актиновыми мономерами.

Будучи активированным , комплекс Аф 2/3 прикрепляется к боковой стороне предсуществующего актинового микрофиламента и изменяет свою конфигурацию, приобретая способность присоединить к себе еще один мономер актина.

Так возникает «затравка», инициирующая быстрый рост нового микрофиламента, отходящего в виде ответвления от боковой стороны старой нити под углом около 70°, тем самым в клетке формируется разветвленная сеть новых микрофиламентов.

Рост отдельных нитей вскоре заканчивается, нить разбирается на отдельные АДФ-содержащие мономеры актина, которые после замены в них АДФ на АТФ вновь вступают в реакцию полимеризации.

Актиновый цитоскелет играет ключевую роль в прикреплении клеток к внеклеточному матриксу и друг к другу, в формировании псевдоподий, с помощью которых клетки могут распластываться и направленно перемещаться.

— Вернуться в раздел « онкология»

  1. Метилирование генов-супрессоров как причина гемобластозов — опухолей крови
  2. Теломераза — синтез, функции
  3. Теломера — молекулярная структура
  4. Что такое теломерный эффект положения?
  5. Альтернативные способы удлинения теломер у человека — иммортализация
  6. Значение теломеразы в диагностике опухолей
  7. Методы лечения рака влиянием на теломеры и теломеразу
  8. Теломеризация клеток — не ведет к злокачественной трансформации
  9. Адгезия клеток — последствия нарушения адгезивных взаимодействий
  10. Актиновые микрофиламенты — структура, функции

Микрофиламенты (тонкие филаменты) - компонент цитоскелета эукариотических клеток. Они тоньше микротрубочек и по строению представляют собой тонкие белковые нити диаметром около 6 нм.

Основным белком, входящим в их состав, является актин . Также в клетках может встречаться миозин. В связке актин и миозин обеспечивают движение, хотя в клетке это может делать и один актин (например, в микроворсинках).

Каждый микрофиламент представляет собой две перекрученные цепочки, каждая из которых состоит из молекул актина и других белков в меньших количествах.

В некоторых клетках микрофиламенты образуют пучки под цитоплазматической мембраной, разделяют подвижную и неподвижную часть цитоплазмы, участвуют в эндо- и экзоцитозе.

Также функциями являются обеспечение движения всей клетки, ее компонентов и др.

Промежуточные филаменты (встречаются не во всех клетках эукариот, их нет у ряда групп животных и всех растений) отличаются от микрофиламентов большей толщиной, которая составляет около 10 нм.

Микрофиламенты, их состав и функции

Они могут строиться и разрушаться с любого конца, в то время как тонкие филаменты полярны, их сборка идет с «плюс»-конца, а разборка - с «минус» (также как у микротрубочек).

Существуют различные типы промежуточных филаментов (отличаются по белковому составу), один из которых содержится в клеточном ядре.

Белковые нити, формирующие промежуточный филамент, антипараллельны.

Этим объясняется отсутствие полярности. На концах филамента находятся глобулярные белки.

Образуют своеобразное сплетение около ядра и расходятся к периферии клетки. Обеспечивают клетке возможность противостоять механическим нагрузкам.

Основной белок- актин.

Актиновые микрофиламенты.

Микрофиламенты в общем.

Встречаются во всех клетках эукариот.

Расположение

Микрофиламенты образуют пучки в цитоплазме подвижных клеток животных и образую кортикальный слой (под плазматической мембраной).

Основной белок- актин.

  • Неоднородный белок
  • Встречается в разных изоформах, кодируется разными генами

У млекопитающих 6 актинов: один в скелетных мышцах, один –в сердечной, два типа в гладких, два немышечных (цитоплазматических) актина=универсальный компонент любых клеток млекопитающих.

Все изоформы близки по аминокислотным последовательностям, вариантны лишь концевые участки.(они определяют скорость полимеризации, НЕ влияют на сокращение)

Свойства актина:

  • М=42 тыс;
  • в мономерной форме имеет вид глобулы, содержащей молекулу АТФ (G-актин);
  • полимеризация актина => тонкая фибрилла (F-актин, представляет пологую спиральную ленту);
  • актиновые МФ полярны по своим свойствам;
  • при достаточной концентрации G-актин начинает самопроизвольно полимеризоваться;
  • очень динамические структуры, которые легко разбираются и собираются.

При полимеризации (+) конец нити микрофиламента быстро связывается с G-актином => растет быстрее

(–) конца.

Малая концентрация G-актина=> F-актин начинает разбираться.

Критическая концентрация G-актина=>динамическое равновесие (микрофиламент имеет постоянную длину)

На растущий конец прикрпеляются мономеры с АТФ, в процессе полимеризации происходит гидролиз АТФ, мономеры стаются связанными с АДФ.

Молекулы актина+атф прочнее взаимодействуют друг с другом, чем мономеры, связанные с АДФ.

Стабильность фибриллярной системы поддерживается:

  • белком тропомиозином (придает жесткость);
  • филамином и альфа-актинином.

Микрофиламенты

Образуют поперечные скрепки между нитями f-актина=>сложная трехмерная сеть(придает гелеобразное состояние цитоплазме);

  • Белки, прикрепляющиеся к концам фибрилл, предотвращающие разборку;
  • Фимбрин (связывают филаменты в пучки);
  • Комплекс с миозинами= акто-миозиновый комплекс, способный к сокращению при расщеплении АТФ.

Функции микрофиламентов в немышечных клетках:

Быть частью сократительного аппарата;