Первая нервная система появилась у. Впервые нервные клетки появляются у кишечнополостных. Они образуют в эктодерме примитивную диффузную нервную систему рассеянное нервное сплетение или. Нервы, нервные волокна и ганглии

В организме человека работа всех его органов тесно связана между собой, и поэтому организм функционирует как единое целое. Согласованность функций внутренних органов обеспечивает нервная система, которая, кроме того, осуществляет связь организма как целого с внешней средой и контролирует работу каждого органа.

Различают центральную нервную систему (головной и спинной мозг) и периферическую, представленную отходящими от головного и спинного мозга нервами и другими элементами, лежащими вне спинного и головного мозга. Вся нервная система подразделяется на соматическую и вегетативную (или автономную). Соматическая нервная система осуществляет преимущественно связь организма с внешней средой: восприятие раздражений, регуляцию движений поперечно-полосатой мускулатуры скелета и др., вегетативная - регулирует обмен веществ и работу внутренних органов: биение сердца, перистальтические сокращения кишечника, секрецию различных желез и т. п. Обе они функционируют в тесном взаимодействии, однако вегетативная нервная система обладает некоторой самостоятельностью (автономностью), управляя многими непроизвольными функциями.

На разрезе мозга видно, что он состоит из серого и белого вещества. Серое вещество представляет собою скопление нейронов и их коротких отростков. В спинном мозге оно находится в центре, окружая спинно-мозговой канал. В головном мозге, наоборот, серое вещество расположено по его поверхности, образуя кору и отдельные скопления, получившие название ядер, сосредоточенных в белом веществе. Белое вещество находится под серым и составлено нервными волокнами, покрытыми оболочками. Нервные волокна, соединяясь, слагают нервные пучки, а несколько таких пучков образуют отдельные нервы. Нервы, по которым возбуждение передается из центральной нервной системы к органам, называются центробежными, а нервы, проводящие возбуждение с периферии в центральную нервную систему, называются центростремительными.

Головной и спинной мозг одет тремя оболочками: твердой, паутинной и сосудистой. Твердая - наружная, соединительнотканная, выстилает внутреннюю полость черепа и позвоночного канала. Паутинная расположена под твердой ~ это тонкая оболочка с небольшим количеством нервов и сосудов. Сосудистая оболочка сращена с мозгом, заходит в борозды и содержит много кровеносных сосудов. Между сосудистой и паутинной оболочками образуются полости, заполненные мозговой жидкостью.

В ответ на раздражение нервная ткань приходит в состояние возбуждения, которое представляет собой нервный процесс, вызывающий или усиливающий деятельность органа. Свойство нервной ткани передавать возбуждение называется проводимостью. Скорость проведения возбуждения значительна: от 0,5 до 100 м/с, поэтому между органами и системами быстро устанавливается взаимодействие, отвечающее потребностям организма. Возбуждение проводится по нервным волокнам изолированно и не переходит с одного волокна на другое, чему препятствуют оболочки, покрывающие нервные волокна.

Деятельность нервной системы носит рефлекторный характер. Ответная реакция на раздражение, осуществляемая нервной системой, называется рефлексом. Путь, по которому нервное возбуждение воспринимается и передается к рабочему органу, называется рефлекторной дугой. .Она состоит из пяти отделов: 1) рецепторов, воспринимающих раздражение; 2) чувствительного (центростремительного) нерва, передающего возбуждение к центру; 3) нервного центра, где происходит переключение возбуждения с чувствительных нейронов на двигательные; 4) двигательного (центробежного) нерва, несущего возбуждение от центральной нервной системы к рабочему органу; 5) рабочего органа, реагирующего на полученное раздражение.

Процесс торможения противоположен возбуждению: он прекращает деятельность, ослабляет или препятствует ее возникновению. Возбуждение в одних центрах нервной системы сопровождается торможением в других: нервные импульсы, поступающие в центральную нервную систему, могут задерживать те или иные рефлексы. Оба процесса - возбуждение и торможение - взаимосвязаны, что обеспечивает согласованную деятельность органов и всего организма в целом. Например, во время ходьбы чередуется сокращение мышц сгибателей и разгибателей: при возбуждении центра сгибания импульсы следуют к мышцам-сгибателям, одновременно с этим центр разгибания тормозится и не посылает импульсы к мышцам-разгибателям, вследствие чего последние расслабляются, и наоборот.

Спинной мозг находится в позвоночном канале и имеет вид белого тяжа, протянувшегося от затылочного отверстия до поясницы. По передней и задней поверхности спинного мозга расположены продольные борозды, в центре проходит спинно-мозговой канал, вокруг которого сосредоточено серое вещество - скопление огромного количества нервных клеток, образующих контур бабочки. По наружной поверхности тяжа спинного мозга расположено белое вещество - скопление пучков из длинных отростков нервных клеток.

В сером веществе различают передние, задние и боковые рога. В передних рогах залегают двигательные нейроны, в задних - вставочные, которые осуществляют связь между чувствительными и двигательными нейронами. Чувствительные нейроны лежат вне тяжа, в спинномозговых узлах по ходу чувствительных нервов.От двигательных нейронов передних рогов отходят длинные отростки - передние корешки, образующие двигательные нервные волокна. К задним рогам подходят аксоны чувствительных нейронов, формирующие задние корешки, которые поступают в спинной мозг и передают возбуждение с периферии в спинной мозг. Здесь возбуждение переключается на вставочный нейрон, а от него - на короткие отростки двигательного нейрона, с которого затем по аксону оно сообщается рабочему органу.

В межпозвоночных отверстиях двигательные и чувствительные корешки соединяются, образуя смешанные нервы, которые затем распадаются на передние и задние ветки. Каждая из них состоит из чувствительных и двигательных нервных волокон. Таким образом, на уровне каждого позвонка от спинного мозга в обе стороны отходит всего 31 пара спинно-мозговых нервов смешанного типа. Белое вещество спинного мозга образует проводящие пути, которые тянутся вдоль спинного мозга, соединяя как отдельные его сегменты друг с другом, так и спинной мозг с головным. Одни проводящие пути называются восходящими или чувствительными, передающими возбуждение в головной мозг, другие - нисходящими или двигательными, которые проводят импульсы от головного мозга к определенным сегментам спинного мозга.

Функция спинного мозга. Спинной мозг выполняет две функции - рефлекторную и проводниковую.

Каждый рефлекс осуществляется строго определенным участком центральной нервной системы - нервным центром. Нервным центром называют совокупность нервных клеток, расположенных в одном из отделов мозга и регулирующих деятельность какого-либо органа или системы. Например, центр коленного рефлекса находится в поясничном отделе спинного мозга, центр мочеиспускания - в крестцовом, а центр расширения зрачка - в верхнем грудном сегменте спинного мозга. Жизненно важный двигательный центр диафрагмы локализован в III-IV шейных сегментах. Другие центры - дыхательный, сосудодвигательный - расположены в продолговатом мозгу. В дальнейшем будут рассмотрены еще некоторые нервные центры, контролирующие те или иные стороны жизнедеятельности организма. Нервный центр состоит из множества вставочных нейронов. В нем перерабатывается информация, которая поступает с соответствующих рецепторов, и формируются импульсы, передающиеся на исполнительные органы- сердце, сосуды, скелетные мышцы, железы и т. д. В результате их функциональное состояние изменяется. Для регуляции рефлекса, его точности необходимо участие и высших отделов центральной нервной системы, включая кору головного мозга.

Нервные центры спинного мозга непосредственно связаны с рецепторами и исполнительными органами тела. Двигательные нейроны спинного мозга обеспечивают сокращение мышц туловища и конечностей, а также дыхательных мышц - диафрагмы и межреберных. Помимо двигательных центров скелетной мускулатуры, в спинном мозге находится ряд вегетативных центров.

Еще одна функция спинного мозга - проводниковая. Пучки нервных волокон, образующих белое вещество, соединяют различные отделы спинного мозга между собой и головной мозг со спинным. Различают восходящие пути, несущие импульсы к головному мозгу, и нисходящие, несущие импульсы от головного мозга к спинному. По первым возбуждение, возникающее в рецепторах кожи, мышц, внутренних органов, проводится по спинномозговым нервам в задние корешки спинного мозга, воспринимается чувствительными нейронами спинно-мозговых узлов и отсюда направляется либо в задние рога спинного мозга, либо в составе белого вещества достигает ствола, а затем коры больших полушарий. Нисходящие пути проводят возбуждение от головного мозга к двигательным нейронам спинного мозга. Отсюда возбуждение по спинно-мозговым нервам передается к исполнительным органам.

Деятельность спинного мозга находится под контролем головного мозга, который регулирует спинно-мозговые рефлексы.

Головной мозг расположен в мозговом отделе черепа. Средняя его масса 1300-1400 г. После рождения человека рост мозга продолжается до 20 лет. Состоит он из пяти отделов: переднего (большие полушария), промежуточного, среднего" заднего и продолговатого мозга. Внутри головного мозга находятся четыре сообщающиеся между собой полости - мозговые желудочки. Они заполнены спинно-мозговой жидкостью. I и II желудочки расположены в больших полушариях, III - в промежуточном мозге, а IV - в продолговатом. Полушария (наиболее новая в эволюционном отношении часть) достигают у человека высокого развития, составляя 80% массы мозга. Филогенетически более древняя часть - ствол головного мозга. Ствол включает продолговатый мозг, мозговой (варолиев) мост, средний и промежуточный мозг. В белом веществе ствола залегают многочисленные ядра серого вещества. Ядра 12 пар черепно-мозговых нервов также лежат в стволе мозга. Стволовая часть мозга прикрыта полушариями головного мозга.

Продолговатый мозг- продолжение спинного и повторяет его строение: на передней и задней поверхности здесь также залегают борозды. Он состоит из белого вещества (проводящих пучков), где рассеяны скопления серого вещества - ядра, от которых берут начало черепные нервы - с IX по XII пару, в их числе языкоглоточный (IX пара), блуждающий (X пара), иннервирующий органы дыхания, кровообращения, пищеварения и другие системы, подъязычный (XII пара).. Вверху продолговатый мозг продолжается в утолщение - варолиев мост, а с боков отчего отходят нижние ножки мозжечка. Сверху и с боков почти весь продолговатый мозг прикрыт большими полушариями и мозжечком.

В сером веществе продолговатого мозга залегают жизненно важные центры, регулирующие сердечную деятельность, дыхание, глотание, осуществляющие защитные рефлексы (чихание, кашель, рвота, слезоотделение), секрецию слюны, желудочного и поджелудочного сока и др. Повреждение продолговатого мозга может быть причиной смерти вследствие прекращения сердечной деятельности и дыхания.

Задний мозг включает варолиев мост и мозжечок. Варолиев мост снизу ограничен продолговатым мозгом, сверху переходит в ножки мозга, боковые его отделы образуют средние ножки мозжечка. В веществе варолиева моста находятся ядра с V по VIII пары черепно-мозговых нервов (тройничный, отводящий, лицевой, слуховой).

Мозжечок расположен кзади от моста и продолговатого мозга. Поверхность его состоит из серого вещества (кора). Под корой мозжечка находится белое вещество, в котором имеются скопления серого вещества - ядра. Весь мозжечок представлен двумя полушариями, средней частью - червем и тремя парами ножек, образованных нервными волокнами, с помощью которых он связан с другими отделами головного мозга. Основная функция мозжечка - безусловнорефлекторная координация движений, определяющая их четкость, плавность и сохранение равновесия тела, а также поддержание тонуса мышц. Через спинной мозг по проводящим путям импульсы от мозжечка поступают к мышцам.

Контролирует деятельность мозжечка кора больших полушарий. Средний мозг расположен впереди варолиева моста, он представлен четверохолмием и ножками мозга. В центре его проходит узкий канал, (водопровод мозга), который соединяет III и IV желудочки. Мозговой водопровод окружен серым веществом, в котором лежат ядра III и IV пар черепно-мозговых нервов. В ножках мозга продолжаются проводящие пути от продолговатого мозга и; варолиева моста к большим полушариям. Средний мозг играет важную роль в регуляции тонуса и в осуществлении рефлексов, благодаря которым возможны стояние иходьба. Чувствительные ядра среднего мозга находятся в буграх четверохолмия: в верхних заключены ядра, связанные с органами зрения, в нижних - ядра, связанные с органами слуха. При их участии осуществляются ориентировочные рефлексы на свет и звук.

Промежуточный мозг занимает в стволе самое высокое положение и лежит кпереди от ножек мозга. Состоит из двух зрительных бугров, надбугорной, подбугорной области и коленчатых тел. По периферии промежуточного мозга находится белое вещество, а в его толще - ядра серого вещества. Зрительные бугры - главные подкорковые центры чувствительности: сюда по восходящим путям поступают импульсы со всех рецепторов тела, а отсюда - к коре больших полушарий. В подбугорной части (гипоталамус) находятся центры, совокупность которых представляет собой высший подкорковый центр вегетативной нервной системы, регулирующий обмен веществ в организме, теплоотдачу, постоянство внутренней среды. В передних отделах гипоталамуса располагаются парасимпатические центры, в задних - симпатические. В ядрах коленчатых тел сосредоточены подкорковые зрительные и слуховые центры.

К коленчатым телам направляется II пара черепно-мозговых нервов - зрительные. Ствол мозга связывают с окружающей средой и с органами тела черепно-мозговые нервы. По своему характеру они могут быть чувствительными (I, II, VIII пары), двигательными (III, IV, VI, XI, XII пары) и смешанными (V, VII, IX, Х пары).

Вегетативная нервная система. Центробежные нервные волокна делятся на соматические и вегетативные. Соматические проводят импульсы к скелетным поперечно-полосатым мышцам, вызывая их сокращение. Они берут начало от двигательных центров, расположенных в стволовой части головного мозга, в передних рогах всех сегментов спинного мозга и, не прерываясь, достигают исполнительных органов. Центробежные нервные волокна, идущие к внутренним органам и системам, ко всем тканям организма, называют вегетативными. Центробежные нейроны вегетативной нервной системы лежат вне головного и спинного мозга - в периферических нервных узлах - ганглиях. Отростки ганглиозных клеток заканчиваются в гладких мышцах, в сердечной мышце и в железах.

Функция вегетативной нервной системы заключается в регулировании физиологических процессов в организме, в обеспечении приспособления организма к меняющимся условиям среды.

Вегетативная нервная система не имеет своих особых чувствительных путей. Чувствительные импульсы от органов направляются по чувствительным волокнам, общим для соматической и вегетативной нервной системы. Регуляцию вегетативной нервной системы осуществляет кора больших полушарий головного мозга.

Вегетативная нервная система состоит из двух частей: симпатической и парасимпатической. Ядра симпатической нервной системы находятся в боковых рогах спинного мозга, от 1-го грудного до 3-го поясничного сегментов. Симпатические волокна покидают спинной мозг в составе передних корешков и входят затем в узлы, которые, соединяясь короткими пучками в цепь, образуют парный пограничный ствол, расположенный по обеим сторонам позвоночного столба. Далее из этих узлов нервы идут к органам, образуя сплетения. Импульсы, поступающие по симпатическим волокнам в органы, обеспечивают рефлекторную регуляцию их деятельности. Они усиливают и учащают сердечные сокращения, вызывают быстрое перераспределение крови путем сужения одних сосудов и расширения других.

Ядра парасимпатических нервов залегают в среднем, продолговатом отделах головного и крестцовом отделе спинного мозга. В отличие от симпатической нервной системы все парасимпатические нервы достигают периферических нервных узлов, расположенных во внутренних органах или на подступах к ним. Импульсы, проводимые этими нервами, вызывают ослабление и замедление сердечной деятельности, сужение венечных сосудов сердца и сосудов мозга, расширение сосудов слюнных и других пищеварительных желез, что стимулирует секрецию этих желез, усиливает сокращение мышц желудка и кишечника.

Большинство внутренних органов получает двойную вегетативную иннервацию, т. е. к ним подходят как симпатические, так и парасимпатические нервные волокна, которые функционируют в тесном взаимодействии, оказывая на органы противоположный эффект. Это имеет большое значение в приспособлении организма к постоянно меняющимся условиям среды.

Передний мозг состоит из сильно развитых полушарий и соединяющей их срединной части. Правое и левое полушария отделены друг от друга глубокой щелью на дне которой лежит мозолистое тело. Мозолистое тело соединяет оба полушария посредством длинных отростков нейронов, образующих проводящие пути. Полости полушарий представлены боковыми желудочками (I и II). Поверхность полушарий образована серым веществом или корой головного мозга, представленной нейронами и их отростками, под корой залегает белое вещество - проводящие пути. Проводящие пути соединяют отдельные центры в пределах одного полушария, либо правую и левую половины головного и спинного мозга или разные этажи центральной нервной системы. В белом веществе находятся также скопления нервных клеток, образующие подкорковые ядра серого вещества. Частью больших полушарий является обонятельный мозг с отходящей от него парой обонятельных нервов (I пара).

Общая поверхность коры полушарий составляет 2000 - 2500 см 2 , толщина ее - 2,5 - 3 мм. Кора включает более 14 млрд. нервных клеток, расположенных шестью слоями. У трехмесячного зародыша поверхность полушарий гладкая, но кора растет быстрее, чем мозговая коробка, поэтому кора образует складки - извилины, ограниченные бороздами; в них заключено около 70% поверхности коры. Борозды делят поверхность полушарий на доли. В каждом полушарии различают четыре доли: лобную, теменную, височную и затылочную, Самые глубокие борозды - центральные, отделяющие лобные доли от теменных, и боковые, которые отграничивают височные доли от остальных; теменно-затылочная борозда обособляет теменную долю от затылочной (рис. 85). Кпереди от центральной борозды в лобной доле находится передняя центральная извилина, позади нее - задняя центральная извилина. Нижняя поверхность полушарий и стволовая часть мозга называется основанием мозга.

Чтобы понять, как функционирует кора больших полушарий головного мозга, нужно вспомнить, что в организме человека имеется большое количество разнообразных высокоспециализированных рецепторов. Рецепторы способны улавливать самые незначительные изменения во внешней и внутренней среде.

Рецепторы, расположенные в коже, реагируют на изменения во внешней среде. В мышцах и сухожилиях находятся рецепторы, сигнализирующие в мозг о степени натяжения мышц, движениях суставов. Имеются рецепторы, реагирующие на изменения химического и газового состава крови, осмотического давления, температуры и др. В рецепторе раздражение преобразуется в нервные импульсы. По чувствительным нервным путям импульсы проводятся к соответствующим чувствительным зонам коры головного мозга, где и формируется специфическое ощущение - зрительное, обонятельное и др.

Функциональную систему, состоящую из рецептора, чувствительного проводящего пути и зоны коры, куда проецируется данный вид чувствительности, И. П. Павлов назвал анализатором.

Анализ и синтез полученной информации осуществляется в строго определенном участке - зоне коры больших полушарий. Важнейшие зоны коры - двигательная, чувствительная, зрительная, слуховая, обонятельная. Двигательная зона расположена в передней центральной извилине впереди центральной борозды лобной доли, зона кожно-мышечной чувствительности - позади центральной борозды, в задней центральной извилине теменной доли. Зрительная зона сосредоточена в затылочной доле, слуховая - в верхней височной извилине височной доли, а обонятельная и вкусовая зоны - в переднем отделе височной доли.

Деятельность анализаторов отражает в нашем сознании внешний материальный мир. Это дает возможность млекопитающим приспосабливаться к условиям среды путем изменения поведения. Человек, познавая природные явления, законы природы и создавая орудия тру да, активно изменяет внешнюю среду, приспосабливая ее к своим потребностям.

В коре головного мозга осуществляется множество нервных процессов. Их назначение двояко: взаимодействие организма с внешней средой (поведенческие реакции) и объединение функций организма, нервная регуляция всех органов. Деятельность коры головного мозга человека и высших животных определена И. П. Павловым как высшая нервная деятельность, представляющая собой условнорефлекторную функцию коры головного мозга. Еще раньше основные положения о рефлекторной деятельности мозга были высказаны И. М. Сеченовым в его работе "Рефлексы головного мозга". Однако современное представление о высшей нервной деятельности создал И. П. Павлов, который, исследуя условные рефлексы, обосновал механизмы приспособления организма к изменяющимся условиям внешней среды.

Условные рефлексы вырабатываются в течение индивидуальной жизни животных и человека. Поэтому условные рефлексы строго индивидуальны: у одних особей они могут быть, у других отсутствуют. Для возникновения таких рефлексов необходимо совпадение во времени действия условного раздражителя с действием безусловного. Лишь многократное совпадение этих двух раздражителей приводит к образованию временной связи между двумя центрами. По определению И. П. Павлова, рефлексы, приобретаемые организмом в течение его жизни и возникающие в результате сочетания безразличных раздражителей с безусловными, называются условными.

У человека и млекопитающих новые условные рефлексы формируются в течение всей жизни, они замыкаются в коре головного мозга и носят временный характер, так как представляют временные связи организма с условиями среды, в которых он находится. Условные рефлексы у млекопитающих и человека вырабатываются очень сложно, так как охватывают целый комплекс раздражителей. В этом случае возникают связи между разными отделами коры, между корой и подкорковыми центрами и т. д. Рефлекторная дуга при этом значительно усложняется и включает рецепторы, воспринимающие условное раздражение, чувствительный нерв и соответствующий ему проводящий путь с подкорковыми центрами, участок коры, воспринимающий условное раздражение, второй участок, связанный с центром безусловного рефлекса, центр безусловного рефлекса, двигательный нерв, рабочий орган.

В течение индивидуальной жизни животного и человека бесчисленное множество образующихся условных рефлексов служит основой его поведения. Дрессировка животных также основана на выработке условных рефлексов, которые возникают в результате сочетания с безусловными (дача лакомств или поощрение лаской) при выполнении прыжков через горящее кольцо, поднятии на лапы и т. д. Дрессировка имеет значение в перевозке грузов (собаки, лошади), охране границ, на охоте (собаки) и т. д.

Различные раздражители внешней среды, действующие на организм, могут вызвать в коре не только образование условных рефлексов, но и их торможение. Если торможение возникает сразу при первом же действии раздражителя, его называют безусловным. При торможении подавление одного рефлекса создает условия для возникновения другого. Например, запах хищного животного тормозит поедание корма травоядным и вызывает ориентировочный рефлекс, при котором животное избегает встречи с хищником. В этом случае в отличие от безусловного у животного вырабатывается условное торможение. Оно возникает в коре полушарий в случае подкрепления условного рефлекса безусловным раздражителем и обеспечивает согласованное поведение животного в постоянно меняющихся условиях внешней среды, когда исключаются бесполезные или даже вредные реакции.

Высшая нервная деятельность. Поведение человека связано с условно-безусловной рефлекторной деятельностью. На основе безусловных рефлексов, начиная со второго месяца после рождения, у ребенка вырабатываются условные рефлексы: по мере его развития, общения с людьми и влияния внешней среды в больших полушариях головного мозга постоянно возникают временные связи между различными их центрами. Главное отличие высшей нервной деятельности человека - мышление и речь, которые появились в результате трудовой общественной деятельности. Благодаря слову возникают обобщенные понятия и представления, способность к логическому мышлению. Как раздражитель слово вызывает у человека большое количество условных рефлексов. На них базируются обучение, воспитание, выработка трудовых навыков, привычек.

Основываясь на развитии речевой функции у людей, И. П. Павлов создал учение о первой и второй сигнальных системах. Первая сигнальная система существует и у человека, и у животных. Эта система, центры которой находятся в коре головного мозга, воспринимает через рецепторы непосредственные, конкретные раздражители (сигналы) внешнего мира - предметы или явления. У человека они создают материальную основу для ощущений, представлений, восприятий, впечатлений об окружающей природе и общественной среде, и это составляет базу конкретного мышления. Но только у человека существует вторая сигнальная система, связанная с функцией речи, со словом слышимым (речь) и видимым (письмо).

Человек может отвлекаться от особенностей отдельных предметов и находить в них общие свойства, которые обобщаются в понятиях и объединяются тем или иным словом. Например, в слове "птицы" обобщены представители различных родов: ласточки, синицы, утки и многие другие. Подобным образом каждое другое слово выступает как обобщение. Для человека слово - это не только сочетание звуков или изображение букв, но прежде всего форма отображения материальных явлений и предметов окружающего мира в понятиях и мыслях. При помощи слов образуются общие понятия. Посредством слова передаются сигналы о конкретных раздражителях, и в этом случае слово служит принципиально новым раздражителем - сигналом сигналов.

При обобщении различных явлений человек открывает закономерные связи между ними - законы. Способность человека к обобщению составляет сущность отвлеченного мышления, которое отличает его от животных. Мышление - результат функции всей коры головного мозга. Вторая сигнальная система возникла в результате совместной трудовой деятельности людей, при которой речь стала средством общения между ними. На этой основе возникло и развивалось дальше словесное человеческое мышление. Головной мозг человека представляет собой центр мышления и связанный с мышлением центр речи.

Сон и его значение. Согласно учению И. П. Павлова и других отечественных ученых, сон - это глубокое охранительное торможение, предотвращающее переутомление и истощение нервных клеток. Он охватывает большие полушария, средний и промежуточный мозг. Во

время сна резко падает активность многих физиологических процессов, продолжают свою деятельность лишь отделы стволовой части головного мозга, регулирующие жизненно важные функции, - дыхание, сердцебиение, но и их функция снижена. Центр сна находится в гипоталамусе промежуточного мозга, в передних ядрах. Задние ядра гипоталамуса регулируют состояние пробуждения и бодрствования.

Засыпанию организма способствует монотонная речь, тихая музыка, общая тишина, темнота, тепло. При частичном сне некоторые "сторожевые" пункты коры остаются свободными от торможения: мать крепко спит при шуме, но ее будит малейший шорох ребенка; солдаты спят при грохоте орудий и даже на марше, но тотчас реагируют на приказы командира. Сон снижает возбудимость нервной системы, а следовательно, и восстанавливает ее функции.

Сон быстро наступает, если устраняются раздражители, препятствующие развитию торможения, такие, как громкая музыка, яркий свет и т. д.

С помощью ряда приемов, сохранив один возбужденный участок, у человека можно вызвать искусственное торможение в коре головного мозга (сноподобное состояние). Подобное состояние называется гипнозом. И. П. Павлов рассматривал его как частичное, ограниченное определенными зонами торможение коры. С наступлением наиболее глубокой фазы торможения слабые раздражители (например, слово) действуют эффективнее сильных (боль), наблюдается высокая внушаемость. Это состояние избирательного торможения коры используют в качестве лечебного приема, во время которого врач внушает больному, что необходимо исключить вредные факторы - курение и употребление алкоголя. Иногда гипноз может быть вызван сильным, необычным в данных условиях раздражителем. Это вызывает "оцепенение", временное обездвиживание, затаивание.

Сновидения. Как природа сна, так и сущность сновидений раскрыты на основе учения И. П. Павлова: во время бодрствования человека в мозгу преобладают процессы возбуждения, а при торможении всех участков коры развивается полный глубокий сон. При таком сне не бывает никаких сновидений. В случае неполного торможения отдельные незаторможенные мозговые клетки и участки коры вступают между собой в различные взаимодействия. В отличие от нормальных связей в бодрствующем состоянии они характеризуются причудливостью. Каждое сновидение есть более или менее яркое и сложное событие, картина, живой образ, периодически возникающие у спящего человека в результате деятельности клеток, которые остаются во время сна активными. По выражению И. М. Сеченова, "сновидения - небывалые комбинации бывалых впечатлений". Часто в содержание сна включаются внешние раздражения: тепло укрытый человек видит себя в жарких странах, охлаждение ног воспринимается им как хождение по земле, по снегу и т. д. Научный анализ сновидений с материалистических позиций показал полную несостоятельность предсказательного толкования "вещих снов".

Гигиена нервной системы. Функции нервной системы осуществляются путем уравновешивания возбудительных и тормозных процессов: возбуждение в одних пунктах сопровождается торможением в других. При этом в участках торможения восстанавливается работоспособность нервной ткани. Утомлению способствуют малая подвижность при умственной работе и однообразие - при физической. Утомление нервной системы ослабляет ее регулирующую функцию и может спровоцировать возникновение ряда болезней: сердечно-сосудистых, желудочно-кишечных, кожных и т. д.

Наиболее благоприятные условия для нормальной деятельности нервной системы создаются при правильном чередовании труда, активного отдыха и сна. Устранение физической усталости и нервного переутомления наступает при переключении с одного вида деятельности на другой, при котором нагрузку будут испытывать поочередно разные группы нервных клеток. В условиях высокой автоматизации производства профилактика переутомлений достигается личной активностью работника, его творческой заинтересованностью, регулярным чередованием моментов труда и отдыха.

Большой вред нервной системе приносит употребление алкоголя и курение.

Нервная система человека представлена:
■ головным и спинным мозгом (вместе они образуют центральную нервную систему );
■ нервами, нервными узлами и нервными окончаниями (образуют периферическую часть нервной системы ).

Функции нервной системы человека:

■ объединяет все части организма в единое целое (интеграция );

■ регулирует и согласует работу разных органов и систем (согласование );

■ осуществляет связь организма с внешней средой, его приспособление к условиям среды и выживание в этих условиях (отражение и адаптация );

■ обеспечивает (во взаимодействии с эндокринной системой) постоянство внутренней среды организма на относительно стабильном уровне (коррекция );

■ определяет сознание, мышление и речь человека, его целенаправленную поведенческую, психическую и творческую деятельность (деятельность ).

❖ Подразделение нервной системы по функциональным признакам:

соматическая (иннервирует кожу и мышцы; воспринимает воздействия внешней среды и вызывает сокращения скелетных мышц); подчиняется воле человека;

автономная , или вегетативная (регулирует обменные процессы, рост и размножение, работу сердца и сосудов, внутренних органов и желез внутренней секреции).

Спинной мозг

Спинной мозг находится в спинномозговом канале позвоночника, начинается от продолговатого мозга (вверху) и заканчивается на уровне второго поясничного позвонка. Представляет собой белый цилиндрический тяж (шнур) диаметром около 1 см и длиной 42-45 см. Спереди и сзади спинной мозг имеет две глубокие борозды, делящие его на правую и левую половины.

В продольном направлении спинного мозга можно выделить 31 сегмент , каждый из которых имеет два передних и два задних корешка , образованных аксонами нейронов; при этом все сегменты составляют единое целое.

Внутри спинного мозга находится серое вещество , имеющее (в сечении) характерную форму летящей бабочки, «крылья» которой образуют передние, задние и (в грудном отделе) боковые рога .

Серое вещество состоит из тел вставочных и двигательных нейронов. По оси серого вещества вдоль спинного мозга проходит узкий спинномозговой капал , заполненный спинномозговой жидкостью (см. ниже).

На периферии спинного мозга (вокруг серого вещества) находится белое вещество .

Белое вещество расположено в виде 6 столбов вокруг серого вещества (по два передних, боковых и задних).

Оно образовано аксонами, собранными в восходящие (находятся в задних и боковых столбах; передают возбуждение в головной мозг) и нисходящие (находятся в передних и боковых столбах; передают возбуждение от головного мозга к рабочим органам) проводящие пути спинного мозга.

Спинной мозг защищен гремя оболочками: твердой (из соединительной ткани, выстилающей позвоночный канал), паутинной (в виде тонкой сети; содержит нервы и сосуды) и мягкой , или сосудистой (содержит много сосудов; срастается с поверхностью мозга). Пространство между паутинной и мягкой оболочками заполнено спинномозговой жидкостью, которая обеспечивает оптимальные условия для жизнедеятельности нервных клеток и предохраняет спинной мозг от толчков и сотрясений.

В передних рогах сегментов спинного мозга (они расположены ближе к брюшной поверхности тела) находятся тела двигательных нейронов , от которых отходят их аксоны, образующие передние двигательные корешки , по которым возбуждение передается от мозга к рабочему органу (это самые длинные клетки человека, их длина может достигать 1,3 м).

В задних рогах сегментов находятся тела вставочных нейронов ; к ним подходят задние чувствительные корешки , образованные аксонами чувствительных нейронов, передающих возбуждение в спинной мозг. Тела этих нейронов находятся в спинномозговых узлах (ганглиях), расположенных вне спинного мозга по ходу чувствительных нейронов.

В грудном отделе имеются боковые рога , где расположены тела нейронов симпатической части автономной нервной системы.

За пределами позвоночного канала чувствительный и двигательный корешки, отходящие от заднего и переднего рогов одного «крыла» сегмента, объединяются, образуя (вместе с нервными волокнами автономной нервной системы) смешанный спинномозговой нерв , в котором находятся и центростремительные (чувствительные), и центробежные (двигательные) волокна (см. ниже).

❖ Функции спинного мозга осуществляются под контролем головного мозга.

Рефлекторная функция: через серое вещество спинного мозга проходят дуги безусловных рефлексов (они не затрагивают сознания человека), регулирующих работу внутренних органов, просвет сосудов, мочеиспускание, половые функции, сокращение диафрагмы, дефекацию, потоотделение, и управляющих скелетной мускулатурой; (примеры, коленный рефлекс: подъем ноги при ударе по сухожилию, прикрепленному к коленной чашечке; рефлекс отдергивания конечности: при действии болевого раздражителя происходит рефлекторное сокращение мышц и отдергивание конечности; рефлекс мочеиспускания: наполнение мочевого пузыря вызывает возбуждение рецепторов растяжения в его стенке, что приводит к расслаблению сфинктера, сокращению стенок мочевого пузыря и мочеиспусканию).

При разрыве спинного мозга выше дуги безусловного рефлекса данный рефлекс не испытывает регулирующего действия головного мозга и извращается (отклоняется от нормы, т.е. становится патологическим).

Проводниковая функция; проводящие пути белого вещества спинного мозга являются проводниками нервных импульсов: по восходящим путям нервные импульсы из серого вещества спинного мозга идут в головной мозг (нервные импульсы, идущие от чувствительных нейронов, сначала поступают в серое вещество тех или иных сегментов спинного мозга, где проходят предварительную обработку), а по нисходящим путям они идут от головного мозга в разные сегменты спинного мозга и оттуда по спинномозговым нервам — к органам.

У человека спинной мозг контролирует только простые двигательные акты; сложные движения (ходьба, письмо, трудовые навыки) осуществляются при обязательном участии головного мозга.

Паралич — утрата способности к произвольным движениям органов тела, возникающая при повреждении шейного отдела спинного мозга, влекущем нарушение связи головного мозга с органами тела, расположенными ниже места повреждения.

Спинальный шок — это возникающее при повреждениях позвоночника и нарушении связи между головным мозгом и нижележащими (по отношению к месту повреждения) отделами спинного мозга исчезновение всех рефлексов и произвольных движений органов тела, нервные центры которых лежат ниже места повреждения.

Нервы. Распространение нервного импульса

Нервы — это тяжи нервной ткани, связывающие мозг и нервные узлы с другими органами и тканями тела посредством передаваемых по ним нервных импульсов.

Нервы образуются из нескольких пучков нервных волокон (всего до 106 волокон) и небольшого числа тонких кровеносных сосудов, заключенных в общую соединительнотканную оболочку. По каждому нервному волокну нервный импульс распространяется изолированно, не переходя на другие волокна.

■ Большинство нервов смешанные ; в их состав входят волокна и чувствительных, и двигательных нейронов.

Нервное волокно — длинный (может иметь длину более 1 м) тонкий отросток нервной клетки (аксон ), сильно ветвящийся на самом конце; служит для передачи нервных импульсов.

Классификация нервных волокон в зависимости от строения: миелинизированные и немиелинизированные .

Миелинизированные нервные волокна покрыты миелиновой оболочкой. Миелиновая оболочка выполняет функции защиты, питания и изоляции нервных волокон. Она имеет белково-липидную природу и представляет собой плазмалемму шванновской клетки (названной по имени ее открывателя Т. Шванна, 1810- 1882), которая многократно (до 100 раз) оборачивается вокруг аксона; при этом цитоплазма, все органеллы и оболочка шванновской клетки сосредоточены на периферии оболочки над последним витком плазмалеммы. Между соседними шванновскими клетками находятся открытые участки аксона — перехваты Ранвье . Нервный импульс по такому волокну распространяется скачками от одного перехвата к другому с высокой скоростью — до 120 м/с.

Немиелинизированные нервные волокна покрыты только тонкой изолирующей и не содержащей миелина оболочкой. Скорость распространения нервного импульса по немиелинизирован-ному нервному волокну составляет 0,2-2 м/с.

Нервный импульс — это волна возбуждения, распространяющаяся по нервному волокну в ответ на раздражение нервной клетки.

■ Скорость распространения нервного импульса по волокну прямо пропорциональна квадратному корню из диаметра волокна.

Механизм распространения нервного импульса. Упрощенно нервное волокно (аксон) можно представить как длинную цилиндрическую трубку с поверхностной мембраной, разделяющей два водных раствора разного химического состава и концентрации. Мембрана имеет многочисленные клапаны, которые закрываются при усилении электрического поля (т.е. при увеличении разности его потенциалов) и открываются при его ослаблении. В открытом состоянии одни из этих клапанов пропускают ионы Na + , другие клапаны пропускают ионы К + , но все они не пропускают большие по размерам ионы органических молекул.

Каждый аксон представляет собой микроскопическую электростанцию, разделяя (посредством химических реакций) электрические заряды. Когда аксон не возбужден , внутри него имеется избыток (по сравнению с окружающей аксон средой) катионов калия (К +), а также отрицательные ионы (анионы) ряда органических молекул. Снаружи аксона имеются катионы натрия (Na +) и анионы хлора (С1 —), образующиеся вследствие диссоциации молекул NaCl. Анионы органических молекул концентрируются на внутренней поверхности мембраны, заряжая ее отрицательно , а катионы натрия — на ее внешней поверхности, заряжая ее положительно . В результате между внутренней и внешней поверхностями мембраны возникает электрическое поле, разность потенциалов (0,05 В) которого (потенциал покоя ) достаточно велика для того, чтобы клапаны мембраны были закрыты. Потенциал покоя впервые описал и измерил в 1848-1851 гг. немецкий физиолог Э.Г. Дюбуа-Реймон в опытах на мышцах лягушки.

При раздражении аксона плотность электрических зарядов на его поверхности уменьшается, электрическое поле ослабевает и приоткрываются мембранные клапаны, пропускающие катиону натрия Na + внутрь аксона. Эти катионы частично компенсируют отрицательный электрический заряд внутренней поверхности мембраны, в результате чего в месте раздражения направление поля меняется на противоположное. В процесс вовлекаются соседние участки мембраны, что дает начало распространению нервного импульса. В этот момент открываются клапаны, пропускающие наружу катионы калия К + , благодаря чему внутри аксона постепенно снова восстанавливается отрицательный заряд, а разность потенциалов между внутренней и внешней поверхностями мембраны достигает значения 0,05 В, характерного для невозбужденного аксона. Таким образом, по аксону распространяется фактически не электрический ток, а волна электрохимической реакции.

■ Форма и скорость распространения нервного импульса не зависят от степени раздражения нервного волокна. Если оно очень сильное, возникает целая серия одинаковых импульсов; если оно совсем слабое, импульс вообще не появляется. Т.е. существует некоторая минимальная «пороговая» степень раздражения, ниже которой импульс не возбуждается .

Импульсы, поступающие в нейрон по нервному волокну от какого-либо рецептора, различаются только по числу сигналов в серии. А значит, нейрону достаточно лишь сосчитать количество таких сигналов в одной серии и в соответствии с «правилами», как следует реагировать на данное число последовательных сигналов, послать нужную команду тому или иному органу.

Спинномозговые нервы

Каждый спинномозговой нерв формируется из двух корешков , отходящих от спинного мозга: переднего (эфферентного) корешка и заднего (афферентного) корешка, которые соединяются в межпозвоночных отверстиях, образуя смешанные нервы (содержат двигательные, чувствительные и симпатические нервные волокна).

■ У человека насчитывается 31 пара спинномозговых нервов (по числу сегментов спинного мозга), отходящих справа и слева от каждого сегмента.

Функции спинномозговых нервов:

■ они обусловливают чувствительность кожи верхних и нижних конечностей, груди, живота;

■ осуществляют передачу нервных импульсов, обеспечивающих движение всех частей тела и конечностей;

■ иннервируют скелетные мышцы (диафрагму, межреберные мышцы, мышцы стенок грудной и брюшной полостей), вызывая их непроизвольные движения; при этом каждый сегмент иннервирует строго определенные участки кожи и скелетные мышцы.

Произвольные движения осуществляются под контролем коры головного мозга.

❖ Иннервация сегментами спинного мозга:

■ сегменты шейной и верхней грудной части спинного мозга иннервируют органы грудной полости, сердце, легкие, мышцы головы и верхних конечностей;

■ остальные сегменты грудной и поясничной частей спинного мозга иннервируют органы верхней и средней частей брюшной полости и мышцы туловища;

■ нижнепоясничные и крестцовые сегменты спинного мозга иннервируют органы нижней части брюшной полости и мышцы нижних конечностей.

Спинномозговая жидкость

Спинномозговая жидкость — прозрачная, практически бесцветная жидкость, содержащая 89% воды. Меняется 5-Ю раз в сутки.

❖ Функции спинномозговой жидкости:
■ создает механическую защитную «подушку» для мозга;
■ является внутренней средой, из которой нервные клетки мозга получают питательные вещества;
■ участвует в удалении продуктов обмена;
■ участвует в поддержании внутричерепного давления.

Головной мозг. Общая характеристика строения

Головной мозг расположен в полости черепа и покрыт тремя мозговыми оболочками, снабженными сосудами; его масса у взрослого человека составляет 1100-1700 г.

Строение: головной мозг состоит из 5 отделов :
■ продолговатого мозга,
■ заднего мозга,
■ среднего мозга,
■ промежуточного мозга,
■ переднего мозга.

Ствол головного мозга — это система, образованная продолговатым мозгом, мостом заднего мозга, средним мозгом и промежуточным мозгом

В некоторых учебниках и пособиях к стволу головного моста относят не только мост заднего мозга, но весь задний мозг, включая и варолиев мост, и мозжечок.

В стволе головного мозга расположены ядра черепных нервов, связывающих мозг с органами чувств, мышцами и некоторыми железами; серое вещество в нем находится внутри в виде ядер, белое — снаружи . Белое вещество состоит из отростков нейронов, соединяющих части мозга между собой.

Кора больших полушарий и мозжечка образована серым веществом, состоящим из тел нейронов.

Внутри головного мозга находятся сообщающиеся полости (мозговые желудочки ), являющиеся продолжением центрального канала спинного мозга и заполненные спинномозговой жидкостью: I и II боковые желудочки — в полушариях переднего мозга, III — в промежуточном, IV — в продолговатом мозге.

Канал, связывающий IV и III желудочки и проходящий через средний мозг, называется водопроводом мозга .

От ядер головного мозга отходит 12 пар черепномозговых нервов , иннервирующих органы чувств, ткани головы, шеи, органы грудной и брюшной полостей.

Головной мозг (как и спинной) покрыт тремя оболочками: твердой (из плотной соединительной ткани; выполняет защитную функцию), паутинной (содержит нервы и сосуды) и сосудистой (содержит много сосудов). Пространство между паутинной и сосудистой оболочками заполнено мозговой жидкостью .

Существование, местоположение и функции различных центров головного мозга определяются с помощью стимуляции различных структур головного мозга электрическим током .

Продолговатый мозг

Продолговатый мозг является непосредственным продолжением спинного мозга (после его прохождения через затылочное отверстие) и имеет сходное с ним строение; вверху граничит с мостом; в нем находится IV желудочек. Белое вещество расположено в основном снаружи и образует 2 выступа — пирамиды , серое вещество находится внутри белого вещества, образуя в нем многочисленные ядра .

■ Ядра продолговатого мозга управляют многими жизненно важными функциями; поэтому их называют центрами .

❖ Функции продолговатого мозга:

проводниковая: через него проходят чувствительные и двигательные проводящие пути, по которым передаются импульсы от спинного мозга в вышележащие отделы головного мозга и обратно;

рефлекторная (осуществляется вместе с варолиевым мостом): в центрах продолговатого мозга замыкаются дуги многих важных безусловных рефлексов: дыхания и кровообращения , а также сосания, слюноотделения, глотания, желудочной секреции (отвечают за пищеварительные рефлексы ), кашля, чихания, рвоты, мигания (отвечают за защитные рефлексы ) и др. Повреждение продолговатого мозга приводит к остановке сердца и дыхания и мгновенной смерти.

Задний мозг

Задний мозг состоит из двух отделов — моста и мозжечка .

Мост (варолиев мост) расположен между продолговатым и средним мозгом; через него проходят нервные пути, связывающие передний и средний мозг с продолговатым и спинным мозгом. От моста отходят лицевые и слуховые черепномозговые нервы.

Функции заднего мозга: вместе с продолговатым мозгом мост выполняет проводниковую и рефлекторную функции, а также регулирует пищеварение, дыхание, сердечную деятельность, движение глазных яблок, сокращение мышц лица, обеспечивающих мимику, и др.

Мозжечок находится над продолговатым мозгом и состоит из двух небольших боковых полушарий , средней (наиболее древней, стволовой) части, соединяющей полушария и называемой червём мозжечка , и трех пар ножек, соединяющих мозжечок со средним мозгом, варолиевым мостом и продолговатым мозгом.

Мозжечок покрыт корой из серого вещества, под которой находится белое вещество; червь и ножки мозжечка также состоят из белого вещества. Внутри белого вещества мозжечка имеются ядра , образованные серым веществом. Кора мозжечка имеет многочисленные возвышения (извилины) и углубления (борозды). Большинство нейронов коры — тормозные.

❖ Функции мозжечка:
■ в мозжечок поступает информация от мышц, сухожилий, суставов и двигательных центров головного мозга;
■ он обеспечивает поддержание мышечного тонуса и позы тела,
■ координирует движения тела (делает их точными и согласованными);
■ управляет сохранением равновесия.

При разрушении червя мозжечка человек не может ходить и стоять, при поражении полушарий мозжечка нарушаются речь и письмо, появляется сильная дрожь конечностей, движения рук и ног становятся резкими.

Ретикулярная Формация

Ретикулярная (сетчатая) формация — это густая сеть, образованная скоплением нейронов разных размеров и формы, имеющих хорошо развитые и проходящие в различных направлениях отростки и множество синаптических контактов.

■ Ретикулярная формация расположена в средней части продолговатого мозга, в варолиевом мосту и среднем мозге.

❖ Функции ретикулярной формации:

■ ее нейроны сортируют (пропускают, задерживают или снабжают дополнительной энергией) поступающие нервные импульсы;

■ она регулирует возбудимость всех отделов нервной системы, расположенных как выше нее (восходящие влияния ), так и ниже (нисходящие влияния ), и является центром, стимулирующим центры коры головного мозга;

■ с ее деятельностью связано состояние бодрствования и сна;

■ она обеспечивает формирование устойчивого внимания, эмоций, мышления и сознания;

■ с ее участием осуществляется регуляция пищеварения, дыхания, деятельности сердца и т.д.

Средний мозг

Средний мозг — самый маленький отдел головного мозга; расположен над мостом между промежуточным мозгом и мозжечком. Представлен четверохолмием (2 верхних и 2 нижних бугра) и ножками мозга . В его центре проходит канал (водопровод ), соединяющий III и IV желудочки и заполненный спинномозговой жидкостью.

❖ Функции среднего мозга:

проводниковая: в его ножках проходят восходящие нервные пути к коре больших полушарий и мозжечку и нисходящие нервные пути, по которым импульсы идут от больших полушарий и мозжечка к продолговатому и спинному мозгу;

рефлекторная: с ним связаны рефлексы позы тела, его прямолинейного движения, вращения, подъема, спуска и приземления, возникающие при участии сенсорной системы равновесия и обеспечивающие координацию движения в пространстве;

■ в четверохолмии находятся подкорковые центры зрительных и слуховых рефлексов, обеспечивающих ориентацию на звук и свет. Нейроны верхних бугров четверохолмия получают импульсы от глаз и мышц головы и реагируют на объекты, быстро передвигающиеся в поле зрения; нейроны нижних бугров четверохолмия реагируют на сильные, резкие звуки, приводя слуховую систему в состояние повышенной готовности;

■ он регулирует мышечный тонус , обеспечивает мелкие движения пальцев, жевание.

Промежуточный мозг

Промежуточный мозг — это конечный отдел ствола головного мозга; он расположен под большими полушариями переднего мозга над средним мозгом. В нем находятся центры, обрабатывающие нервные импульсы, поступающие в большие полушария, а также центры, управляющие деятельностью внутренних органов.

Строение промежуточного мозга: он состоит из центральной части — таламуса (зрительных бугров), гипоталамуса (подбугорной области) и коленчатых тел ; в нем также находится третий желудочек головного мозга. У основания гипоталамуса расположен гипофиз .

Таламус — это своеобразная «диспетчерская», через которую в кору больших полушарий головного мозга поступает вся информация о внешней среде и состоянии организма. Таламус контролирует ритмическую активность больших полушарий, является подкорковым центром анализа всех видов ощущений , кроме обонятельных; в нем находятся центры, регулирующие сон и бодрствование, эмоциональные реакции (чувства агрессии, удовольствия и страха) и психическую деятельность человека. В вентральных ядрах таламуса формируется ощущение боли и, возможно, чувство времени .

При повреждении таламуса может изменяться характер ощущений: например, даже незначительные прикосновения к коже, звук или свет могут вызвать у человека тяжелейшие приступы боли; наоборот, чувствительность может снизиться настолько, что человек не будет реагировать ни на какие раздражения.

Гипоталамус — высший центр вегетативных регуляций. Он воспринимает изменения внутренней среды организма и регулирует обмен веществ, температуру тела, кровяное давление, гомеостаз, работу желез внутренней секреции. В нем расположены центры голода, насыщения, жажды, регуляции температуры тела и др. Он выделяет биологически активные вещества (нейрогормоны ) и вещества, необходимые для синтеза нейрогормонов гипофизом , осуществляя нейрогуморальную регуляцию жизнедеятельности организма. Передние ядра гипоталамуса являются центром парасимпатических вегетативных регуляций, задние — симпатических.

Гипофиз — нижний придаток гипоталамуса; является железой внутренней секреции (подробнее см. « «).

Передний мозг. Кора больших полушарий

Передний мозг представлен двумя большими полушариями и мозолистым телом , соединяющим полушария. Большие полушария контролируют работу всех систем органов и обеспечивают взаимосвязь организма с внешней средой. Мозолистое тело играет важную роль при переработке информации в процессе обучения.

Больших полушарий два — припое и левое ; они покрывают средний и промежуточный мозг. У взрослого человека большие полушария составляют до 80% массы головного мозга.

На поверхности каждого полушария имеется множество борозд (углублений) и извилин (складок).

Главные борозды; центральная, боковая и теменно-затылочная. Борозды делят каждое полушарие на 4 доли (см. ниже); которые, в свою очередь, расчленяются бороздами на ряд извилин .

Внутри больших полушарий находятся I и II желудочки головного мозга.

Большие полушария покрыты серым веществом — корой , состоящей из нескольких слоев нейронов, отличающихся друг от друга по форме, размерам и функциям. Всего в коре больших полушарий насчитывается 12-18 млрд, тел нейронов. Толщина коры 1,5-4,5 мм, площадь — 1,7-2,5 тыс. см2. Борозды и извилины существенно увеличивают площадь поверхности и объем коры (в бороздах скрыто 2/3 площади коры).

Правое и левое полушария функционально различаются между собой (функциональная асимметрия полушарий ). Наличие функциональной асимметрии полушарий было установлено в опытах на людях с «расщепленным мозгом».

■ Операция «расщепление мозг а» заключается в хирургической перерезке (по медицинским показаниям) всех прямых связей между полушариями, в результате чего они начинают функционировать независимо друг от друга.

У правшей ведущим (доминантным) полушарием является левое , а у левшей — правое .

Правое полушарие отвечает за образное мышление , образует основу творчества , принятия нестандартных решений . Повреждение зрительной зоны правого полушария приводит к нарушению узнавания лиц.

Левое полушарие обеспечивает логические рассуждения и абстрактное мышление (способность оперировать математическими формулами и т.д.), в нем находятся центры устной и письменной речи , формирования решений . Повреждение зрительной зоны левого полушария приводит к нарушению узнавания букв и цифр.

Несмотря на свою функциональную асимметрию, мозг работает как единое целое , обеспечивая сознание, память, мышление, адекватное поведение, различные виды сознательной деятельности человека.

Функции коры больших полушарий головного мозга:

■ осуществляет высшую нервную деятельность (сознание, мышление, речь, память, воображение, способность писать, читать, считать);

■ обеспечивает взаимосвязь организма с внешней средой, является центральным отделом всех анализаторов; в ее зонах формируются различные ощущения (зоны слуха и вкуса находятся в височной доле; зрения — в затылочной; речи — в теменной и височной; кожно-мышечного чувства — в теменной; движения — в лобной);

■ обеспечивает психическую деятельность;

■ в ней замыкаются дуги условных рефлексов (т.е. она является органом приобретения и накопления жизненного опыта).

Доли коры — подразделение поверхности коры по анатомическому принципу: в каждом полушарии выделяют лобную, височную, теменную и затылочную доли.

Зона коры — участок коры больших полушарий, характеризующийся единообразием строения и выполняемых функций.

Виды зон коры: сенсорные (или проекционные), ассоциативные, моторные.

Сенсорные, или проекционные, зоны — это высшие центры различных видов чувствительности; при их раздражении возникают простейшие ощущения, а при поражении наступает нарушение сенсорных функций (слепота, глухота и т.д.). Эти зоны находятся в областях коры, где заканчиваются восходящие проводящие пути, по которым проводятся нервные импульсы от рецепторов органов чувств (зрительная зона, слуховая зона и др.).

Зрительная зона находится в затылочной области коры;

обонятельная, вкусовая и слуховая зоны — в височной области и рядом с ней;

зоны кожного и мышечного чувства — в задней центральной извилине.

Ассоциативные зоны - области коры, отвечающие за обобщенную обработку информации; в них происходят процессы, обеспечивающие психические функции человека, — мышление, речь, эмоции и др.

В ассоциативных зонах возбуждение возникает при поступлении импульсов не только в эти, но и в сенсорные зоны, и не только от одного, но и одновременно от нескольких органов чувств (например, возбуждение в зрительной зоне может появляться в ответ не только на зрительные, но и на слуховые раздражения).

Лобные ассоциативные области коры обеспечивают выработку сенсорной информации и формируют цель и программу действий, состоящую из команд, направляемых к исполнительным органам. От этих органов в лобные ассоциативные зоны поступает обратная информация о выполнении действий и их прямых последствиях. В лобных ассоциативных зонах эта информация анализируется, определяется, достигнута ли поставленная цель, и если она не достигнута, команды органам корректируются.

■ Развитие именно лобных долей коры в значительной степени обусловило высокий уровень психических способностей человека по сравнению с приматами.

Моторные (двигательные) зоны — области коры, раздражение которых вызывает сокращение мышц. Эти зоны осуществляют управление произвольными движениями; в них берут начало нисходящие проводящие пути, по которым нервные импульсы идут к вставочным и исполнительным нейронам.

■ Двигательная функция различных частей тела представлена в передней центральной извилине. Наибольшее пространство занимают двигательные зоны кистей, пальцев рук и мышц лица, наименьшее — зоны мышц туловища.

Электроэнцефалограмма

Электроэнцефалограмма (ЭЭГ) — это графическая запись суммарной электрической активности коры больших полушарий головного мозга — нервных импульсов, генерируемых совокупностью ее (коры) нейронов.

■ В ЭЭГ человека наблюдаются волны электрической активности разной частоты — от 0,5 до 30 колебаний в секунду.

Основные ритмы электрической активности коры больших полушарий: альфа-ритм, бета-ритм, дельта-ритм и тета-ритм.

Альфа-ритм — колебания с частотой 8-13 герц; этот ритм преобладает над другими во время сна.

Бета-ритм имеет частоту колебаний больше 13 герц; он характерен для активного бодрствования.

Тета-ритм — колебания с частотой 4-8 герц.

Дельта-ритм имеет частоту 0,5-3,5 герц.

■ Тета- и дельта-ритмы наблюдаются во время очень глубокого сна или наркоза .

Черепномозговые нервы

Черепномозговых нервов у человека насчитывается 12 пар; они отходят от разных отделов головного мозга и по функциям делятся на чувствительные, двигательные и смешанные.

❖ Чувствительные нервы -1, II, VIII пары:

■ I пара — обонятельные нервы, отходят от переднего мозга и иннервируют обонятельную область носовой полости;

■ И пара — зрительные нервы, отходят от промежуточного мозга и иннервируют сетчатку глаза;

■ VIII пара — слуховые (или преддверно-улитковы е) нервы; отходят от моста, иннервируют перепончатый лабиринт и кор-тиев орган внутреннего уха.

❖ Двигательные нервы — III, IV, VI, X, XII пары:

■ III пара — глазодвигательные нервы, отходят от среднего мозга;

■ IV пара — блоковидные нервы, отходят также от среднего мозга;

■ VI — отводящие нервы, отходят от моста (III, IV и VI пары нервов иннервируют мышцы глазного яблока и век);

■ XI — добавочные нервы, отходят от продолговатого мозга;

■ XII — подъязычные нервы, отходят также от продолговатого мозга (XI и XII пары нервов иннервируют мышцы глотки, языка, среднего уха, околоушную слюнную железу).

Смешанные нервы -V, VII, IX, X пары:

■ V пара — тройничные нервы, отходят от моста, иннервируют кожу головы, оболочки глаза, жевательные мышцы и др.;

■ VII пара — лицевые нервы, также отходят от моста, иннервируют мимические мышцы, слезную железу и др.;

■ IX пара — языкоглоточные нервы, отходят от промежуточного мозга, иннервируют мышцы глотки, среднего уха, околоушную слюнную железу;

■ X пара — блуждающие нервы, также отходят от промежуточного мозга, иннервируют мышцы мягкого нёба и гортани, органы грудной (трахею, бронхи, сердце, замедляя его работу) и брюшной полостей (желудок, печень, поджелудочную железу).

Особенности автономной нервной системы

В отличие от соматической нервной системы, нервные волокна которой толстые, покрыты миелиновой оболочкой и характеризуются высокой скоростью распространения нервных импульсов, вегетативные нервные волокна обычно тонкие, не имеют миелиновой оболочки и характеризуются невысокой скоростью распространения нервных импульсов (см. таблицу).

Функции автономной нервной системы:

■ поддержание постоянства внутренней среды организма путем нейрорегуляции тканевого обмена веществ («запуск», коррекция или приостановка тех или иных обменных процессов) и работы внутренних органов, сердца и сосудов;

■ приспособление деятельности этих органов к изменившимся условиям внешней среды и потребностям организма.

Автономная нервная система состоит из симпатической и парасимпатической частей , которые оказывают противоположное действие на физиологические функции органов.

Симпатическая часть автономной нервной системы создает условия для интенсивной деятельности организма, особенно в экстремальных условиях, когда необходимо проявление всех возможностей организма.

Парасимпатическая часть (система «отбоя») автономной нервной системы снижает уровень активности, чем способствует восстановлению ресурсов, истраченных организмом.

■ Обе части (отделы) автономной нервной системы подчинены высшим нервным центрам, находящимся в гипоталамусе , и взаимодополняют друг друга.

■ Гипоталамус согласовывает работу автономной нервной системы с деятельностью эндокринной и соматической систем.

■ Примеры влияния симпатической и парасимпатической частей АНС на органы приведены в таблице на с. 520.

Эффективное выполнение функций обеих частей автономной нервной системы обеспечивается двойной иннервацией внутренних органов и сердца.

Двойная иннервация внутренних органов и сердца означает, что к каждому из этих органов подходят нервные волокна и от симпатической, и от парасимпатической частей автономной нервной системы.

Нейроны автономной нервной системы синтезируют различные медиаторы (ацетилхолин, норадреналин, серотонин и др.), участвующие в передаче нервных импульсов.

Главный признак автономной нервной системы — двухнейронность эфферентного пути . Это означает, что в автономной нервной системе эфферентные , или центробежные (т.е. идущие от головного и спинного мозга к органам ), нервные импульсы последовательно проходят по телам двух нейронов. Двухнейронность эфферентного пути позволяет выделить в симпатической и парасимпатической частях автономной нервной системы центральную и периферическую части .

Центральная часть (нервные центры ) автономной нервной системы находится в центральной нервной системе (в боковых рогах серого вещества спинного мозга, а также в продолговатом и среднем мозге) и содержит первые двигательные нейроны рефлекторной дуги . Вегетативные нервные волокна, идущие от этих центров к рабочим органам, переключаются в вегетативных ганглиях периферической части автономной нервной системы.

Периферическая часть автономной нервной системы находится за пределами центральной нервной системы и состоит из ганглий (нервных узлов), образованных телами вторых двигательных нейронов рефлекторной дуги , а также нервов и нервных сплетений.

■ У симпатического отдела эти ганглии образуют пару симпатических цепочек (стволов), расположенных вблизи позвоночника по обе его стороны, у парасимпатического отдела они лежат вблизи или внутри иннервируемых органов.

■ Постганглионарные парасимпатические волокна подходят к глазным мышцам, гортани, трахее, легким, сердцу, слезным и слюнным железам, мускулатуре и железам пищеварительного тракта, выделительным и половым органам.

Причины нарушения деятельности нервной системы

Переутомление нервной системы ослабляет ее регулирующую функцию и может спровоцировать возникновение ряда психических, сердечно-сосудистых, желудочно-кишечных, кожных и других заболеваний.

Наследственные заболевания могут приводить к изменению активности некоторых ферментов. В результате в организме накапливаются ядовитые вещества, воздействие которых приводит к нарушению развития мозга и умственной отсталости.

Отрицательные факторы внешней среды:

бактериальные инфекции приводят к накоплению токсинов в крови, отравляющих нервную ткань (менингит, столбняк);

вирусные инфекции могут поражать спинной (полиомиелит) или головной мозг (энцефалит, бешенство);

алкоголь и продукты его обмена возбуждают различные нервные клетки (тормозные или возбуждающие нейроны), дезорганизуя работу нервной системы; систематическое употребление алкоголя вызывает хроническое угнетение нервной системы, изменение чувствительности кожи, мышечные боли, ослабление и даже исчезновение многих рефлексов; в ЦНС происходят необратимые изменения, формирующие изменения личности и приводящие к развитию тяжелых психических заболеваний и слабоумия;

■ влияние никотина и наркотических средств во многом аналогично влиянию алкоголя;

соли тяжелых металлов связываются с ферментами, нарушая их работу, что приводит к нарушениям деятельности нервной системы;

■ при укусах ядовитых животных в кровь попадают биологически активные вещества (яды), нарушающие функционирование мембран нейронов;

■ при травмах головы, кровотечениях и сильной боли возможна потеря сознания, которой предшествуют: потемнение в глазах, шум в ушах, бледность, понижение температуры, обильный пот, слабый пульс, поверхностное дыхание.

Нарушение мозгового кровообращения. К нарушению нормального функционирования головного мозга и, как следствие, к заболеваниям различных органов приводит сужение просвета сосудов мозга. Травмы и повышенное артериальное давление могут вызвать разрыв сосудов головного мозга, что обычно ведет к параличам, нарушениям высшей нервной деятельности или смерти.

Пережатие нервных стволов мозга вызывает сильную боль. Ущемление корешков спинного мозга спазмированными мышцами спины или в результате воспаления вызывает приступообразную боль (характерно для радикулита ), нарушение чувствительности (онемение ) и др.

❖ При нарушениях обмена веществ в мозге возникают психические заболевания:

невроз — эмоциональные, двигательные и поведенческие расстройства, сопровождающиеся отклонениями со стороны вегетативной нервной системы и работы внутренних органов (пример: страх темноты у детей);

маниакально-депрессивный психоз — более серьезное заболевание, при котором периоды крайнего возбуждения чередуются с апатией (паранойя, мания величия или преследования);

шизофрения — расщепление сознания;

галлюцинации (могут возникать также при отравлениях, высокой температуре, остром алкогольном психозе).

Представляет собой организованный набор клеток, специализирующихся на проведении электрических сигналов.

Нервная система состоит из нейронов и глиальных клеток. Функция нейронов заключается в координации действий с помощью химических и электрических сигналов, посылаемых из одного места в другое в организме. Большинство многоклеточных животных имеют нервные системы с похожими основными характеристиками.

Содержание:

Нервная система захватывает стимулы из окружающей среды (внешние стимулы) или сигналы от одного и того же организма (внутренние стимулы), обрабатывает информацию и генерирует различные реакции в зависимости от ситуации. В качестве примера мы можем рассмотреть животное, которое через клетки, чувствительные к свету сетчатки, улавливает близость другого живого существа. Эта информация передается зрительным нервом в мозг, который обрабатывает его и излучает нервный сигнал, и вызывает сокращение определенных мышц через двигательные нервы, чтобы двигаться в направлении, противоположном потенциальной опасности.

Функции нервной системы

Нервная система человека контролирует и регулирует большинство функций организма, от раздражителей через сенсорные рецепторы до моторных действий.

Она состоит из двух основных частей: центральной нервной системы (ЦНС) и периферической нервной системы (ПНС). ЦНС состоит из мозга и спинного мозга.

ПНС образована нервами, которые соединяют ЦНС с каждой частью тела. Нервы, передающие сигналы из мозга, называются двигательными или эфферентными нервами, а нервы, передающие информацию от тела к ЦНС, называются сенсорными или афферентными.

На клеточном уровне нервная система определяется наличием клеточного типа, называемого нейроном, также известным как «нервная клетка». Нейроны имеют специальные структуры, которые позволяют им быстро и точно отправлять сигналы другим клеткам.

Связи между нейронами могут образовывать цепи и нейронные сети, которые генерируют восприятие мира и определяют поведение. Наряду с нейронами нервная система содержит другие специализированные клетки, называемые глиальными клетками (или просто глиями). Они обеспечивают структурную и метаболическую поддержку.

Неисправность нервной системы может возникать в результате генетических дефектов, физического повреждения, вследствие травмы или токсичности, инфекции или просто путем старения.

Структура нервной системы

Нервная система (НС) состоит из двух хорошо дифференцированных подсистем, с одной стороны центральной нервной системы, а с другой — периферической нервной системы.

Видео: Нервная система человека. Введение: основные понятия, состав и строение


На функциональном уровне периферическая нервная система (ПНС) и соматическая нервная система (СНС) дифференцируются в периферической нервной системе. СНС участвует в автоматическом регулировании внутренних органов. ПНС отвечает за захват сенсорной информации и разрешение добровольных движений, таких как рукопожатие или письмо.

Периферическая нервная система состоит в основном из следующих структур: ганглии и черепных нервов.

Вегетативная нервная система


Вегетативная нервная система

Вегетативная нервная система (ВНС) разделена на симпатическую и парасимпатическую системы. ВНС участвует в автоматическом регулировании внутренних органов.

Вегетативная нервная система вместе с нейроэндокринной системой отвечают за регулирование внутреннего баланса нашего организма, снижение и повышение уровня гормонов, активацию внутренних органов и т. д.

Для этого она передает информацию от внутренних органов в ЦНС через афферентные пути и излучает информацию от ЦНС к мускулатуре.

Она включает сердечную мускулатуру, гладкую кожу (которая снабжает волосяные фолликулы), гладкость глаз (которая регулирует сокращение и расширение зрачка), гладкость кровеносных сосудов и гладкость стенок внутренних органов (желудочно-кишечная система, печень, поджелудочная железа, респираторная система, репродуктивные органы, мочевой пузырь …).

Эфферентные волокна организованы, образуя две различные системы, называемые симпатической и парасимпатической системой.

Симпатическая нервная система в основном ответственна за то, чтобы подготовить нас к действию, когда мы ощущаем значительный стимул, активируя одну из автоматических реакций (например убегать или атаковать).

Парасимпатическая нервная система , в свою очередь, поддерживает оптимальную активацию внутреннего состояния. Увеличение или уменьшение активации по мере необходимости.

Соматическая нервная система

Соматическая нервная система отвечает за захват сенсорной информации. Для этой цели она использует сенсорные датчики, распределенные по всему телу, которые распределяют информацию в ЦНС и таким образом переносят от ЦНС на мышцы и органы.

С другой стороны, это часть периферической нервной системы, связанная с добровольным контролем телесных движений. Она состоит из афферентных или сенсорных нервов, эфферентных или двигательных нервов.

Афферентные нервы ответственны за передачу ощущения организма центральной нервной системе (ЦНС). Эфферентные нервы отвечают за отправку сигналов от ЦНС на тело, стимулируя сокращение мышц.

Соматическая нервная система состоит из двух частей:

  • Спинномозговые нервы: появляются из спинного мозга и состоят из двух ветвей: чувствительного афферента и другого эфферентного двигателя, поэтому это смешанные нервы.
  • Черепные нервы: посылает сенсорную информацию с шеи и головы в центральную нервную систему.

Затем оба объясняются:

Черепная нервная система

Есть 12 пар черепных нервов, которые возникают из головного мозга и ответственны за передачу сенсорной информации, контроль над некоторыми мышцами и регулирование некоторых желез и внутренних органов.

I. Ольфакторный нерв. Он получает обонятельную сенсорную информацию и переносит ее на обонятельную луковицу, расположенную в мозге.

II. Оптический нерв. Он получает визуальную сенсорную информацию и передает ее в мозговые центры зрения через зрительный нерв, проходя через хиазм.

III. Внутренний окулярный моторный нерв. Он отвечает за контроль движений глаз и регулирование дилатации и сокращения зрачка.

IV Внутривенно- трехолевый нерв. Он отвечает за контроль движений глаз.

V. Тригеминальный нерв. Он получает соматосенсорную информацию (например, тепло, боль, текстуру …) от сенсорных рецепторов лица и головы и контролирует мышцы жевания.

VI. Наружный моторный нерв глазного нерва. Контроль движений глаз.

VII. Лицевой нерв. Получает информацию о вкусе языка (те, что расположены в средней и предыдущей частях) и соматосенсорная информация о ушах, и контролирует мышцы, необходимые для выполнения мимики.

VIII. Вестибулокохлеарный нерв. Получает слуховую информацию и контролирует баланс.

IX. Глоссафоаргиальный нерв. Получает информацию о вкусе из самой задней части языка, соматосенсорную информацию о языке, миндалинах, глотке и контролирует мышцы необходимые для проглатывания (глотания).

Х. Вагусный нерв. Получает конфиденциальную информацию от желез пищеварения и частоты сердечных сокращений и отправляет информацию органам и мышцам.

XI. Спинной аксессуарный нерв. Управляет мышцами шеи и головы, которые используются для движения.

XII. Гипоглоссальный нерв. Контролирует мышцы языка.

Спинномозговые нервы соединяют органы и мышцы спинного мозга. Нервы отвечают за передачу информации о сенсорных и висцеральных органах в мозг и передают приказы костного мозга на скелетную и гладкую мускулатуру и железы.

Эти соединения управляют рефлекторными действиями, которые выполняются так быстро и бессознательно, потому что информация не должна обрабатываться мозгом до выдачи ответа, она напрямую контролируется мозгом.

Всего имеется 31 пара спинномозговых нервов, которые выходят в двухстороннем порядке из костного мозга через пространство между позвонками, называемыми внутрипозвонковыми отверстиями.

Центральная нервная система

Центральная нервная система состоит из мозга и спинного мозга.

На нейроанатомическом уровне в ЦНС можно выделить два типа веществ: белый и серый. Белое вещество образовано аксонами нейронов и структурного материала, а серое вещество образовано нейронной сомой, где расположен генетический материал.

Это различие является одним из оснований, на которых основан миф, в котором мы используем только 10% нашего мозга, поскольку мозг состоит из примерно 90% белого вещества и всего 10% серого вещества.

Но хотя серое вещество, по-видимому, состоит из материала, который только служит для соединения, сегодня известно, что число и способ, с помощью которых производятся соединения, заметно влияют на функции мозга, поскольку, если структуры находятся в идеальном состоянии, но между ними нет связей, они не будут работать правильно.

Мозг состоит из множества структур: коры головного мозга, базальных ганглиев, лимбической системы, промежуточного мозга, ствола и мозжечка.


Кора головного мозга

Кору головного мозга можно разделить анатомически на доли, разделенные бороздками. Наиболее признанными являются лобные, теменные, временные и затылочные, хотя некоторые авторы утверждают, что есть также лимбическая доля.

Кора делится на два полушария, правого и левого, так что половинки присутствуют симметрично в обоих полушариях, с правой лобной долей и левой долей, правой и левой теменной долей и т. д.

Полушария головного мозга разделены межполушарной трещиной, а доли разделены различными канавками.

Кору головного мозга также можно отнести к функциям сенсорной коры, коры ассоциации и лобных долей.

Сенсорная кора получает сенсорную информацию от таламуса, которая получает информацию через сенсорные рецепторы, за исключением первичной обонятельной коры, которая получает информацию непосредственно от сенсорных рецепторов.

Соматосенсорная информация достигает первичной соматосенсорной коры, расположенной в теменной доле (в постцентральной извилине).

Каждая сенсорная информация достигает определенной точки коры, образующей чувственный гомункул.

Как видно, области мозга, соответствующие органам, не соответствуют тому же порядку, в котором они расположены в организме и они не имеют пропорционального отношения размеров.

Крупнейшими корковыми областями, по сравнению с размерами органов, являются руки и губы, так как в этой области мы имеем высокую плотность сенсорных рецепторов.

Визуальная информация достигает первичной зрительной коры головного мозга, расположенной в затылочной доле (в бороздке) и эта информация имеет ретинотопическую организацию.

Первичная слуховая кора находится в височной доле (область 41 Бродмана), ответственная за получение слуховой информации и создание тонотопической организации.

Первичная кора вкуса расположена в передней части крыльчатки и в передней оболочке, а обонятельная кора расположена в коре пириформ.

Кора ассоциации включает первичный и вторичный. Первичная корковая ассоциация находится рядом с сенсорной корой и объединяет все характеристики воспринимаемой сенсорной информации, такие как цвет, форма, расстояние, размер и т. д. визуального стимула.

Корень вторичной ассоциации находится в теменной крышечке и обрабатывает интегрированную информацию, чтобы отправить ее в более «продвинутые» структуры, такие как лобные доли. Эти структуры помещают ее в контекст, дают ей смысл и делают ее сознательной.

Лобные доли, как мы уже упоминали, отвечают за обработку информации высокого уровня и интеграцию сенсорной информации с двигательными действиями, которые выполняются так, чтобы они соответствовали воспринимаемым стимулом.

Кроме того, они выполняют ряд сложных, обычно человеческих задач, называемых исполнительными функциями.

Базальные ганглии

Базальные ганглии (от греческого ганглия, «конгломерат», «узел», «опухоль») или базальные ядра представляют собой группу ядер или масс серого вещества (скопления тел или нейронных клеток), которые находятся у основания мозга между восходящими и нисходящими путями белого вещества и верхом на стволе мозга.

Эти структуры связаны друг с другом и вместе с корой головного мозга и ассоциацией через таламус, их основная функция — контролировать произвольные движения.

Лимбическая система образована подкорковыми структурами, то есть ниже коры головного мозга. Среди подкорковых структур, которые это делают, выделяется миндалина, а среди кортикальных — гиппокамп.

Амигдала имеет миндалевидную форму и состоит из ряда ядер, которые испускают и получают афференты и выводы из разных регионов.


Эта структура связана с несколькими функциями, такими как эмоциональная обработка (особенно негативные эмоции) и ее влияние на процессы обучения и памяти, внимание и некоторые механизмы восприятия.

Гипокамп, или гипокампальное образование, представляет собой кортикальную область, похожую на морского конька (отсюда и название гиппокампа от греческого hypos: лошадь и монстр моря) и сообщается в двух направлениях с остальной частью мозговой коры и с гипоталамусом.


Гипоталамус

Эта структура особенно важна для обучения, поскольку она отвечает за консолидацию памяти, то есть превращение краткосрочной или непосредственной памяти в долгосрочную память.

Промежуточный мозг

Промежуточный мозг расположен в центральной части мозга и состоит в основном из таламуса и гипоталамуса.

Таламус состоит из нескольких ядер с дифференцированными связями, что очень важно при обработке сенсорной информации, поскольку он координирует и регулирует информацию, поступающую из спинного мозга, ствола и самого мозга.

Таким образом, вся сенсорная информация проходит через таламус до достижения сенсорной коры (за исключением обонятельной информации).

Гипоталамус состоит из нескольких ядер, которые широко связаны между собой. В дополнение к другим структурам как центральная нервная система, так и периферическая, таких как кора, спинной мозг, сетчатка и эндокринная система.

Его основная функция заключается в интеграции сенсорной информации с другими типами информации, например, эмоциональной, мотивационной или прошлого опыта.

Ствол мозга расположен между промежуточным мозгом и спинным мозгом. Он состоит из продолговатого мозга, выпуклости и мезенцефалина.

Эта структура получает большую часть периферийной моторной и сенсорной информации, и ее основная функция заключается в интеграции сенсорной и моторной информации.

Мозжечок

Мозжечок находится в задней части черепа и имеет форму небольшого мозга, с корой на поверхности и с белым веществом внутри.

Он получает и интегрирует информацию в основном из коры головного мозга. Его основными функциями являются координация и адаптация движений к ситуациям, а также поддержание баланса.

Спинной мозг

Спинной мозг переходит из мозга во второй поясничный позвонок. Его основная функция заключается в том, чтобы связать ЦНС с СНС, например принимая двигательные команды мозга к нервам, которые иннервируют мышцы, чтобы они дали моторный отклик.

Кроме того, он может инициировать автоматические ответы, получая какую-то очень важную сенсорную информацию такую как укол или жжение.

И перерабатывает посту­пающую информацию, хранит следы прошлой активности (следы памяти) и соответственно регулирует и координи­рует функции организма.

В основе деятельности нервной системы лежит рефлекс, связанный с распространением возбуждения по рефлекторным дугам и процессом тормо­жения. Нервная система образована главным образом нервной тканью , основная структурная и функциональная единица которой - нейрон . В ходе эволюции животных происходило постепенное усложнение нервной системы и одновременно усложнялось их поведение.

В развитии нерв­ной системы отмечают несколько этапов.

У простейших нервной системы нет, но у некоторых инфузорий есть внутриклеточный фибриллярный возбудимый аппарат. По мере развития многоклеточных формируется специализи­рованная ткань, способная к воспроизведению активных реакций, то есть к возбуждению. Сетевидная , или диффуз­ная , нервная система впервые появляется у кишечнопо­лостных (гидроидные полипы). Она образована отростками нейронов , диффузно распределенными по всему телу в виде сети. Диффузная нервная система быстро проводит возбуждение из точки раздражения во всех направлениях, что придает ей интегративные свойства.

Диффузной нервной системе свойственны и незначи­тельные признаки централизации (у гидры уплотнения нервных элементов в области подошвы и орального полю­са). Усложнение нервной системы шло параллельно с раз­витием органов движения и выражалось прежде всего в обособлении нейронов из диффузной сети, погружении их в глубь тела и образовании там скоплений. Так, у свободно живущих кишечнополостных (медуз) нейроны скаплива­ются в ганглии, образуя диффузно-узловую нервную сис­тему . Формирование этого типа нервной системы связано, в первую очередь, с развитием специальных рецепторов на поверхности тела, способных избирательно реагировать на механические, химические и световые воздействия. Наряду с этим прогрессивно увеличивается число нейронов и разнообразие их типов, формируется нейроглия . Появля­ются двухполюсные нейроны , имеющие дендриты и аксо­ны . Проведение возбуждения становится направленным. Дифференцируются и нервные структуры, в которых осу­ществляется передача соответствующих сигналов другим клеткам, управляющим ответными реакциями организма. Таким образом, одни клетки специализируются на рецеп­ции, другие - на проведении, третьи - на сокращении. Дальнейшее эволюционное усложнение нервной системы связано с централизацией и выработкой узлового типа организации (членистоногие, кольчатые черви, моллюски). Нейроны концентрируются в нервные узлы (ганглии), свя­занные нервными волокнами между собой, а также с рецепторами и исполнительными органами (мышцы , же­лезы).

Дифференциация пищеварительной, половой, крове­носной и др. систем органов сопровождалась совершенст­вованием обеспечения взаимодействия между ними с по­мощью нервной системы . Происходит значительное усложнение и возникновение множества центральных нервных образований, находящихся в зависимости друг от друга. Околощитовидные ганглии и нервы, контролирую­щие питание и роющие движения, развиваются у филоге­нетически высших форм в рецепторы , воспринимающие свет, звук, запах; появляются органы чувств . Так как ос­новные рецепторные органы располагаются в головном конце тела, то и соответствующие ганглии в головной части туловища развиваются сильнее, подчиняют себе деятель­ность остальных и образуют головной мозг . У членистоно­гих и кольчатых червей хорошо развита нервная цепочка . Формирование адаптивного поведения организма проявля­ет себя наиболее ярко на высшем уровне эволюции - у позвоночных - и связано с усложнением структуры нерв­ной системы и усовершенствованием взаимодействия ор­ганизма с внешней средой. Одни части нервной системы проявляют в филогенезе тенденцию усиленного роста, дру­гие остаются слаборазвитыми. У рыб передний мозг слабо дифференцирован, но хорошо развиты задний и средний мозг , мозжечок . У земноводных и пресмыкающихся из переднего мозгового пузыря обособляются промежуточ­ный мозг и два полушария с первичной корой мозга .

У птиц сильно развит мозжечок , средний и промеж­уточный мозг . Кора выражена слабо , но вместо нее сфор­мировались особые структуры (гиперстриатум ), выполняю­щие те же, что и кора у млекопитающих , функции .

Высшего развития нервная система достигает у млеко­питающих , особенно у человека , главным образом за счет увеличения и усложнения строения коры больших полуша­рий. Развитие и дифференциация структур нервной систе­мы у высших животных обусловили ее разделение на центральную и периферическую .

ЛЕКЦИЯ НА ТЕМУ: НЕРВНАЯ СИСТЕМА ЧЕЛОВЕКА

Нервная система – это система, которая регулирует деятельность всех органов и систем человека. Данная система обуславливает: 1) функциональное единство всех органов и систем человека; 2) связь всего организма с окружающей средой.

С точки зрения поддержания гомеостаза нервная система обеспечивает: поддержание параметров внутренней среды на заданном уровне; включение поведенческих реакций; адаптацию к новым условиям, если они сохраняются долгое время.

Нейрон (нервная клетка) - основной структурный и функциональный элемент нервной системы; у человека насчитывается более ста миллиардов нейронов. Нейрон состоит из тела и отростков, обычно одного длинного отростка - аксона и нескольких коротких разветвленных отростков - дендритов. По дендритам импульсы следуют к телу клетки, по аксону - от тела клетки к другим нейронам, мышцам или железам. Благодаря отросткам нейроны контактируют друг с другом и образуют нейронные сети и круги, по которым циркулируют нервные импульсы.

Нейрон - это функциональная единица нервной системы. Нейроны восприимчивы к раздражению, то есть способны возбуждаться и передавать электрические импульсы от рецепторов к эффекторам. По направлению передачи импульса различают афферентные нейроны (сенсорные нейроны), эфферентные нейроны (двигательные нейроны) и вставочные нейроны.

Нервную ткань называют возбудимой тканью. В ответ на некоторое воздействие в ней возникает и распространяется процесс возбуждения – быстрой перезарядки клеточных мембран. Возникновение и распространение возбуждения (нервного импульса) – это основной способ осуществления нервной системой ее управляющей функции.

Основные предпосылки возникновения возбуждения в клетках: существование на мембране в состоянии покоя электрического сигнала – мембранного потенциала покоя (МПП);

способность изменять потенциал за счет изменения проницаемости мембраны для некоторых ионов.

Клеточная мембрана является полупроницаемой биологической мембраной, в ней имеются каналы пропускающие ионы калия, но нет каналов для внутриклеточных анионов, которые удерживаются у внутренней поверхности мембраны, создавая при этом отрицательный заряд мембраны изнутри, это и есть мембранный потенциал покоя, который составляет в среднем- – 70 милливольт (мВ). В клетке в 20-50 раз больше ионов калия, чем снаружи, это поддерживается всю жизнь при помощи мембранных насосов (большие белковые молекулы, способные переносить ионы калия из внеклеточной среды во внутрь). Величина МПП обусловлена переносом ионов калия в двух направлениях:

1. снаружи в клетку под действием насосов (с большой затратой энергии);

2. из клетки наружу путем диффузии по мембранным каналам (без затрат энергии).

В процессе возбуждения главную роль играют ионы натрия, которых снаружи клетки всегда больше в 8-10 раз, чем внутри. Натриевые каналы закрыты, когда клетка находится в состоянии покоя, для того что бы их открыть, необходимо подействовать на клетку адекватным раздражителем. Если достигается порог раздражения, то натриевые каналы открываются и натрий входит в клетку. За тысячные доли секунды заряд мембраны сначала исчезнет, а затем изменится на противоположный – это первая фаза потенциала действия (ПД) – деполяризация. Каналы закрываются – пик кривой, затем заряд восстанавливается по обе стороны мембраны (за счет калиевых каналов) – стадия реполяризации. Возбуждение прекращается и пока клетка в покое, насосы меняют натрий вошедший в клетку на калий, который вышел из клетки.

ПД вызванный в любой точке нервного волокна, сам становится раздражителем для соседних участков мембраны, вызывая в них ПД, а те в свою очередь возбуждают все новые и новые участки мембраны, распространяясь таким образом на по всей клетке. В волокнах, покрытых миелином, ПД будут возникать только в свободных от миелина участках. Поэтому скорость распространения сигнала возрастает.


Передача возбуждения от клетки к другой, происходит при помощи химического синапса, который представлен местом контакта двух клеток. Синапс образован пресинаптической и постсинаптической мембранами и синаптической щелью между ними. Возбуждение в клетке возникшее в результате ПД достигает участка пресинаптической мембраны, где располагаются синаптические пузырьки- везикулы, из которых выбрасывается специальное вещество – медиатор. Медиатор попадая в щель, движется к постсинаптической мембране и связывается с ней. В мембране открываются поры для ионов, происходит их движение внутрь клетки и возникает процесс возбуждения

Таким образом в клетке происходит превращение электрического сигнала в химический, а химического опять в электрический. Передача сигнала в синапсе происходит медленнее, чем в нервной клетке, а также односторонне, так как выделяется медиатор только через пресинаптическую мембрану, а связывается может только с рецепторами постсинаптической мембраны, а не наоборот.

Медиаторы могут вызывать в клетках не только возбуждение, но и торможение. При этом на мембране открываются поры, для таких ионов, которые усиливают отрицательный заряд, существовавший на мембране в состоянии покоя. На одной клетке может множество синаптических контактов. Пример медиатора между нейроном и волокном скелетной мышцы – ацетилхолин.

Нервная система подразделяется на центральную нервную систему и периферическую нервную систему.

В центральной нервной системе различают головной мозг, где сосредоточены основные нервные центры и спинной мозг, здесь находятся центры более низкого уровня и идут проводящие пути к периферическим органам.

Периферический отдел – нервы, нервные узлы, ганглии и сплетения.

Основной механизм деятельности нервной системы – рефлекс. Рефлексом называется любая ответная реакция организма на изменение внешней или внутренней среды, которая осуществляется при участии ЦНС в ответ на раздражение рецепторов. Структурная основа рефлекса – рефлекторная дуга. Она включает пять последовательных звеньев:

1 - Рецептор – сигнальное устройство воспринимающее воздействие;

2 - Афферентный нейрон – приводит сигнал, от рецептора в нервный центр;

3 - Вставочный нейрон – центральная часть дуги;

4 - Эфферентный нейрон – сигнал поступает из ЦНС к исполнительной структуре;

5 - Эффектор – мышца или железа осуществляющие определенный вид деятельности

Головной мозг состоит из скоплений тел нервных клеток, нервных трактов и кровеносных сосудов. Нервные тракты образуют белое вещество мозга и состоят из пучков нервных волокон, проводящих импульсы к различным участкам серого вещества мозга - ядрам или центрам - или от них. Проводящие пути связывают между собой различные ядра, а так же головной мозг со спинным мозгом.

В функциональном отношении мозг можно разделить на несколько отделов: передний мозг (состоящий из конечного мозга и промежуточного мозга), средний мозг, задний мозг, (состоящий из мозжечка и варолиева моста) и продолговатый мозг. Продолговатый мозг, варолиев мост и средний мозг вместе называются стволом головного мозга.

Спиной мозг расположен в позвоночном канале, надежно защищающий его от механических повреждений.

Спиной мозг имеет сегментарное строение. От каждого сегмента отходит по две пары передних и задних корешков, что соответствует одному позвонку. Всего 31 пара нервов.

Задние корешки образованы чувствительными (афферентными) нейронами, их тела находятся в ганглиях, а аксоны входят в спиной мозг.

Передние корешки сформированы аксонами эфферентных (двигательных) нейронов, тела которых лежат в спином мозге.

Спиной мозг условно подразделяют на четыре отдела – шейный, грудной, поясничный и крестцовый. В нем замыкается огромное количество рефлекторных дуг, что обеспечивает регулирование многих функций организма.

Серое центральное вещество – это нервные клетки, белое – нервные волокна.

Нервную систему подразделяют на соматическую и вегетативную.

К соматической нервной системе (от латинского слова «сома» - тело) относится часть нервной системы (и тела клеток, и их отростки), которая управляет деятельностью скелетных мышц (тела) и органов чувств. Эта часть нервной системы в большой степени контролируется нашим сознанием. То есть мы способны по своему желанию согнуть или разогнуть руку, ногу и так далее.Однако мы неспособны сознательно прекратить восприятие, например, звуковых сигналов.

Вегетативная нервная система (в переводе с латинского «вегетативный» - растительный) - это часть нервной системы (и тела клеток, и их отростки), которая управляет процессами обмена веществ, роста и размножения клеток, то есть функциями - общими и для животных, и для растительных организмов. В ведении вегетативной нервной системы находится, например, деятельность внутренних органов и сосудов.

Вегетативная нервная система практически не контролируется сознанием, то есть мы не способны по своему желанию снять спазм желчного пузыря, остановить деление клетки, прекратить деятельность кишечника, расширить или сузить сосуды