Жизненный цикл программы проектов. Жизненный цикл программных систем

Жизненный цикл программного обеспечения

Одним из базовых понятий методологии проектирования ПО является понятие жизненного цикла ее программного обеспечения (ЖЦ ПО). ЖЦ ПО - это непрерывный процесс, который начинается с момента принятия решения о необходимости его создания и заканчивается в момент его полного изъятия из эксплуатации.

Основным нормативным документом, регламентирующим ЖЦ ПО, является международный стандарт ISO/IEC 12207 (ISO - International Organization of Standardization - Международная организация по стандартизации, IEC - International Electrotechnical Commission - Международная комиссия по электротехнике). Он определяет структуру ЖЦ, содержащую процессы, действия и задачи, которые должны быть выполнены во время создания ПО. В данном стандарте ПО (программный продукт) определяется как набор компьютерных программ, процедур и, возможно, связанной с ним документации и данных. Процесс определяется как совокупность взаимосвязанных действий, преобразующих некоторые входные данные в выходные. Каждый процесс характеризуется определенными задачами и методами их решения, исходными данными, полученными от других процессов, и результатами.

Структура ЖЦ ПО по стандарту ISO/IEC 12207 базируется на трех группах процессов:

· основные процессы ЖЦ ПО (приобретение, поставка, разработка, эксплуатация, сопровождение);

· вспомогательные процессы, обеспечивающие выполнение основных процессов (документирование, управление конфигурацией, обеспечение качества, верификация, аттестация, оценка, аудит, решение проблем);

· организационные процессы (управление проектами, создание инфраструктуры проекта, определение, оценка и улучшение самого ЖЦ, обучение).

Модели жизненного цикла ПО

Модель жизненного цикла - структура, определяющая последовательность выполнения и взаимосвязи стадий и этапов, выполняемых на протяжении ЖЦ. Модель ЖЦ зависит от специфики ПО и специфики условий, в которых последняя создается и функционирует. Основные модели ЖЦ следующие.

1. Каскадная модель (до 70-х годов XX в) определяет последовательный переход на следующий этап после завершения предыдущего.

Для этой модели характерна автоматизация отдельных несвязанных задач, не требующая информационной интеграции и совместимости, программного, технического и организационного сопряжения.

Достоинство : хорошие показатели по срокам разработки и надежности при решении отдельных задач.

Недостаток : неприменимость к большим и сложным проектам из-за изменчивости требований к системе в течение длительного проектирования.

2. Итерационная модель (70-80-е годы XX в.) соответствует технологии проектирования «снизу - вверх». Допускает итерационные возвраты на предыдущие этапы после выполнения очередного этапа;


Модель предусматривает обобщение полученных проектных решений отдельных задач в общесистемные решения. При этом возникает потребность в пересмотре ранее сформулированных требований.

Достоинство: возможность оперативно вносить коррективы в проект.

Недостаток: при большом числе итераций растет время проектирования, возникают расхождения в проектных решениях и документации, запутывается функциональная и системная архитектура созданной ПО. Необходимость в перепроектировании старой или создании новой системы может возникнуть сразу после этапа внедрения или эксплуатации.

3. Спиральная модель (80-90-е годы XX в.) соответствует технологии проектирования «сверху - вниз». Предполагает использование программного прототипа, допускающего программное расширение. Проект системы циклически повторяет путь от детализации требований к детализации программного кода.

При проектировании архитектуры системы сначала определяется состав функциональных подсистем и решаются общесистемные вопросы (организация интегрированной базы данных, технология сбора, передачи и накопления информации). Затем формулируются отдельные задачи и разрабатывается технология их решения.

При программировании сначала разрабатываются головные программные модули, а затем - модули, исполняющие отдельные функции. Сначала обеспечивается взаимодействие модулей между собой и с базой данных, а затем - реализация алгоритмов.

Достоинства:

1. сокращение число итераций и, следовательно, число ошибок и несоответствий, которые необходимо исправлять;

2. сокращение сроков проектирования;

3. упрощение создания проектной документации.

Недостаток: высокие требования к качеству общесистемного репозитория (общей базы проектных данных).

Спиральная модель лежит в основе технологии быстрой разработки приложений или RAD-технологии (rapid application development), которая предполагает активное участие конечных пользователей будущей системы в процессе ее создания. Основные стадии информационного инжиниринга следующие:

· Анализ и планирование информационной стратегии. Пользователи вместе со специалистами-разработчиками участвуют в идентификации проблемной области.

· Проектирование. Пользователи под руководством разработчиков принимают участие в техническом проектировании.

· Конструирование. Разработчики проектируют рабочую версию ПО с использованием языков 4-го поколения;

· Внедрение. Разработчики обучают пользователей работе в среде новой ПО.

Здравствуйте, уважаемые хабровчане! Думаю будет кому-то интересно вспомнить какие модели разработки, внедрения и использования программного обеспечения существовали ранее, какие модели в основном используются сейчас, зачем и что это собственно такое. В этом и будет заключаться моя небольшая тема.

Собственно, что же такое жизненный цикл программного обеспечения - ряд событий, происходящих с системой в процессе ее создания и дальнейшего использования. Говоря другими словами, это время от начального момента создания какого либо программного продукта, до конца его разработки и внедрения. Жизненный цикл программного обеспечения можно представить в виде моделей.

Модель жизненного цикла программного обеспечения - структура, содержащая процессы действия и задачи, которые осуществляются в ходе разработки, использования и сопровождения программного продукта.
Эти модели можно разделить на 3 основных группы:

  1. Инженерный подход
  2. С учетом специфики задачи
  3. Современные технологии быстрой разработки
Теперь рассмотрим непосредственно существующие модели (подклассы) и оценим их преимущества и недостатки.

Модель кодирования и устранения ошибок

Совершенно простая модель, характерная для студентов ВУЗов. Именно по этой модели большинство студентов разрабатывают, ну скажем лабораторные работы.
Данная модель имеет следующий алгоритм:
  1. Постановка задачи
  2. Выполнение
  3. Проверка результата
  4. При необходимости переход к первому пункту
Модель также ужасно устаревшая. Характерна для 1960-1970 гг., по-этому преимуществ перед следующими моделями в нашем обзоре практически не имеет, а недостатки на лицо. Относится к первой группе моделей.

Каскадная модель жизненного цикла программного обеспечения (водопад)

Алгоритм данного метода, который я привожу на схеме, имеет ряд преимуществ перед алгоритмом предыдущей модели, но также имеет и ряд весомых недостатков.

Преимущества:

  • Последовательное выполнение этапов проекта в строгом фиксированном порядке
  • Позволяет оценивать качество продукта на каждом этапе
Недостатки:
  • Отсутствие обратных связей между этапами
  • Не соответствует реальным условиям разработки программного продукта
Относится к первой группе моделей.

Каскадная модель с промежуточным контролем (водоворот)

Данная модель является почти эквивалентной по алгоритму предыдущей модели, однако при этом имеет обратные связи с каждым этапом жизненного цикла, при этом порождает очень весомый недостаток: 10-ти кратное увеличение затрат на разработку . Относится к первой группе моделей.

V модель (разработка через тестирование)

Данная модель имеет более приближенный к современным методам алгоритм, однако все еще имеет ряд недостатков. Является одной из основных практик экстремального программирования.

Модель на основе разработки прототипа

Данная модель основывается на разработки прототипов и прототипирования продукта.
Прототипирование используется на ранних стадиях жизненного цикла программного обеспечения:
  1. Прояснить не ясные требования (прототип UI)
  2. Выбрать одно из ряда концептуальных решений (реализация сцинариев)
  3. Проанализировать осуществимость проекта
Классификация протопипов:
  1. Горизонтальные и вертикальные
  2. Одноразовые и эволюционные
  3. бумажные и раскадровки
Горизонтальные прототипы - моделирует исключительно UI не затрагивая логику обработки и базу данных.
Вертикальные прототипы - проверка архитектурных решений.
Одноразовые прототипы - для быстрой разработки.
Эволюционные прототипы - первое приближение эволюционной системы.

Модель принадлежит второй группе.

Спиральная модель жизненного цикла программного обеспечения

Спиральная модель представляет собой процесс разработки программного обеспечения, сочетающий в себе как проектирование, так и постадийное прототипирование с целью сочетания преимуществ восходящей и нисходящей концепции.

Преимущества:

  • Быстрое получение результата
  • Повышение конкурентоспособности
  • Изменяющиеся требования - не проблема
Недостатки:
  • Отсутствие регламентации стадий
Третьей группе принадлежат такие модели как экстремальное программирование (XP), SCRUM , инкриментальная модель (RUP), но о них я бы хотел рассказать в отдельном топике.

Большое спасибо за внимание!

Жизненный цикл программы.

Жизненный цикл программного обеспечения (ПО) - период времени, который начинается с момента принятия решения о необходимости создания программного продукта и заканчивается в момент его полного изъятия из эксплуатации. Этот цикл - процесс построения и развития ПО.

Этапы жизненного цикла :

2. Проектирование

3. Реализация

4. Сборка, тестирование, испытание

5. Внедрение (выпуск)

6. Сопровождение

Различают 2 случая производства ПО: 1) ПО делается для конкретного заказчика. В этом случае нужно прикладную задачу преврашать в программистскую. Нужно понять как функционирует та среда, которую нужно автоматизировать (анализ бизнес-процессов). В результате появляется документация-спецификация требования, где указаны какие именно задачи д.б. решены и при каких условиях. Эту работу выполняет системный аналитик (аналитик бизнес-процессов).

2) ПО разрабатывается для рынка. Нужно проводить маркетинговые исследования и найти какого продукта на рынке нет. Это связано с большим риском. Цель – разработка спецификации требований.

Проектирование

Цель – определение общей структуры (архитектуры) ПО. Результат – спецификация ПО. Эту работу выполняет системный программист.

Реализация

Написание программного кода. Реализация включает и разработку, и тестирование, и документацию.

Сборка, тестирование, испытние

Сборка всего, что сделано разными программистами. Тестирование всего программного комплекса. Отладка – поиск и устранение причин ошибок. Испытание – уточнение технических характеристик. В результате – гарантия работоспособносит программы.

Внедрение (выпуск)

Внедрение – когда работают на одного заказчика. Включает постановку программы у заказчика, обучение заказчика, консультации, устранение ошибок и явных недостатков. Должно произойти отчуждение ПО – пользователь может работать с ПО без участия автора.

Выпуск – когда ПО разрабатывается на рынок. Начинается с этапа бета-тестирования. Соотв. версия – бета-версияю. Альфа-тестирование – тестирование людьми из той же организации, не участвовавших в разработке программ. Бета-тестирование – изготовление нескольких экземпляров ПО и отправка потенциальным заказчикам. Цель – еще раз проверить разработку ПО.

Если на рынок выпускается принципиально новый ПО, то возможно несколько бета-тестирований. После бета-тестирование – выпуск коммерческой версии.

Сопровождение

Устранение замеченных в ходе эксплуатации ошибок. Внесение непринципиальных усовершенствований. Накопление предложений для разработки следующей версии.

Модели жизненного цикла

1. Waterfall («водопад», каскадная модель)

2. Прототипирование

Сначала разрабатывается не сам программный продукт, а его прототип, содержащий решение главных проблем, стоящих перед разработчиками. После успешного завершения разработки прототипа по тем же принципам разрабатывается и настоящий программный продукт. Прототип позволяет лучше понимать требования к разрабатываемой программе. Используя прототип заказчик также может точнее сформулировать свои требования. Разработчик имеет возможность с помощью прототипа предъявить заказчику предварительные результаты своей работы.

3. Итерационная модель

Задача разделяется на подзадачи и определяется очередность их реализации т.о., чтобы каждая следующая подзадачи расширяла возможности ПО. Успех существенно зависит от того сколь удачно разделены задачи на подзадачи и как выбрана очередность. Преимущества: 1) возможность активного участия заказчика в разработке, он имеет возможность уточнить свои требования в ходе разработки; 2) возможность тестирования вновь разрабатываемых частей совместно с ранее разработанными, это уменьшит затраты на комплексную отладку; 3) во время разработки можно начинать внедрение по частям.

Жизненный цикл программного обеспечения включает в себя шесть этапов:

– анализ требований;

– определение спецификаций;

– проектирование;

– кодирование;

– тестирование;

– сопровождение.

Анализ требований . При разработке программного обеспечения он исключительно важен. Ошибки, допущенные на этом этапе, даже при условии безупречного выполнения последующих этапов могут привести к тому, что разработанный программный продукт не будет соответствовать требованиям практики, сферы его применения. Для создания конкурентоспособных продуктов в ходе выполнения этого этапа должны быть получены четкие ответы на следующие вопросы:

– Что должна делать программа?

– В чем состоят реальные проблемы, разрешению которых она должна способствовать?

– Что представляют собой входные данные?

– Какими должны быть выходные данные?

– Какими ресурсами располагает проектировщик?

Определение спецификаций . Спецификация – точное и полное формальное описание свойств, характеристик и функций программы, элемента данных или другого объекта. В определенной степени этот этап можно рассматривать как формулировку выводов, следующих из результатов предыдущего этапа. Требования к программе должны быть представлены в виде ряда спецификаций, явно определяющих рабочие характеристики будущей программы. В число таких характеристик могут входить скорость выполнения, объем потребляемой памяти, гибкость применения и др.

Проектирование . На этом этапе создается общая структура программы, которая должна удовлетворять спецификациям; определяются общие принципы управления и взаимодействия между различными компонентами программы.

Кодирование . Заключается в переводе на язык программирования конструкций, записанных на языке проектирования.

Тестирование . На этом этапе производится всесторонняя проверка программ.

Сопровождение. Это этап эксплуатации системы. Каким бы изощренным ни было тестирование программ, к сожалению, в больших программных комплексах чрезвычайно тяжело устранить абсолютно все ошибки. Устранение обнаруженных при эксплуатации ошибок – первейшая задача этого этапа. Однако это далеко не все, что выполняется при сопровождении. Выполняемый в ходе сопровождения анализ опыта эксплуатации программы позволяет обнаруживать «узкие места» или неудачные проектные решения в тех или иных частях программного комплекса. В результате такого анализа может быть принято решение о проведении работ по совершенствованию разработанной системы. Сопровождение может также включать в себя проведение консультаций, обучение пользователей системы, оперативное снабжение пользователей информацией о новых версиях системы. Качественное проведение этапа сопровождения в большой степени определяет коммерческий успех программного продукта.

Тестирование . Существуют три аспекта проверки программы на:

– правильность;

– эффективность реализации;

– вычислительную сложность.

Проверка правильности удостоверяет, что программа делает в точности то, для чего она была предназначена. Математическая безупречность алгоритма не гарантирует правильности его перевода в программу. Аналогично, ни отсутствие диагностических сообщений компилятора, ни разумный вид получаемых результатов не дают достаточной гарантии правильности программы. Как правило, проверка правильности заключается в разработке и проведении набора тестов. Кроме этого, для расчета программ иногда можно сверять получаемые решения с уже известным решением. В общем случае, нельзя дать общего решения для проведения проверки на правильность программы.

Проверка вычислительной сложности, как правило, заключается в экспериментальном анализе сложности алгоритма или экспериментальном сравнении двух алгоритмов и более, решающих одну и ту же задачу.

Проверка эффективности реализации направлена на отыскание способа заставить правильную программу работать быстрее или расходовать меньше памяти. Чтобы улучшить программу, пересматриваются результаты реализации в процессе построения алгоритма. Не рассматривая все возможные варианты и направления оптимизации программ, приведем здесь некоторые полезные способы, направленные на увеличение скорости выполнения программ.

Первый способ основан на следующем правиле. Сложение и вычитание выполняются быстрее, чем умножение и деление. Целочисленная арифметика быстрее арифметики вещественных чисел. Таким образом, Х+Х лучше, чем 2*Х, где * – знак умножения. При выполнении операций над целыми числами следует помнить, что благодаря применению двоичной системы счисления умножение на числа, кратные двум, можно заменить соответствующим количеством сдвигов влево.

Второй способ заключается в удалении избыточных вычислений.

Третий способ проверки эффективности реализации основан на способности некоторых компиляторов строить коды для вычисления логических выражений так, что вычисления прекращаются, если результат становится очевидным. Например, в выражении A or В or С, если А имеет значение «истина», то переменные В и С уже не проверяются. Таким образом, можно сэкономить время, разместив переменные А, В, С так, чтобы первой стояла переменная, которая вероятнее всего будет истинной, а последней та, которая реже всего принимает истинное значение.

Четвертый прием – исключение циклов.

Пятый прием – развертывание циклов.

Это далеко не полный перечень способов оптимизации. Здесь приведены лишь самые очевидные из них. Следует, кроме того, заметить, что не всегда стоит увлекаться погоней за быстродействием, так как при этом чаще всего ухудшается удобочитаемость программ. В том случае, когда выигрыш получается «мизерный», вряд ли стоит предпочитать его ясности и читабельности программы.

Стандарты жизненного цикла ПО

  • ГОСТ 34.601-90
  • ISO/IEC 12207:1995 (российский аналог - ГОСТ Р ИСО/МЭК 12207-99)

Стандарт ГОСТ 34 .601-90

Итерационная модель

Альтернативой последовательной модели является так называемая модель итеративной и инкрементальной разработки (англ. iterative and incremental development, IID ), получившей также от Т. Гилба в 70-е гг. название эволюционной модели . Также эту модель называют итеративной моделью и инкрементальной моделью .

Модель IID предполагает разбиение жизненного цикла проекта на последовательность итераций, каждая из которых напоминает «мини-проект», включая все процессы разработки в применении к созданию меньших фрагментов функциональности, по сравнению с проектом в целом. Цель каждой итерации - получение работающей версии программной системы, включающей функциональность, определённую интегрированным содержанием всех предыдущих и текущей итерации. Результат финальной итерации содержит всю требуемую функциональность продукта. Таким образом, с завершением каждой итерации продукт получает приращение - инкремент - к его возможностям, которые, следовательно, развиваются эволюционно . Итеративность, инкрементальность и эволюционность в данном случае есть выражение одного и то же смысла разными словами со слегка разных точек зрения .

По выражению Т. Гилба, «эволюция - прием, предназначенный для создания видимости стабильности. Шансы успешного создания сложной системы будут максимальными, если она реализуется в серии небольших шагов и если каждый шаг заключает в себе четко определённый успех, а также возможность «отката» к предыдущему успешному этапу в случае неудачи. Перед тем, как пустить в дело все ресурсы, предназначенные для создания системы, разработчик имеет возможность получать из реального мира сигналы обратной связи и исправлять возможные ошибки в проекте» .

Подход IID имеет и свои отрицательные стороны, которые, по сути, - обратная сторона достоинств. Во-первых, целостное понимание возможностей и ограничений проекта очень долгое время отсутствует. Во-вторых, при итерациях приходится отбрасывать часть сделанной ранее работы. В-третьих, добросовестность специалистов при выполнении работ всё же снижается, что психологически объяснимо, ведь над ними постоянно довлеет ощущение, что «всё равно всё можно будет переделать и улучшить позже» .

Различные варианты итерационного подхода реализованы в большинстве современных методологий разработки (RUP , MSF , ).

Спиральная модель

Каждая итерация соответствует созданию фрагмента или версии ПО, на ней уточняются цели и характеристики проекта, оценивается качество полученных результатов и планируются работы следующей итерации.

На каждой итерации оцениваются:

  • риск превышения сроков и стоимости проекта;
  • необходимость выполнения ещё одной итерации;
  • степень полноты и точности понимания требований к системе;
  • целесообразность прекращения проекта.

Важно понимать, что спиральная модель является не альтернативой эволюционной модели (модели IID), а специально проработанным вариантом. К сожалению, нередко спиральную модель либо ошибочно используют как синоним эволюционной модели вообще, либо (не менее ошибочно) упоминают как совершенно самостоятельную модель наряду с IID .

Отличительной особенностью спиральной модели является специальное внимание, уделяемое рискам, влияющим на организацию жизненного цикла, и контрольным точкам. Боэм формулирует 10 наиболее распространённых (по приоритетам) рисков:

  1. Дефицит специалистов.
  2. Нереалистичные сроки и бюджет.
  3. Реализация несоответствующей функциональности.
  4. Разработка неправильного пользовательского интерфейса.
  5. Перфекционизм, ненужная оптимизация и оттачивание деталей.
  6. Непрекращающийся поток изменений.
  7. Нехватка информации о внешних компонентах, определяющих окружение системы или вовлеченных в интеграцию.
  8. Недостатки в работах, выполняемых внешними (по отношению к проекту) ресурсами.
  9. Недостаточная производительность получаемой системы.
  10. Разрыв в квалификации специалистов разных областей.

В сегодняшней спиральной модели определён следующий общий набор контрольных точек :

  1. Concept of Operations (COO) - концепция (использования) системы;
  2. Life Cycle Objectives (LCO) - цели и содержание жизненного цикла;
  3. Life Cycle Architecture (LCA) - архитектура жизненного цикла; здесь же возможно говорить о готовности концептуальной архитектуры целевой программной системы;
  4. Initial Operational Capability (IOC) - первая версия создаваемого продукта, пригодная для опытной эксплуатации;
  5. Final Operational Capability (FOC) –- готовый продукт, развернутый (установленный и настроенный) для реальной эксплуатации.

Методологии разработки ПО

  • Microsoft Solutions Framework (MSF). Включает 4 фазы: анализ, проектирование, разработка, стабилизация, предполагает использование объектно-ориентированного моделирования.
  • Экстремальное программирование (англ. Extreme Programming, XP ). В основе методологии командная работа, эффективная коммуникация между заказчиком и исполнителем в течение всего проекта по разработке ИС. Разработка ведется с использованием последовательно дорабатываемых прототипов.
  • ЕСПД - комплекс государственных стандартов Российской Федерации, устанавливающих взаимосвязанные правила разработки, оформления и обращения программ и программной документации.

Литература

  • Братищенко В.В. Проектирование информационных систем. - Иркутск: Изд-во БГУЭП, 2004. - 84 с.
  • Вендров А.М. Проектирование программного обеспечения экономических информационных систем. - М .: Финансы и статистика, 2000.
  • Грекул В.И., Денищенко Г.Н., Коровкина Н.Л. Проектирование информационных систем. - М .: Интернет-университет информационных технологий - ИНТУИТ.ру, 2005.
  • Мишенин А.И. Теория экономических информационных систем. - М .: Финансы и статистика, 2000. - 240 с.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Жизненный цикл программного обеспечения" в других словарях:

    Период разработки и эксплуатации программного обеспечения, в котором обычно выделяют этапы: 1 возникновение и исследование идеи; 2 анализ требований и проектирование; 3 программирование; 4 тестирование и отладка; 5 ввод программы в действие; 6… … Финансовый словарь

    жизненный цикл программного обеспечения - … Справочник технического переводчика

    жизненный цикл программного обеспечения - 3.7 жизненный цикл программного обеспечения; жизненный цикл ПО (software lifecycle): Последовательность следующих друг за другом процессов создания и использования программного обеспечения программируемой связанной с безопасностью здания или… …

    жизненный цикл программного обеспечения - Последовательность следующих друг за другом процессов создания и использования программного обеспечения, происходящих в течение интервала времени, который начинается с разработки общей концепции программного обеспечения и заканчивается когда… … Комплексное обеспечение безопасности и антитеррористической защищенности зданий и сооружений

    Цикл программного обеспечения жизненный - Жизненный цикл программного обеспечения (software lifecycle): период времени, включающий в себя стадии: разработки требований к программному обеспечению, разработки программного обеспечения, кодирования, тестирования, интеграции, установки, а… … Официальная терминология

    жизненный цикл - 4.16 жизненный цикл (life cycle): Развитие системы, продукта, услуги, проекта или других изготовленных человеком объектов, начиная со стадии разработки концепции и заканчивая прекращением применения. Источник … Словарь-справочник терминов нормативно-технической документации

    Это процесс ее построения и развития. Жизненный цикл информационной системы период времени, который начинается с момента принятия решения о необходимости создания информационной системы и заканчивается в момент ее полного изъятия из… … Википедия

    Жизненный цикл информационной системы это процесс ее построения и развития. Жизненный цикл информационной системы период времени, который начинается с момента принятия решения о необходимости создания информационной системы и заканчивается в… … Википедия, О. В. Казарин. В книге рассмотрены теоретические и прикладные аспекты проблемы зашиты программного обеспечения от различного рода злоумышленных действий. Особое внимание уделено моделям и методам создания…