Физико химическая теория растворов д и менделеева. Сольватная (гидратная) теория растворения. Растворы и их классификация

Физическая теория растворов (Вант – Гофф, Аррениус – ученые внесшие вклад в развитие) рассматривала, растворитель, как инертную среду и приравнивала растворы к простым механическим смесям.

Недостатки теории: а) не объясняла энергетический эффект растворителя; б) не объясняла изменения объема в процессе растворения; в) не объясняла изменение окраски в процессе растворения

Химическая теория растворов (Д.И.Менделеев) Растворы рассматривались, как химические соединения. Однако, в растворах нет строгого соотношения между веществом и растворителем, т.е. растворы не подчиняются закону постоянства состава. Кроме того в свойствах растворов можно обнаружить многие свойства, его отдельных компонентов, чего не наблюдается в случае химического соединения.

Физико-химическая теория растворов (Каблуков) С этой точки зрения растворы занимают промежуточное положение, между механическими смесями и химического соединения.

Процесс растворения тесно связан с диффузией, под влияние растворителя от поверхности твердого вещества, постепенно отрываются молекулы или ионы и в растворе диффузий распределяются по всему объему растворителя. С поверхности затем снимается новый слой молекул и т.д. Перешедшие в растворе ионы остаются связанными с молекулами воды и образуют гидраты ионов. В общем случае любого растворителя эти соединения называют сольватами ионов. Одновременно происходит обратный процесс выделения молекул из раствора. Обратный процесс тем больше, чем выше концентрация раствора при динамическом равновесии, сколько молекул растворяются, столько же выделяется из раствора.

5.Гидролиз растворов солей. Степень гидролиза и факторы, влияющие на нее. Типичные случаи гидролиза (показать на примерах).

Взаимодействие ионов соли с водой приводящее к образованию слабого электролита называется гидролизом соли. Различают несколько случаев гидролиза:

Соль сильного основания и слабой кислоты. (CH 3 COONa, NaCO 3 , KCN, Na 2 S)

В водном растворе соль сначала диссоциирует на катионы и анионы

диссоциация:

Анион слабой кислоты взаимодействует с водой, создавая щелочную среду (гидролиз по аниону):

гидролиз:

Константа диссоциации уравнения гидролиза:

т.к. =const, то К Д = К Г (константе гидролиза)

т.к. Кводы = ·, то = Кводы/

Т.е. чем слабее кислота, тем меньше ее Кд, тем сильнее будет гидролизована соль.

Гидролиз солей многоосновных кислот протекает ступенчато:

1 ступень:

2 ступень:

В растворах обычной концентрации гидролиз этой соли идет лишь по первой ступени с образованием кислой соли. В сильно разбавленных растворах гидролиз частично идет по 2 ступени с образованием свободной угольной кислоты. Гидролиз по 2 ступени не значителен, т.к. велика концентрация ионов ОН.

Соль слабого основания и сильной кислоты (nh4no3, ZnCl2, Al2(so4)3)

диссоциация:

Катион слабого основания взаимодействует с водой, создавая кислую среду:

гидролиз:

молекулярное уравнение гидролиза:

Чем слабее основание, тем сильнее будет гидролизована соль.

Соли многокислотных оснований гидролизуются ступенчато:

1 ступень:

2 ступень:

В обычных условиях гидролиз этой соли идет только по первой ступени.

Соль слабой кислоты и слабого основания (CH 3 COONH 4 , Al 2 S 3 , (NH 4 ) 2 CO 3 )

В данном случае гидролизу подвергается и катион, и анион соли (гидролиз по катиону и аниону)

Диссоциация:

Гидролиз:

Среда гидролиза определяется тем ионом соли, у которого степень гидролиза выше (кислая, щелочная, нейтральная)

Соли сильного основания и сильной кислоты (NaOH , CaCl 2 , NaNO 3 )

Эти соли при растворении в воде не гидролизуются, их растворы имеют нейтральную реакцию.

Полный (совмещенный) гидролиз

Протекает при сливании 2х растворов разных солей, причем одна из солей гидролизована по катиону, а другая по аниону, при этом образуется слабая кислота и слабое основание.

Степень гидролиза

Под степенью гидролиза подразумевается отношение части соли, подвергающейся гидролизу, к общей концентрации её ионов в растворе.

Степень гидролиза соли тем выше, чем слабее кислота или основание, её образующие.

h связано с К Г уравнением аналогичным закону разбавления Оствальда

Чаще всего гидролизованная часть соли очень мала и концентрация продуктов гидролиза не значительна, тогда h<1, а 1-h≈1

т.е. при разбавлении раствора соли степень ее гидролиза возрастает.

Кроме разбавления раствора усилить гидролиз можно нагреванием раствора, а также добавлением специальных реагентов.

Растворы

Обязательно одним из компонентов является растворитель, остальные компоненты – растворенные вещества.

Растворителем является то вещество, которое в чистом виде имеет то же состояние, что и раствор. Если же таких компонентов несколько, то растворителем является тот, содержание которого в растворе больше.

Растворы бывают:

1. Жидкие (раствор NaCl в воде, раствор I 2 в спирте).

2. Газообразные (смеси газов, например: воздух – 21 % O 2 + 78 % N 2 + 1 % др. газов).

3. Твердые (сплавы металлов, например: Cu + N, Au + Ag).

Наиболее распространены жидкие растворы. Они состоят из растворителя (жидкости) и растворенных веществ (газообразных, жидких, твердых).

Жидкие растворы

Такие растворы могут быть водные и неводные .

Водные

Неводные

Долгое время на природу растворения существовало две точки зрения: физической и химической. Согласно первой, растворы рассматривались как механические смеси, согласно второй – как нестойкие химические соединения молекул растворенного вещества и растворителя. Последняя точка зрения была высказана Д.И. Менделеевым в 1887 г. и является в настоящее время общепризнанной.

ОСНОВНЫЕ ПОЛОЖЕНИЯ ХИМИЧЕСКОЙ ТЕОРИИ РАСТВОРОВ , созданной Менделеевым, сводятся к следующему:

1. Образование и существование раствора обусловлено взаимодействиями между всеми частицами, как уже существовавшими, так и образующимися при растворении.

2. Раствор является динамической системой, в которой распадающиеся соединения находятся в подвижном равновесии с продуктами распада в соответствии с законом действия масс.

При растворении вещества происходят два процесса, связанные с изменениями энергии системы «вещество – растворитель»:

1) разрушение структуры растворяемого вещества (при этом затрачивается определенная энергия) – реакция эндотермическая.

2) взаимодействие растворителя с частицами растворенного вещества (происходит выделение тепла) – реакция экзотермическая.

В зависимости от соотношения этих тепловых эффектов процесс растворения вещества может быть экзотермическим (∆H < O) или эндотермическим (∆H > O).

Теплота растворения ∆H – это количество теплоты, выделяющееся или поглощающееся при растворении 1 моль вещества.

Теплота растворения для различных веществ различна. Так, при растворении в воде гидроксида калия или серной кислоты температура значительно повышается (∆H < O), а при растворении нитратов калия или аммония резко снижается (∆H > O).

Выделение или поглощение теплоты при растворении есть признак химической реакции. В результате взаимодействия растворенного вещества с растворителем образуются соединения, которые называются сольватами (или гидратами , если растворителем является вода). Многие соединения такого вида непрочны, однако, в ряде случаев образуются прочные соединения, которые легко можно выделить из раствора кристаллизацией.

При этом выпадают кристаллические вещества, содержащие в своем составе молекулы воды, их называют кристаллогидратами (например: медный купорос CuSO 4 * 5 H 2 O – кристаллогидрат); вода, входящая в состав кристаллогидратов, называется кристаллизационной.

Представления о гидратации (соединение вещества с водой) было выдвинуто и развито русским ученым И.А. Каблуковым и В.А. Кистяковским. на основе этих представлений произошло объединение химической и физической точек зрения на растворы.

Таким образом, растворение растворы – физико-химические системы.

1.Растворы – гомогенные (однородные) системы переменного состава, которые содержат два или несколько компонентов и продукты их взаимодействия.

2.Растворы состоят из растворителя и растворенного вещества.

3.Растворы бывают:

А)Жидкие (раствор NaCl в воде, раствор I 2 в спирте).

Б)Газообразные (смеси газов, например: воздух – 21 % O 2 + 78 % N 2 + 1 % др. газов).

В)Твердые (сплавы металлов, например: Cu + N, Au + Ag).

Жидкие растворы
жидкость + газообразное вещество (р-р O 2 в воде) жидкость + жидкое вещество (р-р H 2 SO 4 в воде) жидкость + твердое вещество (р-р сахара в воде)

Такие растворы могут быть водные и неводные .

5.Водные – растворы, в которых растворителем является вода.

6.Неводные – растворы, в которых растворителями являются другие жидкости (бензол, спирт, эфир и др.)

7.ОСНОВНЫЕ ПОЛОЖЕНИЯ ХИМИЧЕСКОЙ ТЕОРИИ РАСТВОРОВ:

1.Образование и существование раствора обусловлено взаимодействиями между всеми частицами, как уже существовавшими, так и образующимися при растворении.

2.Раствор является динамической системой, в которой распадающиеся соединения находятся в подвижном равновесии с продуктами распада в соответствии с законом действия масс.

8.При растворении вещества происходят два процесса, связанные с изменениями энергии системы «вещество – растворитель»:

1.разрушение структуры растворяемого вещества (при этом затрачивается определенная энергия) – реакция эндотермическая.

2.взаимодействие растворителя с частицами растворенного вещества (происходит выделение тепла) – реакция экзотермическая.

9.Выделение или поглощение теплоты при растворении есть признак химической реакции.

10. В результате взаимодействия растворенного вещества с растворителем образуются соединения, которые называются сольватами (или гидратами , если растворителем является вода)

11.Кристаллические вещества, содержащие в своем составе молекулы воды, называют кристаллогидратами (например: медный купорос CuSO 4 * 5 H 2 O – кристаллогидрат); вода, входящая в состав кристаллогидратов, называется кристаллизационной

12.Растворение – это не только физический, но и химический процесс, а растворы – физико-химические системы.

Виды растворов (знать).

Растворение – процесс обратимый:

По соотношению преобладания числа частиц, переходящих в раствор и удаляющихся из раствора, различают растворы насыщенные , ненасыщенные и перенасыщенные .

С другой стороны, по относительным количествам растворенного вещества и растворителя растворы подразделяются на разбавленные концентрированные

Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор находится в равновесии с растворяемым веществом, называется насыщенным ненасыщенным . В перенасыщенных Растворимостью Мерой растворимости или коэффициентом растворимости вещества при определенной температуре служит число граммов его, растворяющихся в 100 г воды.

По растворимости в воде твердые вещества условно делят на 3 группы:

1. Вещества, хорошо растворимые в воде (10 г вещества в 100, 0 воды. Например, в 1 л воды растворяется 200 г сахара).

2. Вещества, малорастворимые в воде (от 0, 01 до 10 г вещества в 100 г воды. Например: гипс CaSO 4 в 1 л растворяется 2, 0).

3. Вещества, практически нерастворимые в воде (0, 01 г в 100, 0 воды. Например, AgCl – в 1 л воды растворяется 1, 5 * 10 -3 г).

Растворимость вещества зависит от природы растворителя, от природы растворенного вещества, температуры, давления (для газов).

Растворимость газов при повышении температуры уменбшается, при повышении давления увеличивается.

Зависимость растворимости твердых веществ от температуры показывает кривая растворимости.

Растворимость многих твердых веществ увеличивается при повышении температуры.

По кривым растворимости можно определить:

1. Коэффициент растворимости веществ при различных температурах.

2. Массу растворенного вещества, которое выпадает в осадок при охлаждении раствора от t 1 0 C до t 2 0 C.

Процесс выделения вещества путем испарения или охлаждения его насыщенного раствора называется перекристаллизацией . Перекристаллизация используется для очистки веществ.

К сожалению, до настоящего времени не существует теории, позволяющей объединить результаты отдельных исследований и вывести общие законы растворимости. Подобное положение в значительной степени обусловлено тем, что растворимость различных веществ очень различно зависит от температуры.

Единственно, чем можно до некоторой степени руководствоваться – это старинным, найденным на опыте правилом: подобное растворяется в подобном . Смысл его в свете современных взглядов на строение молекул состоит в том, что если у самого растворителя молекулы неполярные или малополярные (например, бензол, эфир), то в нем будут хорошо растворяться от вещества с неполярными или малополярными молекулами, хуже – вещества с большей полярностью и практически не будут растворяться вещества, построенные по ионному типу. Наоборот, растворитель с сильно выраженным полярным характером молекул (например, вода) будет, как правило, хорошо растворять вещества с молекулами полярного и отчасти ионного типов и плохо – вещества с неполярными молекулами.

1.Растворение – процесс обратимый: растворяемое вещество + растворитель ↔ вещество в растворе ± Q.

2.По соотношению преобладания числа частиц, переходящих в раствор и удаляющихся из раствора, различают растворы насыщенные , ненасыщенные и перенасыщенные .

3.По относительным количествам растворенного вещества и растворителя растворы подразделяются на разбавленные (содержат мало растворенного вещества) и концентрированные (содержат много растворенного вещества).

4.Раствор, в котором данное вещество при данной температуре больше не растворяется называется насыщенным , а раствор, в котором еще можно растворить добавочное количество данного вещества – ненасыщенным . В перенасыщенных растворах вещества содержится больше, чем в насыщенном.

5.Растворимостью называется свойство вещества растворяться в воде и в других растворителях.

6.Растворимость вещества зависит от природы растворителя, от природы растворенного вещества, температуры, давления (для газов).

4. Способы выражения концентрации растворов: массовая доля

(знать).

Количественный состав раствора определяется его концентрацией.

Концентрация – это количество растворенного вещества, отнесенное к единице объема.

Различают два типа обозначений концентрации веществ – аналитические и технические.

РАСТВОРЫ

Общие сведения

Растворы - компонентами.

«растворитель» и «растворенное вещество» полярные неполярные



гидрофильные (притягивающие воду) и гидрофобные дифильными

Теории растворов

Физическая теория растворов.

идеальными

Химическая теория растворов.

Химическая, или сольватная, теория растворов была предложена в 1887 г. Д.И. Менделеевым, который установил, что в реальном растворе присутствуют не только индивидуальные компоненты, но и продукты их взаимодействия. Исследования водных растворов серной кислоты и этилового спирта, проведенные Д.И. Менделеевым, легли в основу теории, суть которой заключается в том, что между частицами растворенного вещества и молекулами растворителя происходят взаимодействия, в результате которых образуются нестойкие соединения переменного состава, называемые сольватами или гидратами , если растворителем является вода. Главную роль в образовании сольватов играют непрочные межмолекулярные силы, в частности, водородная связь.

В этой связи следует принять следующую трактовку понятия «раствор»:

Раствором называется гомогенная система переменного состава, состоящая из двух и более компонентов и продуктов их взаимодействия.

Из данного определения следует, что растворы занимают промежуточное положение между химическими соединениями и смесями. С одной стороны, растворы однородны, что позволяет рассматривать их как химические соединения. С другой стороны, в растворах нет строгого стехиометрического соотношения между компонентами. Кроме того, растворы можно разделить на составные части (например, при упаривании раствора NaCl можно выделить соль в индивидуальном виде).

Связь между различными способами

Кислоты и основания

Несмотря на то, что понятия «кислота» и «основание» широко используются для описания химических процессов, единого подхода к классификации веществ с точки зрения отнесения их к кислотам или основаниям нет. Существующие в настоящее время теории (ионная теория С. Аррениуса , протолитическая теория И. Бренстеда и Т. Лоури и электронная теория Г. Льюиса ) имеют определенные ограничения и, таким образом, применимы лишь в частных случаях. Остановимся подробнее на каждой из этих теорий.

Теория Аррениуса.

В ионной теории Аррениуса понятия «кислота» и «основание» тесно связаны с процессом электролитической диссоциации:

Кислотой является электролит, диссоциирующий в растворах с образованием ионов Н + ;

Основаниемявляется электролит, диссоциирующий в растворах с образованием ионовОН - ;

Амфолитом (амфотерным электролитом) является электролит, диссоциирующий в растворах с образованием как ионовН + , так и ионов ОН - .

Например:

НА ⇄ Н + + А - nH + +MeO n n - ⇄Ме(ОН) n ⇄Ме n + +nОН -

В соответствии с ионной теорией кислотами могут быть как нейтральные молекулы, так и ионы, например:

HF ⇄ H + + F -

H 2 PO 4 - ⇄ H + + HPO 4 2 -

NH 4 + ⇄H + +NH 3

Аналогичные примеры можно привести и для оснований:

КОН К + + ОН -

- ⇄Al(OH) 3 + ОН -

+ ⇄Fe 2+ + ОН -

К амфолитам относят гидроксиды цинка, алюминия, хрома и некоторые другие, а также аминокислоты, белки, нуклеиновые кислоты.

В целом, кислотно-основное взаимодействие в растворе сводится к реакции нейтрализации:

H + + ОН - H 2 O

Однако, ряд экспериментальных данных показывает ограниченность ионной теории. Так, аммиак, органические амины, оксиды металлов типа Na 2 O, СаО, анионы слабых кислот и т.д. в отсутствии воды проявляют свойства типичных оснований, хотя не имеют в своем составе гидроксид-ионов.

С другой стороны, многие оксиды (SO 2 , SO 3 , Р 2 О 5 и т.д.), галогениды, галогенангидриды кислот, не имея в своем составе ионов водорода, даже в отсутствии воды проявляют кислотные свойства, т.е. нейтрализуют основания.

Кроме того, поведение электролита в водном растворе и в неводной среде может быть противоположным.

Так, CH 3 COOH в воде является слабой кислотой:

CH 3 COOH⇄CH 3 COO - +H + ,

а в жидком фтороводороде проявляет свойства основания:

HF + CH 3 COOH⇄CH 3 COOH 2 + +F -

Исследования подобных типов реакций и в особенности реакций, протекающих в неводных растворителях, привели к созданию более общих теорий кислот и оснований.

Теория Бренстеда и Лоури.

Дальнейшим развитием теории кислот и оснований явилась предложенная И. Бренстедом и Т. Лоурипротолитическая (протонная) теория. В соответствии с этой теорией:

Кислотой называют любое вещество, молекулы (или ионы) которого способны отдавать протон, т.е. быть донором протона;

Основанием называют любое вещество, молекулы (или ионы) которого способны присоединять протон, т.е. быть акцептором протона;

Таким образом, понятие основания значительно расширяется, что подтверждается следующими реакциями:

ОН - + Н + Н 2 О

NH 3 +H + NH 4 +

H 2 N-NH 3 + +H + H 3 N + -NH 3 +

По теории И. Бренстеда и Т. Лоури кислота и основание составляют сопряженную пару и связаны равновесием:

КИСЛОТА ⇄ ПРОТОН + ОСНОВАНИЕ

Поскольку реакция переноса протона (протолитическая реакция) обратима, причем в обратном процессе тоже передается протон, то продукты реакции являются друг по отношению к другу кислотой и основанием. Это можно записать в виде равновесного процесса:

НА + В ⇄ ВН + + А - ,

где НА – кислота, В – основание, ВН + – кислота, сопряженная с основанием В, А - – основание, сопряженное с кислотой НА.

Примеры.

1) в реакции:

HCl+OH - ⇄Cl - +H 2 O,

HCl и H 2 O – кислоты, Cl - и OH - – соответствующие сопряженные с ними основания;

2) в реакции:

HSO 4 - +H 2 O⇄SO 4 2 - +H 3 O + ,

HSO 4 - и H 3 O + – кислоты, SO 4 2 - и H 2 O – основания;

3) в реакции:

NH 4 + +NH 2 - ⇄ 2NH 3 ,

NH 4 + – кислота, NH 2 - – основание, а NH 3 выступает в роли как кислоты (одна молекула), так и основания (другая молекула), т.е. демонстрирует признаки амфотерности – способности проявлять свойства кислоты и основания.

Такой способностью обладает и вода:

2Н 2 О ⇄ Н 3 О + + ОН -

Здесь одна молекула Н 2 О присоединяет протон (основание), образуя сопряженную кислоту – ион гидроксония Н 3 О + , другая отдает протон (кислота), образуя сопряженное основание ОН - . Этот процесс называется автопротолизом .

Из приведенных примеров видно, что в отличие от представлений Аррениуса, в теории Бренстеда и Лоури реакции кислот с основаниями не приводят к взаимной нейтрализации, а сопровождаются образованием новых кислот и оснований.

Необходимо также отметить, что протолитическая теория рассматривает понятия «кислота» и «основание» не как свойство, но как функцию, которую выполняет рассматриваемое соединение в протолитической реакции. Одно и то же соединение может в одних условиях реагировать как кислота, в других – как основание. Так, в водном растворе СН 3 СООН проявляет свойства кислоты, а в 100%-й H 2 SO 4 – основания.

Однако, несмотря на свои достоинства, протолитическая теория, как и теория Аррениуса, не применима к веществам, не содержащим атомов водорода, но, в тоже время, проявляющим функцию кислоты: галогенидам бора, алюминия, кремния, олова.

Теория Льюиса.

Иным подходом к классификации веществ с точки зрения отнесения их к кислотам и основаниям явилась электронная теория Льюиса. В рамках электронной теории:

кислотой называют частицу (молекулу или ион), способную присоединять электронную пару (акцептор электронов);

основанием называют частицу (молекулу или ион), способную отдавать электронную пару (донор электронов).

Согласно представлениям Льюиса, кислота и основание взаимодействуют друг с другом с образованием донорно-акцепторной связи. В результате присоединения пары электронов у атома с электронным дефицитом возникает завершенная электронная конфигурация - октет электронов. Например:

Аналогичным образом можно представить и реакцию между нейтральными молекулами:

Реакция нейтрализации в терминах теории Льюиса рассматривается как присоединение электронной пары гидроксид-иона к иону водорода, предоставляющему для размещения этой пары свободную орбиталь:

Таким образом, сам протон, легко присоединяющий электронную пару, с точки зрения теории Льюиса, выполняет функцию кислоты. В этой связи, кислоты по Бренстеду могут рассматриваться как продукты реакции между льюисовскими кислотами и основаниями. Так, HCl является продуктом нейтрализации кислоты H + основанием Cl - , а ион H 3 O + образуется в результате нейтрализации кислоты H + основанием H 2 O.

Реакции между кислотами и основаниями Льюиса также иллюстрируют следующие примеры:

К основаниям Льюиса также относят галогенид-ионы, аммиак, алифатические и ароматические амины, кислородсодержащие органические соединения типа R 2 CO, (где R- органический радикал).

К кислотам Льюиса относят галогениды бора, алюминия, кремния, олова и других элементов.

Очевидно, что в теории Льюиса понятие «кислота» включает в себя более широкий круг химических соединений. Это объясняется тем, что по Льюису отнесение вещества к классу кислот обусловлено исключительно строением его молекулы, определяющим электронно-акцепторные свойства, и не обязательно связано с наличием атомов водорода. Льюисовские кислоты, не содержащие атомов водорода, называют апротонными .

РАСТВОРЫ

Общие сведения

Растворы - это гомогенные системы переменного состава, состоящие из двух и более веществ, называемых компонентами. По агрегатному состоянию растворы могут быть газообразными (воздух), жидкими (кровь, лимфа) и твердыми (сплавы). В медицине наибольшее значение имеют жидкие растворы, которые играют исключительную роль в жизнедеятельности живых организмов. С образованием растворов связаны процессы усвоения пищи и выведения из организма продуктов жизнедеятельности. В форме растворов вводится большое количество лекарственных препаратов.

Для качественного и количественного описания жидких растворов используются термины «растворитель» и «растворенное вещество» , хотя в некоторых случаях такое разделение является достаточно условным. Так, медицинский спирт (96% раствор этанола в воде) скорее следует рассматривать как раствор воды в спирте. Все растворители делятся на неорганические и органические. Важнейшим неорганическим растворителем (а в случае биологических систем – единственным) является вода. Это обусловлено такими свойствами воды, как полярность, низкая вязкость, склонность молекул к ассоциации, относительно высокие температуры кипения и плавления. Растворители органической природы разделяют на полярные (спирты, альдегиды, кетоны, кислоты) и неполярные (гексан, бензол, четыреххлористый углерод).

Процесс растворения в равной степени зависит как от природы растворителя, так и от свойств растворенного вещества. Очевидно, что способность образовывать растворы выражена у разных веществ по-разному. Одни вещества могут смешиваться друг с другом в любых количествах (вода и этанол), другие – в ограниченных (вода и фенол). Однако, следует помнить: абсолютно нерастворимых веществ не существует!

Склонность вещества растворяться в том или ином растворителе можно определить, используя простое эмпирическое правило: подобное растворяется в подобном. Действительно, вещества с ионным (соли, щелочи) или полярным (спирты, альдегиды) типом связи хорошо растворимы в полярных растворителях, например, в воде. И наоборот, растворимость кислорода в бензоле на порядок выше чем в воде, так как молекулы O 2 и C 6 H 6 неполярны.

Степень сродства соединения к определенному типу растворителя можно оценить, анализируя природу и количественное соотношение входящих в его состав функциональных групп, среди которых выделяют гидрофильные (притягивающие воду) и гидрофобные (отталкивающие воду). К гидрофильным относят полярные группы, такие как гидроксильная (-OH), карбоксильная (-COOH), тиольная (-SH), амино (-NH 2). Гидрофобными считают неполярные группы: углеводородные радикалы алифатического (-CH 3 , -C 2 H 5) и ароматического (-C 6 H 5) рядов. Соединения, имеющие в своем составе как гидрофильные, так и гидрофобные группы, называют дифильными . К таким соединениям относят аминокислоты, белки, нуклеиновые кислоты.

Теории растворов

В настоящее время известны две основные теории растворов: физическая и химическая.

Физическая теория растворов.

Физическая теория растворов была предложена С. Аррениусом (1883) и Я. Г. Вант-Гоффом (1885). В данной теории растворитель рассматривается как химически инертная среда, в которой равномерно распределены частицы (молекулы, ионы) растворенного вещества. При этом предполагается отсутствие межмолекулярного взаимодействия как между частицами растворенного вещества, так и между молекулами растворителя и частицами растворенного вещества. Однако впоследствии выяснилось, что условиям данной модели удовлетворяет поведение лишь малой группы растворов, которые были названы идеальными . В частности, идеальными растворами можно считать газовые смеси и очень сильно разбавленные растворы неэлектролитов.

Тема 7. Растворы. Дисперсные системы

Лекции 15-17 (6 ч)

Цель лекций: изучить основные положения сольватной (гидратная) теории растворения; общие свойства растворов (законы Рауля, Вант-Гоффа, осмотическое давление, уравнение Аррениуса); типы жидких растворов, дать определение растворимости; рассмотреть свойства слабых электролитов (константу растворимости, закон разбавление Оствальда, ионное произведение воды, рН среды, произведение растворимости); свойства сильных электролитов (теорию Дебая-Хюккеля, ионную силу раствора); дать классификацию дисперсных систем; рассмотреть устойчивость коллоидных растворов, коагуляцию, пептизацию, получение коллоидно-дисперсных систем и свойства коллоидно-дисперсных систем (молекулярно-кинетические, оптические и электро-кинетические).

Изучаемые вопросы:

7.1. Сольватная (гидратная) теория растворения.

7.2. Общие свойства растворов.

7.3. Типы жидких растворов. Растворимость.

7.4. Свойства слабых электролитов.

7.5. Свойства сильных электролитов.

7.6. Классификация дисперсных систем.

7.7. Получение коллоидно-дисперсных систем.

7.8. Устойчивость коллоидных растворов. Коагуляция. Пептизация.

7.9. Свойства коллоидно-дисперсных систем.

Растворами называются гомогенные системы, состоящие из двух или более веществ, состав которых может меняться в довольно широких пределах, допустимых растворимостью. Всякий раствор состоит из нескольких компонентов: растворителя (А ) и растворенного вещества одного или нескольких (В ).

Компонент – это однородная по химическим свойствам часть термодинамической системы, которая может быть выделена из нее и существовать в свободном виде сколь угодно долго.

Растворитель – это компонент, концентрация которого выше концентрации других компонентов в растворе. Он сохраняет свое фазовое состояние при образовании растворов.

Любой раствор характеризуется такими свойствами, как плотность, температура кипения, температура замерзания, вязкость, поверхностное натяжение, давление растворителя над раствором, осмотическое давление и т. д. Эти свойства изменяются плавно при изменении давления, температуры, состава (концентрации). Концентрация раствора указывает количество вещества, которое содержится в определенном весовом количестве раствора или растворителя или в определенном объеме раствора. В химии применяются разнообразные способы выражения концентрации растворов:

Массовая доля растворенного вещества (процентная концентрация (w)) показывает число г растворенного вещества (m в ) в 100 г раствора (m р ), выражается в %:

Молярная концентрация (С) показывает число моль растворенного вещества (n) в 1 дм³ раствора (V):


Выражается в моль/дм³, например, С(1/1Н 2 SO 4) = 0,1 моль/дм³.

Молярная концентрация эквивалента – это число молей-эквивалентов растворенного вещества в 1 дм³ раствора (V):

Выражается в моль/дм³. Например, С(1/2Н 2 SO 4) = 0,1 моль/дм³; С(1/5 KМnO 4) = 0,02 моль/дм³.

Понятия эквивалент, фактор эквивалентности (например, f экв (HCl) = 1/1; f экв (Н 2 SO 4) = 1/2; f экв (Na 2 CO 3) = 1/2; f экв (KMnO 4) = 1/5) и молярная масса эквивалента (например, для карбоната натрия: M(1/2 Na 2 CO 3) = f экв M(Na 2 CO 3) = 1/2 M(Na 2 CO 3)) были рассмотрены во введении (параграф 2).

Моляльность (С m) показывает число моль (n) растворенного вещества в 1000 г растворителя (m р-ля):

Выражается в моль/кг растворителя, например С m (NaCl) = 0,05 моль/кг.

Мольная доля – это отношение числа молей вещества к сумме чисел молей в растворе:

где N А и N В – мольная доля растворителя и растворенного вещества, соответственно. Мольная доля, умноженная на 100 %, образует мольный процент, поэтому

N А + N В = 1. (7.6)

В практической работе важно уметь быстро переходить от одних единиц концентрации к другим, поэтому важно помнить, что

m р-ра = V р-ра ρ, (7.7)

где m р-ра – масса раствора, г; V р-ра – объем раствора, см 3 ; ρ – плотность раствора, г/ см 3 .

Процесс растворения является сложным физико-химическим процессом, в котором наиболее ярко проявляется взаимодействие между частицами (молекулами или ионами) различной химической природы.

На процессы растворения многих веществ, находящихся в различных агрегатных состояниях, большое влияние оказывает полярность молекул растворителя и растворенного вещества. Необходимо отметить, что подобное растворяется в подобном. В полярных растворителях (вода, глицерин) растворяются полярные молекулы (KCl, NH 4 Cl и т.д.); в неполярных растворителях (толуоле, бензине, и т.д.) растворяются неполярные молекулы (углеводороды, жиры и т.д.).

Современная теория растворения основана на физической теории Вант-Гоффа и С. Аррениуса и химической теории Д. И. Менделеева. Согласно этой теории процесс растворения состоит из трех стадий:

1) механическое разрушение связей между частицами растворенного вещества, например, разрушение кристаллической решетки соли (это физическое явление);

2) образование сольватов (гидратов) , т. е. нестойких соединений частиц растворенного вещества с молекулами растворителя (это химическое явление);

3) самопроизвольный процесс диффузии сольватированных (гидратированных) ионов по всему объему растворителя (это физический процесс). В растворе всякая заряженная частица (ион или полярная молекула) окружается сольватной оболочкой , которая состоит из ориентированных соответствующим образом молекул растворителя. Если растворителем является вода, то употребляется термин гидратная оболочка , а само явление носит название гидратация .

Процесс образования растворов сопровождается тепловым эффектом, который может быть как эндотермическим, так и экзотермическим. Первая стадия растворения всегда проходит с поглощением тепла, а вторая может проходить как с поглощением, так и с выделением тепла. Следовательно суммарный тепловой эффект растворения зависит от теплового эффекта образования сольватов (гидратов). Соединения молекул или ионов растворяемого вещества с молекулами растворителя осуществляется, главным образом, за счет водородной связи, или же вследствие электростатического взаимодействия полярных молекул веществ. Состав сольватов (гидратов) меняется в зависимости от температуры и концентрации растворяемого вещества. С их повышением число молекул растворителя входящего в сольват (гидрат) уменьшается. Таким образом, растворы занимают промежуточное положение между механическими смесями и химическими соединениями.

Теория растворов еще не позволяет в любом случае предсказывать свойства растворов по свойствам их компонентов. Объясняется это чрезвычайно большим разнообразием и сложностью взаимодействий между молекулами растворителя и частицами растворенного вещества. Структура растворов, как правило, бывает значительно сложнее строения его отдельно взятых компонентов.

По агрегатному состоянию все растворы делятся на три группы: растворы газов в газах или газовые смеси; жидкие растворы; твердые растворы (сплавы металлов). В дальнейшем будут рассматриваться только жидкие растворы.

Химическая, или сольватная, теория растворов была предложена в 1887 г. Д.И. Менделеевым, который установил, что в реальном растворе присутствуют не только индивидуальные компоненты, но и продукты их взаимодействия. Исследования водных растворов серной кислоты и этилового спирта, проведенные Д.И. Менделеевым, легли в основу теории, суть которой заключается в том, что между частицами растворенного вещества и молекулами растворителя происходят взаимодействия, в результате которых образуются нестойкие соединения переменного состава, называемые сольватами или гидратами , если растворителем является вода. Главную роль в образовании сольватов играют непрочные межмолекулярные силы, в частности, водородная связь.

В этой связи следует принять следующую трактовку понятия «раствор»:

Раствором называется гомогенная система переменного состава, состоящая из двух и более компонентов и продуктов их взаимодействия.

Из данного определения следует, что растворы занимают промежуточное положение между химическими соединениями и смесями. С одной стороны, растворы однородны, что позволяет рассматривать их как химические соединения. С другой стороны, в растворах нет строгого стехиометрического соотношения между компонентами. Кроме того, растворы можно разделить на составные части (например, при упаривании раствора NaCl можно выделить соль в индивидуальном виде).

Основные способы выражения концентрации растворов

Количественный состав раствора чаще всего оценивают при помощи понятия концентрации , под которым понимают содержание растворенного вещества (в определенных единицах) в единице массы (объема) раствора (растворителя). Основными способами выражения концентрации растворов являются следующие:

1. Массовая доля вещества (x )  это отношение массы данного компонента x, содержащегося в системе, к общей массе этой системы:

Единицей количества вещества является моль, т. е. то количество вещества, которое содержит столько реальных или условных частиц, сколько атомов содержится в 0,012 кг изотопа С 12 . При использовании моля как единицы количества вещества следует знать, какие частицы имеются в виду: молекулы, атомы, электроны или другие. Молярная масса М(х)  это отношение массы к количеству вещества (г/моль):

3. Молярная концентрация эквивалента С(x )  это отношение количества эквивалента вещества n(x) к объему раствора V р-ра:

Химический эквивалент – это реальная или условная частица вещества, которая может замещать, присоединять или высвобождать 1 ион водорода в кислотно-основных или ионообменных реакциях.

Так же, как молекула, атом или ион, эквивалент безразмерен.

Масса моля эквивалентов называется молярной массой эквивалента М(x ). Величина называется фактором эквивалентности . Она показывает, какая доля реальной частицы вещества соответствует эквиваленту. Для правильного определения эквивалента вещества надо исходить из конкретной реакции, в которой это вещество участвует, например, в реакции взаимодействия Н 3 РО 4 с NaOH может происходить замещение одного, двух или трех протонов:

1. H 3 PO 4 + NaOH  NaH 2 PO 4 + H 2 O;

2. H 3 PO 4 + 2NaOH  Na 2 HPO 4 + 2H 2 O;

3. H 3 PO 4 + 3NaOH  Na 3 PO 4 + 3H 2 O.

В соответствии с определением эквивалента, в 1-й реакции замещается один протон, следовательно, молярная масса эквивалента вещества равна молярной массе, т. е. z  l и . В данном случае:

Во 2-й реакции происходит замещение двух протонов, следовательно, молярная масса эквивалента составит половину молярной массы Н 3 РО 4 , т. e. z  2, а
. Здесь:

В 3-й реакции происходит замещение трех протонов и молярная масса эквивалента составит третью часть молярной массы Н 3 РО 4 , т.е. z  3, a
. Соответственно:

В реакциях обмена, где непосредственно не участвуют протоны, эквиваленты могут быть определены косвенным путем, введением вспомогательных реакций, анализ результатов которых позволяет вывести правило, что z для всех реакций равен суммарному заряду обменивающихся ионов в молекуле вещества, участвующего в конкретной химической реакции.

1. AlCl 3 + 3AgNO 3 = Al(NO 3) 3 + 3AgCl.

Для AlCl 3 обменивается 1 ион Al 3+ с зарядом +3, следовательно, z = 13 = 3. Таким образом:

Можно также сказать, что обмениваются 3 иона хлора с зарядом 1. Тогда z = 31 = 3 и

Для AgNO 3 z = 11 = 1 (обменивается 1 ион Ag + с зарядом +1 или обменивается 1 ион NO 3  с зарядом 1).

2. Al 2 (SO 4) 3 + 3BaCl 2 = 3BaSO 4  + 2AlCl 3 .

Для Al 2 (SO 4) 3 z = 23 = 6 (обменивается 2 иона Al 3+ с зарядом +3 или 3 иона SO 4 2  с зарядом 2). Следовательно,

Итак, запись С(H 2 SO 4) = 0,02 моль/л означает, что имеется раствор, в 1 л которого содержится 0,02 моль эквивалента H 2 SO 4 , а молярная масса эквивалента H 2 SO 4 составляет при этом молярной массыH 2 SO 4 , т. е. 1 л раствора содержит
H 2 SO 4 .

При факторе эквивалентности молярная концентрация эквивалента равна молярной концентрации раствора.

4. Титр Т(x ) – это отношение массы вещества к объему раствора (в мл):

6. Мольная доля N(x ) – это отношение количества вещества данного компонента,содержащегося всистеме, к общему количеству веществ системы:

Выражается в долях единицы или в %.

7. Коэффициентом растворимости вещества Р(x ) называют максимальную массу вещества, выраженную в г, которая может раствориться в 100 г растворителя.