Электродвижущая сила. Закон Ома для замкнутой цепи и неоднородного участка цепи. Правила Кихгофа. Работа и мощность тока. Тепловое действие тока. Закон Джоуля-Ленца. Закон Ома для однородного, неоднородного участка цепи и замкнутой (полной) цепи. Сопротив

Закон Ома для однородного участка цепи:

Участок цепи называется однородным, если в его состав не входит источник тока. I=U/R, 1 Ом – сопротивление такого проводника, в котором сила в 1А течет при 1В.

Величина сопротивления зависит от формы и свойств материала проводника. Для однородного цилиндрического проводника его R=ρl/S, ρ – величина, зависящая от использованного материала – удельное сопротивление вещества, из ρ=RS/l следует, что (ρ) = 1 Ом*м. Величина, обратная ρ – удельная проводимость γ=1/ρ.

Экспериментально установлено, что при повышении температуры электрическое сопротивление у металлов увеличивается. При не слишком низких температурах удельное сопротивление металлов растет

абсолютной температуре p = α*p 0 *T, p 0 – удельное сопротивление при 0 о С, α – температурный коэффициент. Для большинства металлов α = 1/273 = 0,004 К -1 . p = p 0 *(1+ α*t), t – температура в о С.

Согласно классической электронной теории металлов в металлахс идеальной кристаллической решеткой электроны движутся не испытывая сопротивления (p = 0).

Причина, вызывающая появление электрического сопротивления – посторонние примеси и физические дефекты кристаллической решетки, а также тепловое движение атомов. Амплитуда колебаний атомов зависит от t. Зависимость удельного сопротивления от t является сложной функцией:

p(T) = p ост + p ид. , p ост – остаточное удельное сопротивление, p ид. — идеальное сопротивление металла.

Идеальное сопротивление соответствует абсолютно чистому металлу и определяется лишь тепловыми колебаниями атомов. На основании общих соображений уд. сопротивление ид. металла должно стремиться к 0 при T → 0. Однако удельное сопротивление как функция слагается из суммы независимых слагаемых, поэтому в связи с наличием примесей и др. дефектов кристаллической решетки удельного сопротивления при понижении t → к некоторому росту пост. p ост. Иногда ля некоторых металлов температурная зависимость p проходит через минимум. Величина ост. уд. сопротивления зависит от наличия дефектов в решетке и содержания примесей.

j=γ*E – закон Ома в дифференцированной форме, описывающий процесс в каждой точке проводника, где j – плотность тока, Е – напряженность электрического поля.

Цепь включает резистор R и источник тока. На неоднородном участке цепи на носители тока действуют кроме электростатических сил сторонние силы. Сторонние силы способны вызвать упорядоченное движение носителей тока, такие как электростатические. На неоднородном участке цепи к полю электрических зарядов добавляется поле сторонних сил, создаваемое источником ЭДС. Закон Ома в дифференцированной форме: j=γE. Обобщая формулу на случай неоднородного проводника j=γ(E+E*)(1).

От закона Ома в дифференцированной форме для неоднородного участка цепи можно перейти к интегральной форме закона Ома для этого участка. Для этого рассмотрим неоднородный участок. В нем поперечное сечение проводника может быть непостоянным. Допустим, что внутри этого участка цепи существует линия, которую будем называть контуром тока, удовлетворяющая:

1. В каждом сечении перпендикулярно контуру величины j, γ, E, E* имеют одинаковые значения.

2. j, E и Е* в каждой точке направлены по касательной к контуру.

Выберем произвольно направление движения по контуру. Пусть выбранное направление соответствует перемещению от 1 к 2. Возьмем элемент проводника площадью S и элементом контура dl. Спроецируем векторы, входящие в (1) на элемент контура dl: j=γ(E+E*) (2).

I вдоль контура равна проекции плотности тока на площадь: I=jS (3).

Удельная проводимость: γ=1/ρ. Заменяя в (2) I/S=1/ρ(E+E*).Умножим на dl и проинтегрируем вдоль контура ∫Iρdl/S=∫Eedl+∫E*edl. Учтем, что ∫ρdl/S=R, а ∫Eedl=(φ 1 -φ 2), ∫E*edl= ε 12 , IR= ε 12 +(φ 1 -φ 2). ε 12 , как и I – величина алгебраическая, поэтому условились, когда ع способствует движению положительных носителей тока в выбранном направлении 1-2, считать ε 12 >0. Но на практике этот случай, когда при обходе участка цепи в начале встречается отрицательный полюс, затем положительный. Если ع препятствует движению положительных носителей, в выбранном направлении, то ε 12

Закон ома неоднородный участок цепи

1.8. Электрический ток. Закон Ома

Если изолированный проводник поместить в электрическое поле то на свободные заряды q в проводнике будет действовать сила В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю (см. § 1.5).

Однако, в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда Δ q , переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени Δ t , к этому интервалу времени:

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным.

В Международной системе единиц СИ сила тока измеряется в амперах (А). Единица измерения тока 1 А устанавливается по магнитному взаимодействию двух параллельных проводников с током (см. § 1.16).

Постоянный электрический ток может быть создан только в замкнутой цепи, в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю (см. § 1.4). Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Источник тока в электрической цепи играет ту же роль, что и насос, который необходим для перекачивания жидкости в замкнутой гидравлической системе. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы A ст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Цепь постоянного тока можно разбить на отдельные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными. Участки, включающие источники тока, называются неоднородными.

При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы. Работа электростатических сил равна разности потенциалов Δφ 12 = φ 1 – φ 2 между начальной (1) и конечной (2) точками неоднородного участка. Работа сторонних сил равна по определению электродвижущей силе 12 , действующей на данном участке. Поэтому полная работа равна

Величину U 12 принято называть напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I , текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

В СИ единицей электрического сопротивления проводников служит ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:

Это соотношение принято называть обобщенным законом Ома или законом Ома для неоднородного участка цепи.

На рис. 1.8.2 изображена замкнутая цепь постоянного тока. Участок цепи (cd) является однородным.

Закон Ома для неоднородного участка цепи

На практике видно, что для поддержания стабильного тока в замкнутой цепи необходимы силы принципиально иной природы, нежели кулоновские, тогда наблюдается случай, когда на участке цепи на свободные электрические заряды одновременно действуют как силы электрического поля, так и сторонние силы (любые неконсервативные силы, действующие на заряд, за исключением сил электрического сопротивления (кулоновских сил)). Такой участок называется неоднородным участком цепи. На рисунке ниже приведен пример такого участка.

Напряженность поля в любой точке цепи равна векторной сумме поля кулоновских сил и поля сторонних сил:

Сформулируем закон Ома для неоднородного участка цепи — Сила тока прямо пропорциональна напряжению на этом участке и обратно пропорциональна его полному сопротивлению:

– формула закона Ома для неоднородного участка цепи.

  • I – сила тока,
  • U12 – напряжение на участке,
  • R – полное сопротивление цепи.
  • Разность потенциалов характеризует работу силы электрического поля по переносу единичного положительного заряда (q) из точки 1 в точку 2:

    — где φ1 и φ 2 – потенциалы на концах участка.

    ЭДС характеризует работу сторонних сил по переносу единичного положительного заряда точки 1 в точку 2: — где ε12 – ЭДС, действующая на данном участке, численно равна работе по перемещению единичного положительного заряда вдоль контура.

    Напряжение на участке цепи представляет собой суммарную работу сил ЭП и сторонних сил:

    Тогда закон Ома примет вид:

    ЭДС может быть как положительной, так и отрицательной. Это зависит от полярности включения ЭДС в участок. Если внутри источника тока обход совершается от отрицательного полюса к положительному, то ЭДС положительная (см. рисунок). Сторонние силы при этом совершают положительную работу. Если же обход совершается от положительного полюса к отрицательному, то ЭДС отрицательная. Проще говоря, если ЭДС способствует движению положительных зарядов, то ε>0, иначе ε

    Определить ток, идущий по изображенному на рисунке участку АВ. ЭДС источника 20 В, внутреннее сопротивление 1 Ом, потенциалы точек А и В соответственно 15 В и 5 В, сопротивление проводов 3 Ом.

    • ε = 20 В
    • r = 1 Ом
    • φ1 = 15 В
    • φ2 = 5 В
    • R = 3 Ом
  • I – ?
  • Запишем закон Ома для неоднородного участка цепи —
  • Считая, что точка А начало участка, а точка В – конец, возьмем ЭДС со знаком «минус» и, подставив исходные данные, получим
  • Знак «минус» говорит о том, что ток идет от точки В к точке А, от точки с меньшим потенциалом к точке с большим, что обычно для источников тока.
  • Ответ: –2,5 А
  • Два элемента соединены «навстречу» друг другу, как показано на рисунке. Определить разность потенциалов между точками А и В, если ε1 = 1,4 В, r1 = 0,4 Ом, ε2 = 1,8 В, r2 = 0,6 Ом.

    Электрический ток

    При прохождении электрического тока в замкнутой цепи на свободные заряды действуют силы со стороны стационарного электрического поля и сторонние силы. При этом на отдельных участках этой цепи ток создается только стационарным электрическим полем. Такие участки цепи называются однородными. На некоторых участках этой цепи, кроме сил стационарного электрического поля, действуют и сторонние силы. Участок цепи, на котором действуют сторонние силы, называют неоднородным участком цепи.

    Для того чтобы выяснить, от чего зависит сила тока на этих участках, необходимо уточнить понятие напряжения.

    Рассмотрим вначале однородный участок цепи (рис. 1, а). В этом случае работу по перемещению заряда совершают только силы стационарного электрического поля, и этот участок характеризуют разностью потенциалов Δφ. Разность потенциалов на концах участка , где AK - работа сил стационарного электрического поля. Неоднородный участок цепи (рис. 1, б) содержит в отличие от однородного участка источник ЭДС, и к работе сил электростатического поля на этом участке добавляется работа сторонних сил. По определению, , где q - положительный заряд, который перемещается между любыми двумя точками цепи; - разность потенциалов точек в начале и конце рассматриваемого участка; . Тогда говорят о напряжении для напряженности: Eстац. э. п. = Eэ/стат. п. + Eстор. Напряжение U на участке цепи представляет собой физическую скалярную величину, равную суммарной работе сторонних сил и сил электростатического поля по перемещению единичного положительного заряда на этом участке:

    Из этой формулы видно, что в общем случае напряжение на данном участке цепи равно алгебраической сумме разности потенциалов и ЭДС на этом участке. Если же на участке действуют только электрические силы (ε = 0), то. Таким образом, только для однородного участка цепи понятия напряжения и разности потенциалов совпадают.

    Закон Ома для неоднородного участка цепи имеет вид:

    где R - общее сопротивление неоднородного участка.

    ЭДС ε может быть как положительной, так и отрицательной. Это связано с полярностью включения ЭДС в участок: если направление, создаваемое источником тока, совпадает с направлением тока, проходящего в участке (направление тока на участке совпадает внутри источника с направлением от отрицательного полюса к положительному), т.е. ЭДС способствует движению положительных зарядов в данном направлении, то ε > 0, в противном случае, если ЭДС препятствует движению положительных зарядов в данном направлении, то ε

    constant-current.narod.ru

    Электродвижущая сила. Закон Ома для неоднородного участка цепи. Закон Кирхгофа

    Мы рассматривали закон Ома (98.1) для однородного участка цепи, т. е. такого, в котором не действует ЭДС (не действуют сторонние силы). Теперь рассмотрим неоднородный участок цепи.

    Если ток проходит по неподвижным проводникам, образующим участок 1-2, то работа А 12 всех сил (сторонних и электростатических), совершаемая над носителями тока, по закону сохранения и превращения энергии равна теплоте, выделяющейся на участке. Работа сил, совершаемая при перемещении заряда Q 0 на участке 1-2, согласно (97.4), А 12 =Q 0 E 0 +Q 0 ()

    ЭДС E 12 , как и сила тока /, - величина скалярная. Ее необходимо брать либо с положительным, либо с отрицательным знаком в зависимости от знака работы, совершаемой сторонними силами. Если ЭДС способствует движению положительных зарядов в выбранном направлении (в направлении 1 - 2), то E 12 > 0. Если ЭДС препятствует движению положительных зарядов в данном направлении, то E 12

    Выражение (1) или (2) представляет собой закон Ома для неоднородного участка цепи в интегральной форме, который является обобщенным законом Ома.

    Если на данном участке цепи источник тока отсутствует (E 12 = 0), то из (4) приходим к закону Ома для однородного участка цепи (98.1): I = Ф1-Ф2/R = U/R

    Если же электрическая цепь замкнута, то выбранные точки 1 и 2 совпадают, ф 1 = ф 2

    тогда из (4) получаем закон Ома для замкнутой цепи: I=E/r + R 1

    Расчет разветвленных цепей значительно упрощается, если пользоваться правилами, сформулированными немецким физиком Г. Р. Кирхгофом. Этих правил два.

    Первое из них относится к узлам цепи. Узлом называется точка, в которой сходится более чем два проводника (рис. 4.4). Ток, текущий к узлу, считается положительным, текущий от узла имеет противоположный знак. Первое правило Кирхгофа гласит, что алгебраическая сумма токов, сходящихся в узле, равна нулю : .

    Это правило вытекает из уравнения непрерывности, т. е., в конечном счете, из закона сохранения заряда. Число уравнений, составленных по первому правилу Кирхгофа, должно быть на одно меньше, чем число узлов в исследуемой цепи . Этим обеспечивается линейная независимость получаемых уравнений.

    Второе правило относится к любому выделенному в разветвленной цепи замкнутому контуру (например, 1-3-2) (см. рис. 4.5). Зададим направление обхода, изобразив его стрелкой. Применим к каждому из неразветвленных участков контура закон Ома: ; .

    При сложении этих выражений получается одно из уравнений ;
    которое выражает второе правило Кирхгофа : для любого замкнутого контура алгебраическая сумма всех падений напряжения равна сумме всех ЭДС в этом контуре .

    Подобные уравнения могут быть составлены для всех замкнутых контуров, сущ. в данной разветвленной цепи, однако их число должно быть ограничено уравнениями для независимых контуров, в которых встречается хотя бы один ток, не входящий в остальные.
    При составлении уравнений согласно 2-му правилу Кирхгофа токам и ЭДС нужно приписывать знаки в соответствии с выбранным направлением обхода.
    Например, ток нужно считать «+», он течет по направлению обхода. ЭДС также нужно приписать знак «плюс», так как она действует в направлении обхода. Току и ЭДС приписывается знак «минус».
    На практике, при решении задач, при составлении уравнений направления токов выбирают произвольно и в соответствии с этим применяют правило знаков.
    Действительное направление токов определится решением задачи: если какой-либо ток окажется положительным, то его направление выбрано правильно, если отрицательным, то в действительности он течет противоположно выбранному направлению. Число независимых уравнений, составленных в соответствии с первым и вторым правилами Кирхгофа, равно числу различных токов , текущих в разветвленной цепи. Поэтому, если заданы ЭДС и сопротивления, то могут быть вычислены все токи.

    Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приводит к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними.

    Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе - за счет механической энергии вращения ротора генератора и т. п. Роль источника тока в электрической цепи,

    образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические за ряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддер-

    живается разность потенциалов и в цепи течет постоянный электрический ток.

    Сторонние силы совершают работу по перемещению электрических зарядов. Физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называется электродвижущей силой (ЭДС), действующей в цепи: (97.1)

    Эта работа производится за счет энергии, затрачиваемой в источнике тока, поэтому величину E можно также называть электродвижущей силой источника тока, включенного в цепь. Часто, вместо того чтобы сказать: «в цепи действуют сторонние силы», говорят: «в цепи действует ЭДС», т.е. термин «электродвижущая сила» употребляется как характеристика сторонних сил. ЭДС, как и потенциал, выражается в вольтах. Сторонняя сила F CT , действующая на заряд Q o , может быть выражена как где Ест - напряженность поля сторонних сил. Работа сторонних сил по перемещению заряда Q o на замкнутом участке цепи

    Разделив (97.2) на Qo, получим выражение для ЭДС, действующей в цепи:

    т.е. ЭДС, действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил. ЭДС, действующая на участке 1 - 2, равна (97.3)

    На заряд Q 0 помимо сторонних сил действуют также силы электростатического поля Fe = Q 0 E. Таким образом, результирующая сила, действующая в цепи на заряд Qo, равна F = F CT + F c = Q 0 (E CT + Е).

    Работа, совершаемая результирующей силой над зарядом Q 0 на участке 1 - 2, равна

    Используя выражения (97.3) и (84.8), можем записать

    Для замкнутой цепи работа электростатических сил равна нулю (см. § 83), поэтому в данном случае А 12 =Q 0 E 12 .

    Напряжением U на участке 1 - 2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (97.4),

    Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует ЭДС, т. е. сторонние силы отсутствуют.

    • Федеральный закон от 21 ноября 2011 г. N 323-ФЗ "Об основах охраны здоровья граждан в Российской Федерации" (с изменениями и дополнениями) Федеральный закон от 21 ноября 2011 г. N 323-ФЗ"Об основах охраны здоровья […]
    • Возврат аванса от поставщика: бухгалтерский и налоговый учет Аванс или предоплата – это оплата, которая получена поставщиком (продавцом) до наступления даты фактической отгрузки продукции или до момента оказания услуг […]
    • Обзор практики рассмотрения споров по договору подряда "Обзор практики рассмотрения споров по договору подряда" Одобрено Президиумом Федерального арбитражного суда Уральского округа. Протокол N 5 от 30.03.2007 1. […]
    • В оперативном управлении автономного учреждения дошкольного образования находится объект недвижимого имущества (здание детского сада). Начисление и уплату налога на имущество осуществляет автономное учреждение за счет […]
    • Количество признаков преступления Сущность правового подхода заключается в рассмотрении преступности как собирательного понятия - сово txt fb2 ePub html на телефон придет ссылка на файл выбранного формата Шпаргалки […]
    • Что делать если не возвращают залог/депозит за квартиру. Подробная инструкция по возврату, как действовать законно и вернуть деньги. Распространенной ситуацией является, когда помимо месячной арендной платы, […]

Мы рассматривали законОма (см. (98.1)) для однородного участка цепи, т. е. такого, в которомне действует э.д.с. (не действуют сторонние силы). Теперь рассмотрим неоднородный участок цепи, где девствующую э.д.с. на участке 1-2 обозначим через , а приложенную на концах участка разность потенциалов - через

Если ток проходят по неподвижным проводникам, образующим участок I-2, то работа А 12 всех сил (сторонних и электростатических), совершаемая над носителями тока, по закону сохранения и превращения энергии равна теплоте, выделяющейся на участке. Работа сил, совершаемая при перемещении заряда Q 0 на участке 1-2, согласно (97.4),

Э.д.с. , как и сила тока I, - величина скалярная. Ее необходимо брать либо

с положительным, либо с отрицательным знаком в зависимости от знака работы, совершаемой сторонними силами. Если э.д.с. способствует движению положительных зарядов в выбранном направлении (в направлении 1-2), то >0. Если э.д.с. препятствует движению положительных зарядов в данном направлении, то <0.

За время t в проводнике выделяется теплота (см. (99.5))

Из формул (100.1) и (100.2) получим

(100.3)

(100.4)

Выражение (100.3) или (100.4) представляет собойзакон Ома для неоднородного участка цепи в интегральной форме, который являетсяобобщенным законом Ома.

Если на данном участке цепи источник тока отсутствует ( =0), то из (100.4) приходим к закону Ома для однородного участка цепи (98.1):

(при отсутствии сторонних сил напряжение на концах участка равно разности потенциалов (см. § 97)). Если же электрическая цепь замкнута, то выбранные точки 1 и 2 совпадают, , тогда из (100.4) получаем закон Ома для замкнутой цепи:

Участок цепи, на котором не действуют сторонние силы, приводящие к возникновению электродвижущей силы (рис. 1), называется однородным.

Закон Ома для однородного участка цепи был установлен экспериментально в 1826 г. Г. Омом.

Согласно этому закону, сила тока I в однородном металлическом проводнике прямо пропорциональна напряжению U на концах этого проводника и обратно пропорциональна сопротивлению R этого проводника:

На рисунке 2 изображена схема электрической цепи, позволяющая экспериментально проверить этот закон. В участок MN цепи поочередно включают проводники, обладающие различными сопротивлениями.

Рис. 2

Напряжение на концах проводника измеряется вольтметром и может изменяться с помощью потенциометра. Силу тока измеряют амперметром, сопротивление которого ничтожно мало (RA ≈ 0). График зависимости силы тока в проводнике от напряжения на нем - вольт-амперная характеристика проводника - приведен на рисунке 3. Угол наклона вольт-амперной характеристики зависит от электрического сопротивления проводника R (или его электропроводимости G): .

Рис. 3

Сопротивление проводников зависит от его размеров и формы, а также от материала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:

где r - коэффициент пропорциональности, характеризующий материал проводника и называемый удельным электрическим сопротивлением. Единица удельного электрического сопротивления - ом×метр (Ом×м).

30. Закон Ома для неоднородного участка цепи и для замкнутой цепи.

При прохождении электрического тока в замкнутой цепи на свободные заряды действуют силы со стороны стационарного электрического поля и сторонние силы. При этом на отдельных участках этой цепи ток создается только стационарным электрическим полем. Такие участки цепи называются однородными. На некоторых участках этой цепи, кроме сил стационарного электрического поля, действуют и сторонние силы. Участок цепи, на котором действуют сторонние силы, называют неоднородным участком цепи.

Для того чтобы выяснить, от чего зависит сила тока на этих участках, необходимо уточнить понятие напряжения.

Рис. 1

Рассмотрим вначале однородный участок цепи (рис. 1, а). В этом случае работу по перемещению заряда совершают только силы стационарного электрического поля, и этот участок характеризуют разностью потенциалов Δφ. Разность потенциалов на концах участка , где AK - работа сил стационарного электрического поля. Неоднородный участок цепи (рис. 1, б) содержит в отличие от однородного участка источник ЭДС, и к работе сил электростатического поля на этом участке добавляется работа сторонних сил. По определению, , где q - положительный заряд, который перемещается между любыми двумя точками цепи; - разность потенциалов точек в начале и конце рассматриваемого участка; . Тогда говорят о напряжении для напряженности: Eстац. э. п. = Eэ/стат. п. + Eстор. Напряжение U на участке цепи представляет собой физическую скалярную величину, равную суммарной работе сторонних сил и сил электростатического поля по перемещению единичного положительного заряда на этом участке:

Из этой формулы видно, что в общем случае напряжение на данном участке цепи равно алгебраической сумме разности потенциалов и ЭДС на этом участке. Если же на участке действуют только электрические силы (ε = 0), то . Таким образом, только для однородного участка цепи понятия напряжения и разности потенциалов совпадают.

Закон Ома для неоднородного участка цепи имеет вид:

где R - общее сопротивление неоднородного участка.

Электродвижущая сила (ЭДС ) ε может быть как положительной, так и отрицательной. Это связано с полярностью включения электродвижущая сила (ЭДС ) в участок: если направление, создаваемое источником тока, совпадает с направлением тока, проходящего в участке (направление тока на участке совпадает внутри источника с направлением от отрицательного полюса к положительному), т.е. ЭДС способствует движению положительных зарядов в данном направлении, то ε > 0, в противном случае, если ЭДС препятствует движению положительных зарядов в данном направлении, то ε < 0.

31. Закон Ома в дифференциальной форме.

Закон Ома для однородного участка цепи, все точки которого имеют одинаковую температуру, выражается формулой (в современных обозначениях):

В таком виде формула закона Ома справедлива только для проводников конечной длины, так как входящие в это выражение величины I и U измеряются приборами, включенными на этом участке.

Сопротивление R участка цепи зависит от длины l этого участка, поперечного сечения S и удельного сопротивления проводника ρ. Зависимость сопротивления от материала проводника и его геометрических размеров выражается формулой:

которая справедлива только для проводников постоянного сечения. Для проводников переменного сечения соответствующая формула не будет столь простой. В проводнике переменного сечения сила тока в различных сечениях будет одинаковой, однако плотность тока будет разной не только в различных сечениях, но даже и в различных точках одного и того же сечения. Различное значение будет иметь и напряженность, а, следовательно, и разность потенциалов на концах различных элементарных участков. Усредненные значения I, U и R по всему объему проводника не дают информации об электрических свойствах проводника в каждой его точке.

Для успешного изучения электрических цепей необходимо получить выражение закона Ома в дифференциальной форме с тем, чтобы оно выполнялось в любой точке проводника любой формы и любых размеров.

Зная связь напряженности электрического поля с разностью потенциалов на концах некоторого участка , зависимость сопротивления проводника от его размеров и материала и используя закон Ома для однородного участка цепи в интегральной форме найдем:

Обозначив где σ - удельная электропроводность вещества, из которого сделан проводник, получим:

где - плотность тока. Плотность тока - это вектор, направление которого совпадает с направлением вектора скорости перемещения положительных зарядов. Полученное выражение в векторной форме будет иметь вид:

Оно выполняется в любой точке проводника, по которому течет электрический ток. Для замкнутой цепи следует учесть тот факт, что в ней, кроме напряженности поля кулоновских сил, действуют сторонние силы, создающие поле сторонних сил, характеризующееся напряженностью Ест. С учетом этого закон Ома для замкнутой цепи в дифференциальной форме будет иметь вид:

32. Разветвленные электрические цепи. Правила Кирхгофа.

Расчет разветвленных цепей упрощается, если пользоваться правилами Кирхгофа. Первое правило относится к узлам цепи. Узлом называется точка, в которой сходится более чем два тока. Токи, текущие к узлу, считается имеют один знак (плюс или минус), от узла - имеют другой знак (минус или плюс).

Первое правило Кирхгофа является выражением того факта, что в случае установившегося постоянного тока ни в одной точке проводника и ни на одном его участке не должны накапливаться электрические заряды и формулируется в следующем виде: алгебраическая сумма токов, сходящихся в узле, равна нулю

Второе правило Кирхгофа является обобщением закона Ома на разветвленные электрические цепи.

Рассмотрим произвольный замкнутый контур в разветвленной цепи (контур 1-2-3-4-1) (рис. 1.2). Зададим обход контура по часовой стрелке и применим к каждому из неразветвленных участков контура закон Ома.

Сложим эти выражения, при этом потенциалы сокращаются и получаем выражение

В любом замкнутом контуре произвольной разветвленной электрической цепи, алгебраическая сумма падений напряжений (произведений сил токов на сопротивление) соответствующих участков этого контура равна алгебраической сумме эдс входящих в контур.

33. Работа и мощность постоянного тока. Закон Джоуля-Ленца.

Работа тока - работа электрического поля по переносу электрических зарядов вдоль проводника;

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

По закону сохранения энергии:

работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия

равна работе тока.

В системе СИ:

ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождении тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.

В системе СИ:

МОЩНОСТЬ ПОСТОЯННОГО ТОКА

Отношение работы тока за время t к этому интервалу времени.

В системе СИ:

34. Магнитное поле постоянного тока. Силовые линии. Индукция магнитного поля в вакууме .

35. Закон Био-Савара-Лапласа. Принцип суперпозиции.

Закон Био-Савара-Лапласа для проводника с током I, элемент dl которого создает в некоторой точке А (рис. 1) индукцию поля dB, равен

(1)

где dl - вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, r - радиус-вектор, который проведен из элемента dl проводника в точку А поля, r - модуль радиуса-вектора r. Направление dB перпендикулярно dl и r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с направлением касательной к линии магнитной индукции. Это направление может быть найдено по правилу правого винта: направление вращения головки винта дает направление dB, если поступательное движение винта совпадает с направлением тока в элементе.

Модуль вектора dB задается выражением

(2)

где α - угол между векторами dl и r.

Аналогично электрическому, для магнитного поля выполняется принцип суперпозиции : магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:

Используя данные формулы для расчет характеристик магнитного поля (В и Н) в общем случае достаточно сложен. Однако если распределение тока имеет какую-либо симметрию, то применение закона Био - Савара - Лапласа совместно с принципом суперпозиции дает возможность просто рассчитать некоторые поля.

36. Магнитное поле прямолинейного проводника с током.

Линии магнитной индукции магнитного поля прямолинейного тока представляют собой концентрические окружности, расположенные в плоскости, перпендикулярной к проводнику, с центром на оси проводника. Направление линий индукции определяется правилом правого винта: если поворачивать головку винта так, чтобы поступательное движение острия винта происходило вдоль тока в проводнике, то направление вращения головки указывает направление линий магнитной индукции поля прямого проводника с током.

На рисунке 1, а прямолинейный проводник с током расположен в плоскости рисунка, линии индукции - в плоскости, перпендикулярной рисунку. На рисунке 1, б изображено сечение проводника, расположенного перпендикулярно плоскости рисунка, ток в нем направлен от нас (это обозначается крестиком "х"), линии индукции располагаются в плоскости рисунка.

Как показывают расчеты, модуль магнитной индукции поля прямолинейного тока может быть рассчитан по формуле

где μ - магнитная проницаемость среды, μ0 = 4π·10-7 H/A2 - магнитная постоянная, I - сила тока в проводнике, r - расстояние от проводника до точки, в которой вычисляется магнитная индукция.

Магнитная проницаемость среды - это физическая величина, показывающая, во сколько раз модуль магнитной индукции В поля в однородной среде отличается от модуля магнитной индукции B0 в той же точке поля в вакууме:

Магнитное поле прямого проводника с током - поле неоднородное.

37. Магнитное поле кругового витка с током.

Согласно закону Био-Савара-Лапласа, индукция магнитного поля, создаваемого элементом тока dl на расстоянии r от него есть

где α – угол между элементом тока и радиус-вектором , проведенным из этого элемента в точку наблюдения; r - расстояние от элемента тока до точки наблюдения.

В нашем случае α = π/2, sinα = 1; , где а – расстояние, отсчитываемое от центра витка до рассматриваемой точки на оси витка. Векторы образуют в этой точке конус с углом раствора при вершине 2 = π - 2β, где β – угол между отрезками а и r.

Из соображений симметрии ясно, что результирующее магнитное поле на оси витка будет направлено вдоль этой оси, то есть вклад в него дают только те составляющие, которые параллельны оси витка:

Результирующую величину индукции магнитного поля B на оси витка получим, проинтегрировав это выражение по длине контура от 0 до 2πR:

или, подставив значение r:

В частности, при а = 0 находим индукцию магнитного поля в центре кругового витка с током:

Этой формуле можно придать другой вид, воспользовавшись определением магнитного момента витка с током:

Последнюю формулу можно записать в векторном виде (см. рис.9.1):

38. Действие магнитного поля на проводник с током. Закон Ампера.

Магнитное поле действует с некоторой силой на любой проводник с током, находящийся в нем.

Если проводник, по которому протекает электрический ток подвесить в магнитном поле, например, между полюсами магнита, то магнитное поле будет действовать на проводник с некоторой силой и отклонять его.

Направление движения проводника зависит от направления тока в проводнике и от расположения полюсов магнита.

Сила, с которой магнитное поле действует на проводник с током, называется силой Ампера.

Французский физик А. М. Ампер был первым, кто обнаружил действие магнитного поля на проводник с током. Правда, источником магнитного поля в его опытах был не магнит, а другой проводник с током. Помещая проводники с током рядом друг с другом, он обнаружил магнитное взаимодействие токов (рис. 67) - притяжение параллельных токов и отталкивание антипараллельных (т. е. текущих в противоположных направлениях). В опытах Ампера магнитное поле первого проводника действовало на второй проводник, а магнитное поле второго проводника - на первый. В случае параллельных токов силы Ампера оказывались направленными навстречу друг другу и проводники притягивались; в случае антипараллельных токов силы Ампера изменяли свое направление и проводники отталкивались друг от друга.

Направление силы Ампера можно определить с помощью правила левой руки:

если расположить левую ладонь руки так, чтобы четыре вытянутых пальца указывали направление тока в проводнике, а силовые линии магнитного поля входили в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник с током (рис. 68).

Эта сила (сила Ампера) всегда перпендикулярна проводнику, а также силовым линиям магнитного поля, в котором этот проводник находится.

Сила Ампера действует не при любой ориентации проводника. Если проводник с током расположить вдоль си

Зако́н Ампе́ра - закон взаимодействия электрических токов. Впервые был установлен Андре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных - отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила , с которой магнитное поле действует на элемент объёма проводника с током плотности , находящегося в магнитном поле с индукцией:

.

Если ток течёт по тонкому проводнику, то , где - «элемент длины» проводника - вектор, по модулю равный и совпадающий по направлению с током. Тогда предыдущее равенство можно переписать следующим образом:

Сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока в проводнике и векторному произведению элемента длины проводника на магнитную индукцию:

.

Направление силы определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила правой руки.

Модуль силы Ампера можно найти по формуле:

где - угол между векторами магнитной индукции и тока.

Сила максимальна когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции

39. Взаимодействие прямолинейных параллельных токов.

Закон Ампера используется при нахождении силы взаимодействия двух токов. Рассмотрим два бесконечных прямолинейных параллельных тока I1 и I2; (направления токов даны на рис. 1), расстояние между которыми R. Каждый из проводников создает вокруг себя магнитное поле, которое действует по закону Ампера на соседний проводник с током. Найдем, с какой силой действует магнитное поле тока I1 на элемент dl второго проводника с током I2. Магнитное поле тока I1 есть линии магнитной индукции, представляющие собой концентрические окружности. Направление вектора B1 задается правилом правого винта, его модуль есть

Направление силы dF1, с которой поле B1 действует на участок dl второго тока, находится по правилу левой руки и указано на рисунке. Модуль силы, используя (2), с учетом того, что угол α между элементами тока I2 и вектором B1 прямой, будет равен

подставляя значение для В1, найдем

Аналогично рассуждая, можно показать, что сила dF2 с которой магнитное поле тока I2 действует на элемент dl первого проводника с током I1, направлена в противоположную сторону и по модулю равна

Сопоставление выражений (3) и (4) дает, что

т. е. два параллельных тока одинакового направления притягиваются друг к другу с силой, равной

(5)

Если токи имеют противоположные направления, то, используя правило левой руки, определим, что между ними действует сила отталкивания, определяемая выражением (5).

Рис.1

40. Магнитное поле движущего электрического заряда.

Любой проводник с током создает в окружающем пространстве магнитное поле. При этом электрический же ток является упорядоченным движением электрических зарядов. Значит можно считать, что любой движущийся в вакууме или среде заряд порождает вокруг себя магнитное поле. В результате обобщения многочисленных опытных данных был установлен закон, который определяет поле В точечного заряда Q, движущегося с постоянной нерелятивистской скоростью v. Этот закон задается формулой

где r - радиус-вектор, который проведен от заряда Q к точке наблюдения М (рис. 1). Согласно (1), вектор В направлен перпендикулярно плоскости, в которой находятся векторы v и r: его направление совпадает с направлением поступательного движения правого винта при его вращении от v к r.

Рис.1

Модуль вектора магнитной индукции (1) находится по формуле

(2)

где α - угол между векторами v и r.

Сопоставляя закон Био-Савара-Лапласа и (1), мы видим, что движущийся заряд по своим магнитным свойствам эквивалентен элементу тока:

Приведенные законы (1) и (2) выполняются лишь при малых скоростях (v<<с) движущихся зарядов, когда электрическое поле движущегося с постоянной скорость заряда можно считать электростатическим, т. е. создаваемым неподвижным зарядом, который находится в той точке, где в данный момент времени находится движущийся заряд.

Формула (1) задает магнитную индукцию положительного заряда, движущегося со скоростью v. При движении отрицательнго заряда Q заменяется на -Q. Скорость v - относительная скорость, т. е. скорость относительно системы отсчета наблюдателя. Вектор В в данной системе отсчета зависит как от времени, так и от расположения наблюдателя. Поэтому следует отметить относительный характер магнитного поля движущегося заряда.

41. Теорема о циркуляции вектора индукции магнитного поля.

Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление обхода контура. На каждом отдельном малом участке Δl этого контура можно определить касательную составляющую вектора в данном месте, то есть определить проекцию вектора на направление касательной к данному участку контура (рис. 4.17.2). 2

Рисунок 4.17.2. Замкнутый контур (L) с заданным направлением обхода. Изображены токи I1, I2 и I3, создающие магнитное поле.

Циркуляцией вектора называют сумму произведений Δl, взятую по всему контуру L:

Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур L в то время, как другие токи могут находиться в стороне от контура. Теорема о циркуляции утверждает, что циркуляция вектора магнитного поля постоянных токов по любому контуру L всегда равна произведению магнитной постоянной μ0 на сумму всех токов, пронизывающих контур:

В качестве примера на рис. 4.17.2 изображены несколько проводников с токами, создающими магнитное поле. Токи I2 и I3 пронизывают контур L в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, I3 > 0, а I2 < 0. Ток I1 не пронизывает контур L. Теорема о циркуляции в данном примере выражается соотношением:

Теорема о циркуляции в общем виде следует из закона Био–Савара и принципа суперпозиции. Простейшим примером применения теоремы о циркуляции является определение магнитной индукции поля прямолинейного проводника с током. Учитывая симметрию в данной задаче, контур L целесообразно выбрать в виде окружности некоторого радиуса R, лежащей в перпендикулярной проводнику плоскости. Центр окружности находится в некоторой точке проводника. В силу симметрии вектор направлен по касательной (), а его модуль одинаков во всех точках окружности. Применение теоремы о циркуляции приводит к соотношению:

откуда следует формула для модуля магнитной индукции поля прямолинейного проводника с током, приведенная ранее. Этот пример показывает, что теорема о циркуляции вектора магнитной индукции может быть использована для расчета магнитных полей, создаваемых симметричным распределением токов, когда из соображений симметрии можно «угадать» общую структуру поля. Имеется немало практически важных примеров расчета магнитных полей с помощью теоремы о циркуляции. Одним из таких примеров является задача вычисления поля тороидальной катушки (рис. 4.17.3).

Рисунок 4.17.3. Применение теоремы о циркуляции к тороидальной катушке.

Предполагается, что катушка плотно, то есть виток к витку, намотана на немагнитный тороидальный сердечник. В такой катушке линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса r1 ≤ r < r2 изображена на рис. 4.17.3. Применим теорему о циркуляции к контуру L в виде окружности, совпадающей с изображенной на рис. 4.17.3 линией индукции магнитного поля. Из соображений симметрии ясно, что модуль вектора одинаков вдоль всей этой линии. По теореме о циркуляции можно записать:B ∙ 2πr = μ0IN,

где N – полное число витков, а I – ток, текущий по виткам катушки. Следовательно,

Таким образом, модуль вектора магнитной индукции в тороидальной катушке зависит от радиуса r. Если сердечник катушки тонкий, то есть r2 – r1 << r, то магнитное поле внутри катушки практически однородно. Величина n = N / 2πr представляет собой число витков на единицу длины катушки. В этом случае B = μ0In.

42. Магнитное поле бесконечного прямолинейного проводника с током и бесконечно длинного соленоида.

Каждую часть тороидальной катушки можно рассматривать как длинную прямолинейную катушку. Такие катушки называют соленоидами. Вдали от торцов соленоида модуль магнитной индукции выражается тем же соотношением, что и в случае тороидальной катушки. На рис. 4.17.4 изображено магнитное поле катушки конечной длины. Следует обратить внимание на то, что в центральной части катушки магнитное поле практически однородно и значительно сильнее, чем вне катушки. На это указывает густота линий магнитной индукции. В предельном случае бесконечно длинного соленоида однородное магнитное поле целиком сосредоточено внутри соленоида.

Рисунок 4.17.4. Магнитное поле катушки конечной длины. В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки.

В случае бесконечно длинного соленоида выражение для модуля магнитной индукции можно получить непосредственно с помощью теоремы о циркуляции, применив ее к прямоугольному контуру, показанному на рис. 4.17.5.

В данной статье расскажем про закон Ома, формулы для полной цепи (замкнутой), участка цепи, неоднородного участка цепи, в дифференциальной и интегральной форме, переменного тока, а также для магнитной цепи. Вы узнаете какие материалы соответствуют и не соответствуют закону Ома, а также где он встречается.
постоянный ток , протекающий через проводник, прямо пропорционален напряжению , приложенному к его концам и обратно пропорционален сопротивлению .

Закон Ома был сформулирован немецким физиком и математиком Георгом Омом в 1825-26 годах на основе опыта. Это экспериментальный закон, а не универсальный — он применим к некоторым материалам и условиям.

Закон Ома является частным случаем более позднего и более общего — второго закона Кирхгофа

Ниже будет представлено видео, в котором объясняется закон Ома на пальцах.

Формула закона Ома для участка цепи

Интенсивность постоянного тока, протекающего через проводник, пропорциональна напряжению, приложенному к его концам. В интернете часто называют данную формулу первым законом Ома:

U — напряжение

I — сила (интенсивность) тока

R — Сопротивление

Электрическое сопротивление:

Коэффициент пропорциональности R называется электрическим сопротивлением или сопротивлением.

Отношение напряжения к току для данного проводника является постоянным:

Единица электрического сопротивления составляет 1 Ом (1 Ω):

Резистор имеет сопротивление 1, если приложенное напряжение 1 вольт и сила тока составляет 1 ампер.

Зависимость электрического сопротивления от размера направляющей:

Сопротивление проводящей секции с постоянным поперечным сечением R прямо пропорционально длине этого сегмента li, обратно пропорциональному площади поперечного сечения S:

R — электрическое сопротивление

ρ — удельное сопротивление

I — длина направляющей

S — площадь поперечного сечения

Эта зависимость была подтверждена экспериментально британским физиком Хамфри Ди в 1822 году до разработки закона Ома.

Закон Ома для замкнутой (полной) цепи

— это значение силы (интенсивности) тока в настоящей цепи, который зависит от сопротивления нагрузки и от источника тока (E), также его называют вторым законом Ома.

Электрическая лампочка является потребителем источника тока, подключив их вместе, они создают полную электро-цепь. На картинке выше, вы можете увидеть полную электрическую цепь, состоящую из аккумулятора и лампы накаливания.

Электричество, проходит через лампу накаливания и через сам аккумулятор. Следовательно, ток проходя через лампу, в дальнейшем пройдет и через аккумулятор, то есть сопротивление лампочки складывается со сопротивлением аккумулятора.

Сопротивление нагрузки (лампочка), называют внешним сопротивлением , а сопротивление источника тока (аккумулятора) - внутренним сопротивление . Сопротивление аккумулятора обозначается латинской буквой r.

Когда электричество течет вокруг цепи, внутреннее сопротивление самой ячейки сопротивляется потоку тока, и поэтому тепловая энергия теряется в самой ячейке.

  • E = электродвижущая сила в вольтах, V
  • I = ток в амперах, A
  • R = сопротивление нагрузки в цепи в Омах, Ω
  • r = внутреннее сопротивление ячейки в Омах, Ω

Мы можем изменить это уравнение;

В этом уравнении появляется (V ), что является конечной разностью потенциалов , измеренной в вольтах (V). Это разность потенциалов на клеммах ячейки при протекании тока в цепи, она всегда меньше э.д.с. ячейки.

Закон Ома для неоднородного участка цепи

Если на участке цепи действуют только потенциальные силы (Рисунок 1а ), то закон Ома записывается в известном виде . Если же в кругу проявляется еще и действие сторонних сил (Рисунок 2б ), то закон Ома примет вид , откуда . Это и есть закон Ома для любого участка цепи .

Закон Ома можно распространить и на весь круг. Соединив точки 2 и 1 (Рисунок 3в ), преобразуем разность потенциалов в ноль, и учитывая сопротивление источника тока, закон Ома примет вид . Это и есть выражение закона Ома для полной цепи .

Последнее выражение можно представить в различных формах. Как известно, напряжение на внешнем участке зависит от нагрузки, то есть
или , или .

В этих выражениях Ir — это падение напряжения внутри источника тока, а также видно, что напряжение U меньше ε на величину Ir . Причем, чем больше внешнее сопротивление по сравнению с внутренним, тем больше U приближается к ε.

Рассмотрим два особых случая, в отношении внешнего сопротивления цепи.

1) R = 0 — такое явление называют коротким замыканием. Тогда, из закона Ома имеем — , то есть ток в цепи возрастает до максимума, а внешний спад напряжения U 0. При этом в источнике выделяется большая мощность, что может привести к его неисправности.

2) R = ∞ , то есть электрическая цепь разорвана, тогда , а . Итак, в этом случае, ЭДС численно равна напряжению на клеммах разомкнутого источника тока.

Закон Ома в дифференциальной форме

Закон Ома можно представить в таком виде, чтобы он не был связан с размерами проводника. Выделим участок проводника Δ l , на концах которой приложено потенциалы φ 1 и φ 2 . Когда средняя площадь сечения проводника Δ S , а плотность тока j , то сила тока

Если Δ l → 0, то взяв предел отношения, . Итак, окончательно получим , или в векторной форме — это выражение закона Ома в дифференциальной форме . Этот закон выражает силу тока в произвольной точке проводника в зависимости от его свойств и электрического состояния.

Закон ома для переменного тока

Это уравнение представляет собой запись закона Ома для цепей переменного тока относительно их амплитудных значений. Понятно, что оно будет справедливым и для эффективных значений силы и тока: .

Для цепей переменного тока возможен случай, когда , а это значит, что U L = U C . Поскольку эти напряжения находятся в противофазе, то они компенсируют друг друга. Такие условия называют резонансом напряжений . Резонанс можно достичь или при ω = const , изменяя С и L , или же при постоянных С и L подбирают ω, которая называется резонансным . Как видно — .

Особенности резонанса напряжений следующие:

Окончательно из (2) — (4) имеем выражение для закона Ома в интегральной форме

который он установил экспериментально.

Интерпретация закона Ома

Интенсивность тока, являющаяся действием приложенного напряжения, ведет себя пропорционально его напряжению. Например: если приложенное напряжение увеличивается в два раза, оно также удваивает силу тока (интенсивность тока).

Помните, что закон Ома удовлетворяется только частью материалов — в основном металлами и керамическими материалами.

Когда закон Ома встречается и какие материалы соответствуют и не соответствуют закону Ома

Закон Ома является экспериментальным законом, выполненным для некоторых материалов (например, металлов) для фиксированных условий тока, в частности температуры проводника.

Материалы, относящиеся к закону Ома, называются омическими направляющими или линейными проводниками. Примерами проводников, которые соответствуют закону Ома, являются металлы (например, медь, золото, железо), некоторые керамические изделия и электролиты.

Материалы, не относящиеся к закону Ома, в которых сопротивление является функцией интенсивности протекающего через них тока, называются нелинейными проводниками. Примерами руководств, не относящихся к закону Ома, являются полупроводники и газы.

Закон Ома не выполняется, когда изменяются параметры проводника, особенно температура.

Электродвижущая сила.

Если в проводнике создать электрическое поле и не принять мер для его поддержания, то перемещение носителей тока очень быстро приведет к тому, что поле внутри проводника исчезнет и ток прекратится. Для того чтобы поддержать ток длительное время, нужно от конца проводника с меньшим потенциалом j 2 непрерывно отводить приносимые сюда током положительные заряды и переносить их к концу с большим потенциалом (рис. 56.1).

Электрическое по-ле, созданное в проводнике, такой перенос зарядов осуществить не может. Для того чтобы существовал постоянный ток, необходимо действие каких-то иных сил (не кулоновских), перемещающих заряды против электрических сил и поддерживающих постоянство электрических полей. Это могут быть магнитные силы, можно разделять заряды за счет химических реакций, диффузии носителей заряда в неоднородной среде и т. д. Чтобы подчеркнуть отличие этих сил от сил кулоновского взаимодействия принято обозначать их термином сторонние силы . Устройства, в которых происходит перемещение свободных зарядов под действием сторонних сил, называют источниками тока. К ним относятся электромагнитные генераторы, термоэлектрические генераторы, солнечные батареи. Отдельную группу составляют химические источники тока: гальванические элементы, аккумуляторы и топливные элементы.

Действие сторонних сил можно характеризовать, введя понятие напряженности поля сторонних сил: .

Работу сторонних сил по перемещению заряда q на учаcтке dl можно выразить следующим образом:

на всем протяжении участка длиной l :

. (56.1)

Величина, равная отношению работы сторонних сил по перемещению заряда к этому заряду, называется электродвижущей силой (ЭДС):

. (56.2)

В проводнике, по которому течет ток, напряженность электрического поля складывается из напряженности полей кулоновских сил и сторонних сил:

Тогда для плотности тока можем записать

Заменим векторы их проекциями на направление замкнутого контура и умножим обе части уравнения на dl :

Выполнив подстановку , , полученное уравнение приводим к виду

Полученное выражение проинтегрируем по длине электрической цепи:

Интеграл в левой части уравнения представляет собой сопротивление R участка 1-2. В правой части уравнения значение первого интеграла численно равно работе кулоновских сил по перемещению единичного заряда из точки 1 в точку 2 - это разность потенциалов . Значение второго интеграла численно равно работе сторонних сил по перемещению единичного заряда из точки 2 в точку 1 - это электродвижущая сила . В соответствии с этим уравнение (56.3) приводим к виду



Величина IR , равная произведению силы тока на сопротивление участка цепи, называется падением напряжения на участке цепи. Падение напряжения численно равно работе, совершаемой при перемещении единичного заряда сторонними силами и силами электрического поля (кулоновскими).

Участок цепи, содержащий ЭДС, называют неоднородным участ-ком. Силу тока на таком участке находим из формулы (56.4):

Учитывая, что источник тока может включаться в участок цепи двумя способами, заменим знак перед ЭДС на "±":

Выражение (56.5) представляет собой закон Ома для неоднородного участка цепи. Знаки "+" или "-" учитывают, как влияют сторонние силы на протекание тока в указанном направлении: способствуют или препятствуют (рис. 56.2).


Если участок цепи не содержит ЭДС, т. е. является однородным, то из формулы (56.5) следует, что

Из формулы (56.5) следует

где IR - падение напряжения на внешнем участке цепи, Ir - падение напряжения на внутреннем участке цепи.

Следовательно, ЭДС источника тока равна сумме падений напряжений на внешнем и внутреннем участках цепи .