Срок службы 1 8 месяцев. Год в армии. Воинская обязанность в Беларуси

Выпуск 58

Тепловой эффект растворения

Процесс растворения это не просто физическое перемешивание веществ, особенно, когда мы растворяем в воде вещества, состоящие из ионов (кислоты, щёлочи или соли). Химическая реакция это разрыв одних связей и появление новых. На разрыв старых связей энергия затрачивается, а в процессе образования новых - вырабатывается и выделяется, например в виде тепла. Это тепловой эффект растворения. Если на разрыв связей затрачено много энергии, а при образовании новых выделяется мало, то тепло в такой реакции выделяться не будет, а будет наоборот - поглощаться. В процессе растворения рвутся связи между ионами кристалла и образуются новые связи с молекулами воды.

Дмитрий Иванович покажет, каким образом тепловой эффект растворения проявляется при растворении различных веществ - хлорида натрия, нитрата аммония, тиосульфата натрия и серной кислоты.

Выясняется, что при растворении хлорида натрия температура не изменяется. То есть, тепловой эффект этой реакции равен нулю.

При растворении серной кислоты температура заметно выросла, а значит тепловой эффект растворения был положительным.

Нитрат аммония и тиосульфат натрия показали отрицательный тепловой эффект растворения.

В медицинских охлаждающих пакетах находится нитрат аммония, при растворении которого в воде тепловой эффект растворения отрицателен. Вода является самым распространённым веществом на нашей планете, поэтому великое множество химических реакций происходит либо с участием воды, либо в её присутствии. На примере взаимодействия соды и лимонной кислоты Дмитрий Иванович покажет, как вода являет собой вещество, без которого реакция не происходит. Почему? Дело в том, что в этой реакции взаимодействуют между собой ионы, а они могут встретиться лишь в растворе. Для проведения следующего опыта Дмитрию Ивановичу понадобится кристаллический йод и порошок алюминия. Всего капля воды, попав в смесь этих веществ, вызывает бурную реакцию образования йодида алюминия. Вода в данном случае выступает в качестве катализатора.

Жидкие растворы

(на примере водных растворов)

Растворимость – это свойство вещества равномерно распределяться в растворителе. Растворимость зависит от природы вещества, температуры и давления.

При растворении вещества возникает равновесие:

растворённое вещество (фаза) раствор

При равновесии изменение энергии Гиббса системы равно нулю (∆G=0). Раствор, в котором устанавливается равновесие между процессами растворения и образования вещества (осаждением, кристаллизацией, выделением), называется насыщенным.

В пересыщенных растворах содержание растворённого вещества больше, чем в насыщенном. Это неустойчивые растворы.

Ненасыщенным раствором называется раствор, в котором при данной температуре и давлении возможно дальнейшее растворение веществ.

Растворимость разных веществ в том или ином растворителе зависит от температуры: она может возрастать, уменьшаться или оставаться постоянной. Растворимость газов в жидкости зависит от природы газа, растворителя, температуры. Она прямо пропорциональна парциальному давлению газа над поверхностью раствора.

Движущими силами образования растворов являются энтропийный и энтальпийный факторы. При растворении газов в жидкости энтропия всегда уменьшается (ΔS<0), а при растворении кристаллов возрастает (ΔS>0). Чем сильнее взаимодействие растворенного вещества и растворителя, тем больше роль энтальпийного фактора в образовании растворов.

Изменение энтальпии при растворении определяется:

· процессом разрушения связей в растворённом веществе, требующим затраты энергии (эндотермический процесс ∆ Н 1 >0);

· процессом образования соединения между молекулами (ионами) растворённого вещества и растворителя, сопровождающимся выделением энергии (экзотермический процесс ∆Н 2 <0).

Таким образом, теплота растворения включает в себя два слагаемых:

DН раств. = (DН 1) + (DН 2), где

DН 1 – теплота разрушения, DН 2 – теплота взаимодействия.

Если DН 1 > DН 2 , то DН раств. > 0, т.е. при растворениинаблюдается эндотермический тепловой эффект (раствор охлаждается).

Например: при растворении NH 4 NO 3 в воде раствор охлаждается.

Если DН 1 < DН 2 , то DН раств. < 0, т.е. при растворении наблюдается экзотермический тепловой эффект (раствор нагревается).

Например: при растворении H 2 SO 4 в воде раствор сильно нагревается.

При растворении происходит химическое взаимодействие растворённого вещества с растворителем. Образующиеся при этом соединения называются сольватами, а в случае водных растворов – гидратами. Процесс образования сольватов и гидратов называют сольватацией и гидратацией. Взаимодействие происходит за счёт сил Ван-дер-Ваальса (сил межмолекулярных взаимодействий), поэтому сольваты (гидраты) – соединения менее прочные, чем обычные химические соединения.



Однако в большинстве соединений при выделении растворённоговещества из раствора в твёрдую фазу в состав кристаллов переходят и молекулы воды. Эту воду называют кристаллизационной водой, а сами соединения – кристаллогидратами. В связи с этим следует различать безводные кристаллические вещества и кристаллогидраты.

Например: Na 2 SO 4 – безводный,

Na 2 SO 4 ∙7H 2 O- семиводный кристаллогидрат сульфата натрия.

Знак изменения энтропии растворения (DS о раст) зависит от степени изменения порядка в системе до и после растворения. При растворении газов в жидкости энтропия системы уменьшается, а энтальпия увеличивается, поэтому растворение газов понижается при повышении температуры.

Знак изменения энтальпии системы при растворении (DН о раст) определяется суммой тепловых эффектов всех процессов, сопровождающих растворение. При растворении твердого вещества разрушается его кристаллическая решетка и частицы вещества равномерно распределяются по всему объему раствора. Этот процесс требует затраты энергии, следовательно, DН о кр > 0. Одновременно протекает процесс взаимодействия частиц растворенного вещества с водой с образованием гидратов, сопровождающийся выделением теплоты (DН о гидр < 0).

Общий тепловой эффект растворения твердого вещества (DН о раст) определяется соотношением тепловых эффектов этих процессов и может быть как положительным, так и отрицательным, либо равным нулю, как при растворении сахара в воде.

Растворение жидкостей и газов в большинстве случаев сопровождается выделением небольшого количества теплоты и, согласно принципу Ле Шателье, с понижением температуры их растворимость уменьшается.

Растворимость

При приготовлении раствора какого-либо вещества молекулы растворяемого вещества непрерывно переходят в раствор и благодаря диффузии равномерно распределяются по всему объему растворителя. Перешедшие в раствор молекулы растворенного вещества, ударяясь о поверхность еще не растворившегося вещества, снова входят в его состав. По мере возрастания концентрации раствора увеличивается скорость образования твердого вещества. При равенстве скоростей этих процессов в системе устанавливается равновесие (DG о раст =0):

вещество нерастворенное « вещество в растворе,

при этом число молекул растворенного вещества, поступающих в раствор и уходящих из него в единицу времени становится равным.

Раствор максимальной концентрации, который при данной температуре может неопределенно долго находиться в равновесии с избытком растворяемого вещества,называется насыщенным .

Концентрация насыщенного раствора называется растворимостью .

Растворимость выражается количеством граммов растворенного вещества, содержащихся в 100 граммах растворителя, либо количеством молей растворенного вещества, содержащихся в 1 литре раствора.

Раствор, концентрация которого при данной температуре меньше насыщенного, называется ненасыщенным .

Растворимость твердых веществ (например, солей), как правило, с понижением температурыуменьшается. Если медленно охлаждать насыщенный раствор, то можно получить пересыщенный раствор , т.е. раствор, концентрация которого больше растворимости вещества при данной температуре. Пересыщенные растворы неустойчивы (DG о раст >0) и самопроизвольно или при внешнем воздействии (встряхивание, внесение кристаллов) переходят в состояние равновесия (DG о раст =0). При этом избыток растворенного вещества выпадает в осадок.

Концентрация растворов

Концентрацией раствора называется количество растворенного вещества, содержащееся в определенном количестве или в определенном объеме раствора или растворителя.

В химии наиболее употребимы следующие способы выражения концентрации.

Процентная концентрация. Показывает число граммов растворенного вещества, содержащихся в 100 г раствора. Например, 15%-ный водный раствор соли – это такой раствор, в 100 г которого содержится 15 г соли и 85 г воды.

Молярная концентрация (молярность). Показывает число молей растворенного вещества, содержащихся в 1 л раствора, обозначается моль/л или формулой вещества, заключенной в квадратные скобки. Например, =2 моль/л – это раствор, содержащий 2 моля (или 80 г) гидроксида натрия в одном литре раствора.

Молярная концентрация эквивалентов. Показывает число молей эквивалентов растворенного вещества, содержащихся в 1 л раствора, обозначается С эк. Например, С эк H 2 SO 4 =0,1моль экв/л – это раствор Н 2 SO 4 , содержащий 0,1 моля эквивалентов серной кислоты (или 4,9 г) в 1 л раствора.

Эквивалентом (обозначается буквой Э ) называют реальную или условную частицу вещества, которая может замещать, присоединять, высвобождать или быть каким-либо другим способом эквивалентна одному иону водорода в кислотно-основных или ионообменных реакциях или одному электрону в окислительно-восстановительных реакциях.

Эквивалент кислоты равен молярной массе кислоты, деленной на ее основность, т.е. на число атомов водорода в молекуле кислоты, способных замещаться на металл.

Эквивалент основания равен молярной массе основания, деленной на валентность металла.

Эквивалент оксида равен молярной массе оксида, деленной на произведение числа атомов элемента, входящих в состав молекулы, и валентности этого элемента.

Эквивалент соли равен молярной массе соли, деленной на произведение валентности металла и числа атомов металла в ее молекуле.

Например:

моль экв. Н 2 SO 4 (М=98 г/моль) равен

моль экв. Са(ОН) 2 (М=74 г/моль) равен

моль экв. Al 2 O 3 (М=102 г/моль) равен

моль экв. Al 2 (SO 4) 3 (М=342 г/моль) равен

Растворы с молярной концентрацией эквивалентов широко применяются при проведении реакций между растворенными веществами. Пользуясь этой концентрацией, легко заранее рассчитать, в каких объемных соотношениях должны быть смешаны растворенные вещества, для того чтобы они прореагировали без остатка. Согласно закону эквивалентов количества веществ, вступающих в реакцию, пропорциональны их эквивалентам :

Следовательно, для реакции всегда нужно брать такие объемы растворов, которые содержали бы одинаковое число молей эквивалентов растворенных веществ. При одинаковой молярной концентрации растворов объемы реагирующих веществ пропорциональны их С эк. Если объемы затрачиваемых на реакцию растворов обозначить через V 1 и V 2 , а их молярные концентрации эквивалентов через С эк.1 и С эк.2 , то зависимость между этими величинами выразится отношением:

т.е. объемы реагирующих веществ обратно пропорциональны молярным концентрациям их эквивалентов .

На основании этих зависимостей можно не только вычислить необходимые для проведения реакций объемы растворов, но и по объемам затраченных на реакцию растворов находить их концентрации.

Титр . Показывает количество граммов растворенного вещества, содержащееся в 1 мл раствора. Обозначается буквой Т.

Зная титр раствора, легко вычислить его молярную концентрацию эквивалента, и наоборот:

Моляльная концентрация (моляльность). Показывает число молей растворенного вещества, содержащееся в 1000 г растворителя, обозначается С m:

, (5.3)

где m – количество растворенного вещества, – количество растворителя, г; M – мольная масса растворенного вещества, г/моль.

Законы Рауля

Каждой жидкости при данной температуре соответствует определенное давление насыщенного пара р 0 . С повышением температуры р 0 увеличивается. При растворении в жидкости какого-либо нелетучего вещества давление насыщенного пара растворителя над раствором становится ниже, чем над чистым растворителем при той же температуре. Причем понижение давления пропорционально концентрации раствора.

Относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворенного вещества (закон Рауля) :

(5.4)

где p 0 – давление насыщенного пара над чистым растворителем;

p – давление насыщенного пара растворителя над раствором; N – мольная доля растворенного вещества; n 1 – число молей растворенного вещества; n 2 – число молей растворителя.

Мольная доля (N i ) равна отношению числа молей данного вещества (n i) к сумме числа молей всех веществ (включая растворитель) в растворе:

Понижение давления насыщенного пара растворителя над раствором нелетучего вещества приводит к повышению температуры кипения и понижению температуры замерзания раствора по сравнению с чистым растворителем.

Согласно закону Рауля, давление водяного пара над водным раствором ниже, чем над водой.

Температура кипения жидкости Т кип – это температура, при которой давление насыщенного пара ее достигает атмосферного давления; для воды это 100°С (при давлении 101,3 кПа или 1,013∙10 5 Н/м 2). Так как над раствором давление насыщенного пара растворителя ниже, то для того чтобы раствор закипел, его надо нагреть до более высокой температуры, чем чистый растворитель.

Следствия закона Рауля

1. Понижение температуры замерзания DТ зам и повышение температуры кипения DТ кип раствора неэлектролита прямо пропорциональны количеству вещества, растворенному в данном количестве растворителя.

2. Эквимолярные (т.е. содержащие одно и то же число молей эквивалентов вещества) количества растворенных веществ, будучи растворены в одном и том же количестве данного растворителя, одинаково понижают температуру его замерзания и одинаково повышают температуру его кипения.

Понижение температуры замерзания, вызываемое растворением одного моля вещества в 1000 г растворителя, есть величина постоянная для данного растворителя. Она называется криоскопической константой K к растворителя. Точно так же и повышение температуры кипения, вызываемое растворением одного моля вещества в 1000 г растворителя, называется эбулиоскопической константой K э растворителя. Криоскопическая и эбулиоскопическая константы зависят только от природы растворителя.

Растворение веществ сопровождается различными тепловыми эффектами в зависимости от природы вещества. При растворении в воде, например, гидроксида калия или серной кислоты наблюдается сильное разогревание раствора (теплота выделяется), а при растворении нитрата аммония происходит сильное охлаждение раствора (теплота поглощается). В первом случае протекает экзотермический процесс (?Н < 0), во втором - эндотермический процесс (?H > 0).

Теплота растворения ?H раст в - это количество теплоты, которое выделяется или поглощается при растворении 1 моль вещества. Так, например, при стандартных условиях для гидроксида калия?Н о раств = - 55,65 кДж/моль, а для нитрата аммония?Н о раств = +26,48 кДж/моль.

Теплота растворения - алгебраическая сумма тепловых эффектов всех эндо- и экзотермических стадий процесса.

Рассмотрим механизм растворения хлорида натрия, вещества с ионной кристаллической решеткой (рис.2).

  • 1 стадия . Молекулы воды являются диполями, поэтому за счет электростатического притяжения ориентируются соответствующими полюсами на положительно и отрицательно заряженные ионы натрия и хлора, находящиеся на поверхности кристалла, ?Н ориен? 0.
  • 2 стадия . Между молекулами воды и ионами натрия и хлора образуются химические связи за счет ион-дипольного взаимодействия, поэтому этот процесс сопровождается выделением энергии, ?Н гидр
  • 3 стадия . Возникновение таких связей и выделение энергии приводит к тому, что связи в кристаллической решетке ослабевают, и ионы в гидратированном виде уходят в раствор, покидая поверхность кристалла. Процесс отрыва ионов от кристалла - эндотермический, ?Н отрыва > 0.
  • 4 стадия . Диффузия гидратированных ионов по всему объему раствора, ?Н дифф? 0.

Если энергия разрушения кристаллической решетки меньше энергии гидратации растворённого вещества, то растворение идёт с выделением теплоты. Если энергия разрушения кристаллической решётки больше энергии гидратации, то растворение протекает с поглощением теплоты.

В случае идеальных растворов тепловые и объемные эффекты отсутствуют: т.е. ?Н раств = 0, ?V = 0, химические связи не образуется, но энтропия - увеличивается.

Процесс взаимодействия растворителя и растворённого вещества, как говорилось ранее, называется сольватацией, а если растворителем является вода - гидратацией . В результате химического взаимодействия растворенного вещества с растворителем образуются соединения, которые называют сольватами (или гидратами , если растворителем является вода). Образование таких соединений роднит растворы с химическими соединениями.

Сольваты (гидраты) образуются за счет донорно-акцепторного, ион-дипольного взаимодействия, за счет водородных связей, а также дисперсионного взаимодействия (при растворении родственных веществ, например бензола и толуола).

Особенно склонны к гидратации, т.е. соединению с молекулами воды, ионы. Ионы присоединяют полярные молекулы воды, в результате образуются гидратированные ионы. Поэтому, например, в растворе ион меди (II) голубой, в безводном сульфате меди он бесцветный. Многие сольваты (гидраты) непрочны и легко разлагаются при выделении их в свободном виде, однако в ряде случаев образуются прочные соединения, которые можно легко выделить из раствора кристаллизацией. При этом выпадают кристаллы, которые содержат молекулы воды.

Кристаллические вещества, содержащие молекулы воды, называются кристаллогидратами , а вода, входящая в состав кристаллогидратов, называется кристаллизационной . Кристаллогидратами являются многие природные минералы. Ряд веществ (в том числе и органических) получаются в чистом виде только в форме кристаллогидратов.