Способы астрономических наблюдений. С чего начинать астрономические наблюдения

В основе астрономии лежат наблюдения, производимые с Земли и лишь с 60-х годов нашего века, выполняемые из космоса - с автоматических и других космических станций и даже с Луны. Аппараты сделали возможным получение проб лунного грунта, доставку разных приборов и даже высадку людей на Луну. Но так пока можно исследовать только ближайшие к Земле небесные светила. Играя такую же роль, как опыты в физике и химии, наблюдения в астрономии имеют ряд особенностей.

Первая особенность состоит в том, что астрономические наблюдения в большинстве случаев пассивны по отношению к изучаемым объектам. Мы не можем активно влиять на небесные тела, ставить опыты (за исключением редких случаев), как это делают в физике, биологии, химии. Лишь использование космических аппаратов дало в этом отношении некоторые возможности.

Кроме того, многие небесные явления протекают столь медленно, что наблюдения их требуют громадных сроков; так, например, изменение наклона земной оси к плоскости ее орбиты становится заметным лишь по истечении сотен лет. Поэтому для нас не потеряли своего значения некоторые наблюдения, производившиеся в Вавилоне и в Китае тысячи лет назад они и были, по современным понятиям, очень неточными.

Вторая особенность астрономических наблюдений состоит в следующем. Мы наблюдаем положение небесных тел и их движение с Земли, которая сама находится в движении. Поэтому вид неба для земного наблюдателя зависит не только от того, в каком месте Земли он находится, но и от того, в какое время суток и года он наблюдает. Например, когда у нас зимний день, в Южной Америке летняя ночь, и наоборот. Есть звезды, видимые лишь летом или зимой.

Третья особенность астрономических наблюдений связана с тем, что все светила находятся от нас очень далеко, так далеко, что ни на глаз, ни в телескоп нельзя решить, какое из них ближе, какое дальше. Все они кажутся нам одинаково далекими. Поэтому при наблюдениях обычно выполняют угловые измерения и уже по ним часто делают выводы о линейных расстояниях и размерах тел.

Расстояние между объектами на небе (например, звездами) измеряют углом, образованным лучами, идущими к объектам из точки наблюдения. Такое расстояние называется угловым и выражается в градусах и его долях. При этом считается, что две звезды находятся недалеко друг от друга на небе, если близки друг другу направления, по которым мы их видим (рис. 1, звезды А и В). Возможно, что третья звезда С, на небе более далекая от Л, в пространстве к А ближе, чем звезда В.

Измерения высоты, углового расстояния объекта от горизонта, выполняют специальными угломерными оптическими инструментами, например теодолитом. Теодолит - это инструмент, основной частью которого служит зрительная труба, вращающаяся около вертикальной и горизонтальной осей (рис. 2). С осями скреплены круги, разделенные на градусы и минуты дуги. По этим кругам отсчитывают направление зрительной трубы. На кораблях и на самолетах угловые измерения выполняют прибором, называемым секстантом (секстаном).

Видимые размеры небесных объектов также можно выразить в угловых единицах. Диаметры Солнца и Луны в угловой мере примерно одинаковы - около 0,5°, а в линейных единицах Солнце больше Луны по диаметру примерно в 400 раз, но оно во столько же раз от Земли дальше. Поэтому их угловые диаметры для нас почти равны.

Ваши наблюдения

Для лучшего усвоения астрономии вы должны как можно раньше приступить к наблюдениям небесных явлений и светил. Указания к наблюдениям невооруженным глазом даны в приложении VI. Нахождение созвездий, ориентировку на местности по Полярной звезде, знакомую вам из курса физической географии, и наблюдение суточного вращения неба удобно выполнять с помощью подвижной карты звездного неба, приложенной к учебнику. Для приближенной оценки угловых расстояний на небе полезно знать, что угловое расстояние между двумя звездами «ковша» Большой Медведицы равно примерно 5°.

Прежде всего, надо ознакомиться с видом звездного неба, найти на нем планеты и убедиться в их перемещении относительно звезд или Солнца в течение 1-2 месяцев. (Об условиях видимости планет и некоторых небесных явлениях говорится в школьном астрономическом календаре на данный год.) Наряду с этим надо ознакомиться в телескоп с рельефом Луны, с солнечными пятнами, а затем уже и с другими светилами и явлениями, о которых сказано в приложении VI. Для этого ниже дается представление о телескопе.

Солнце, Луна, планеты, кометы, звезды, туманности, галактики, отдельные небесные тела и системы таких тел изучаются в астрономии. Разнообразны задачи, стоящие перед астрономами, а в связи с этим разнообразны и методы астрономических наблюдений, доставляющих основной материал для решения этих задач.

Уже в глубокой древности начались наблюдения с целью определения положений светил на небесной сфере. Сейчас этим занимается астрометрия. Измеренные в результате таких наблюдений небесные координаты звезд разных типов, звездных скоплений, галактик сводятся в каталоги, по ним составляются звездные карты (см. Звездные каталоги, карты и атласы). Повторяя в течение более или менее длительного периода времени наблюдения одних и тех же небесных тел, вычисляют собственные движения звезд, тригонометрические параллаксы и др. Эти данные также публикуются в каталогах.

Составленные таким образом звездные каталоги используются как в практических целях - при астрономических наблюдениях движущихся небесных тел (планет, комет, искусственных космических объектов), при работах службы времени, службы движения полюсов, в геодезии, навигации и др., так и при разного рода научно-исследовательских работах. К числу последних относятся, в частности, исследования структуры Галактики, происходящих в ней движений, чем занимается звездная астрономия.

Систематические астрометрические наблюдения планет, комет, астероидов, искусственных космических объектов доставляют материал для изучения законов их движения, составления эфемерид, для решения других задач небесной механики, астродинамики, геодезии, гравиметрии.

К астрометрическим наблюдениям можно отнести также и вошедшие в практику в последние десятилетия дальномерные наблюдения небесных светил. С помощью лазерных дальномеров с высокой точностью определяются расстояния до искусственных спутников Земли (см. Лазерный спутниковый дальномер), до Луны.

Методы радиолокационной астрономии дают возможность определять расстояния и даже изучать профили Луны, Венеры, Меркурия и т. п.

Другим типом астрономических наблюдений является непосредственное изучение вида таких небесных тел, как Солнце, Луна, ближайшие планеты, галактические туманности, галактики и др. Наблюдения этого типа стали развиваться после изобретения телескопа. Вначале наблюдения велись визуально: небесные светила рассматривались глазом и увиденное зарисовывалось. Позже стала использоваться фотография. Фотографические методы имеют неоспоримое преимущество перед визуальными: фотографии можно детально измерять в спокойной лабораторной обстановке; в случае необходимости их можно повторить, да и вообще фотография является объективным документом, в то время как в визуальные наблюдения наблюдатель вносит много субъективного. Кроме того, фотографическая пластинка, в отличие от глаза, накапливает приходящие от источника фотоны и потому позволяет получать снимки слабых объектов.

На рубеже XIX и XX вв. зародились и стали быстро развиваться астрофизические методы наблюдений, в основе которых лежит анализ электромагнитного излучения Небесного светила, собранного телескопом. Для такого анализа используются различные светоприемни-ки и другие приспособления.

С помощью астрофотометров разного типа регистрируют изменения блеска небесных светил и таким путем обнаруживают переменные звезды, определяя их тип, двойные звезды, в сочетании с результатами других наблюдений делают определенные заключения о процессах, происходящих в звездах, туманностях и т. д.

Широкую информацию о небесных светилах дают спектральные наблюдения. По распределению энергии в непрерывном спектре (см. Электромагнитное излучение небесных тел), по виду, ширине и другим характеристикам спектральных линий и полос судят о температуре, химическом составе звезд и других небесных светил, о движениях вещества в них, об их вращении, о наличии магнитных полей, наконец, о стадии их эволюционного развития и о многом другом.

Рисунок (см. оригинал)

Измерения смещения спектральных линий вследствие эффекта Доплера позволяют определять лучевые скорости небесных тел, которые используются при разнообразных астрономических исследованиях.

При астрофизических наблюдениях широко используются электронно-оптические преобразователи, фотоэлектронные умножители, электронные камеры, телевизионная техника (см. Телевизионный телескоп), позволяющие значительно увеличить проницающую силу телескопов, расширить диапазон воспринимаемого телескопом электромагнитного излучения небесных тел.

Астрономические наблюдения в радиодиапазоне электромагнитного излучения ведутся с помощью радиотелескопов. Специальная аппаратура используется для регистрации инфракрасного и ультрафиолетового излучения, для нужд рентгеновской астрономии и гамма-астрономии. Качественно новые результаты получают с помощью астрономических наблюдений, выполняемых с борта космических аппаратов (так называемая внеатмосферная астрономия).

Большинство описанных астрономических наблюдений выполняется на астрономических обсерваториях специально подготовленными научными и техническими работниками. Но отдельные виды наблюдений доступны и любителям астрономии.

Юные астрономы могут проводить наблюдения для расширения кругозора, для приобретения опыта научно-исследовательских работ. Но многие виды правильно организованных наблюдений, выполняемых в точном соответствии с инструкциями, могут иметь и существенное научное значение.

Шкальным астрономическим кружкам доступны следующие астрономические наблюдения:

1. Исследования солнечной активности с помощью школьного телескопа-рефрактора (помните* что смотреть на Солнце без темного фильтра ни в коем случае нельзя!).

2. Наблюдения Юпитера и его спутников с зарисовкой деталей в полосах Юпитера, Красного пятна.

3. Поиски комет с помощью светосильных оптических инструментов с достаточно большим полем зрения.

4. Наблюдения серебристых облаков, изучения частоты их появления, формы и т. п.

5. Регистрация метеоров, счет их количества, определение радиантов.

6. Исследования переменных звезд - визуально и на фотографиях звездного неба.

7. Наблюдения солнечных и лунных затмений.

8. Наблюдения искусственных спутников Земли.

Инструкции для организации наблюдений можно найти среди книг, перечисленных в списке рекомендованной литературы. Ряд практических советов приведен в словаре.

Астрономия – наука, изучающая небесные объекты и Вселенную в которой мы живём.

Замечание 1

Поскольку астрономия как наука не имеет возможности провести эксперимент, то основным источником информации являются сведения, которые исследователи получают при наблюдении.

В связи с этим в астрономии выделяют область, называемую наблюдательной астрономией.

Суть наблюдательной астрономии заключается в получении необходимой информации об объектах в космосе с помощью применения таких приборов как телескопы и иное оборудование.

Наблюдения в астрономии позволяют, в частности, отслеживать закономерности в свойствах тех или иных изучаемых объектов. Поученные результаты изучения одних объектов можно распространить на иные объекты, обладающие схожими свойствами.

Разделы наблюдательной астрономии

В наблюдательной астрономии деление на разделы связано с разбиением электромагнитного спектра на диапазоны.

Оптическая астрономия – способствует наблюдениям в районе видимой части спектра. При этом в наблюдательных аппаратах применяются зеркала, линзы, твердотельные детекторы.

Замечание 2

При этом область видимого излучения лежит в середине диапазона исследуемых волн. Длина волн видимого излучения составляет интервал от 400 нм до 700 нм.

Инфракрасная астрономия основана на поиске и исследовании инфракрасного излучения. При этом длина волн превышает предельное значение для наблюдений с кремниевыми детекторами: около 1 мкм. Для изучения выбранных объектов в данной части диапазона в основном исследователями применяются телескопы – рефлекторы.

Радиоастрономия – основана на наблюдениях излучения с длиной волны от миллиметров до десятков миллиметров. Принципом своей работы приёмники, использующие радиоизлучение, сопоставимы с теми приёмниками, которые применяются в трансляции радиопередач. Однако, приёмники радиоизлучения обладают большей чувствительностью.

Рентгеновская астрономия, гамма-астрономия и ультрафиолетовая астрономия входят в астрономию высоких энергий.

Методы наблюдений в астрономии

Получение искомых данных возможно при проведении астрономами регистрации электромагнитного излучения. Кроме того, исследователи проводят наблюдения нейтрино, космических лучей или гравитационных волн.

Оптическая и радиоастрономия в своей деятельности использует наземные обсерватории. Причиной этого является то, что на длинах волн данных диапазонов атмосфера нашей планеты имеет относительную прозрачность.

Обсерватории в основном расположены на больших высотах. Это связано с уменьшением поглощения и искажений, которые создает атмосфера.

Замечание 3

Отметим, ряд волн инфракрасного диапазона существенно поглощается молекулами воды. Из-за этого обсерватории часто строят в сухих местах на большой высоте или в космосе.

Аэростаты или космические обсерватории в основном используются при работе в областях рентгеновской, гамма- и ультрафиолетовой астрономии, а также за рядом исключений, и в астрономия в далеком ИК- диапазоне. При этом наблюдая атмосферные ливни можно обнаружить создавшее их гамма-излучение. Отметим, что изучение космических лучей в настоящий момент является быстро развивающейся сферой астрономической науки.

Расположенные близко к Солнцу и к Земле объекты можно видеть и измерять при их наблюдении на фоне иных объектов. Такие наблюдения использовались для построения моделей орбит планет, а также для определения их относительных масс и гравитационных возмущений. Результатом стало открытие Урана, Нептуна и Плутона.

Радиоастрономия – развитие этой области астрономии стало результатом открытия радиоизлучения. Дальнейшее развитие этой области привело к открытию такого явления как космическое фоновое излучение.

Нейтринная астрономия - данная область астрономической науки использует в своем арсенале нейтринные детекторы, расположенные в основном под землёй. Средства нейтринной астрономии помогают получать сведения о процессах, которые исследователи не могут наблюдать в телескопы. Примером могут служить процессы, происходящие в ядре нашего Солнце.

Приёмники гравитационных волн имеют возможность регистрировать следы даже таких явлений как столкновение столь массивных объектов как нейтронные звезды и черные дыры.

Космические автоматические аппараты активно используются в астрономических наблюдениях за планетами Солнечной системы. Особенно активно с их помощью изучается геология и метеорология планет.

Условия для проведения астрономических наблюдений.

Для лучшего наблюдения астрономических объектов важны следующие условия:

  1. Исследования проводятся в основном в видимой части спектра при использовании оптических телескопов.
  2. Наблюдения в основном проводятся в ночное время поскольку качество получаемых исследователями данных зависит от прозрачности воздуха и условий видимости. В свою очередь условия видимости зависят от турбулентности и наличия тепловых потоков в воздухе.
  3. Отсутствие полной Луны даёт преимущество в наблюдениях за астрономическими объектами. Если полная Луна есть на небе, то это даёт дополнительную засветку и осложняет наблюдение за слабыми объектами.
  4. Для оптического телескопа наиболее подходящим местом наблюдения является открытий космос. В космическом пространстве, возможно проводить наблюдения которые не зависят от капризов атмосферы, за отсутствием таковой в космосе. Недостатком такого способа наблюдения является высокая финансовая стоимость подобных исследований.
  5. После космоса наиболее подходящим местом для наблюдения за космическим пространством являются пики гор. Горные пики имеют большое количество безоблачных дней и имеют качественные условия видимости, связанные с хорошим качеством атмосферы.

    Пример 1

    Примером таких обсерваторий являются горные пики островов Мауна-Кеа и Ла-Пальма.

    Уровень темноты в ночное время также играет большую роль в астрономических наблюдениях. Создаваемое человеческой деятельностью искусственное освещение мешает качественному наблюдению слабых астрономических объектов. Однако, помочь проблеме помогает использование плафонов вокруг уличных фонарей. В результате количество света поступающего на поверхность земли увеличивается, а излучение, направленное в сторону неба уменьшается.

  6. Влияние атмосферы на качество наблюдений может быть велико. Для получения лучшего изображения используют телескопы с дополнительной коррекцией размытия картинки. Для улучшения качества также используется адаптивная оптика, спекл-интерферометрия, апертурный синтез или размещении телескопов в космосе.

Астрономические наблюдения всегда вызывают интерес у окружающих, особенно если им удаётся самим посмотреть в телескоп.
Хотелось бы немного рассказать новичкам о том, что же можно разглядеть на небе - во избежание разочарования от того, что на деле видно в окуляре. В действительно качественные приборы вы увидите гораздо больше, чем тут написано, но цена их высока, да и их вес с габаритами - довольно большие... Первый телескоп для астрономических наблюдений - как правило не самый большой и дорогой.

  • Куда наводит телескоп новичок в первый раз? Правильно - на Луну:-) Вид кратеров, гор и лунных "морей" всегда вызывает неподдельный интерес, желание рассмотреть получше, поставить окуляр с фокусом покороче, прикупить линзу Барлоу... Многие в итоге на Луне и останавливаются - благодарный объект, особенно в условиях города, когда о галактиках остаётся только мечтать. Что там видно - лунные кратеры, горы, размер которых зависит от крутизны телескопа, но не мельче примерно 1 км. при идеальной атмосфере. Так что, лунный трактор или следы американцев вы не рассмотрите. Есть любители, занимающиеся регистрацией вспышек света на поверхности Луны, природа которых пока неизвестна. Любопытно, что некоторые из этих световых пятен быстро перемещаются на фоне поверхности Луны.
  • Затем идут планеты. Юпитер со своими спутниками и поясами и Сатурн со знаменитыми кольцами. Они оставляют поистине незабываемое впечатление даже у людей, далёких от астрономии. Эти две планеты отчётливо видны как "диски", а не "точки", причём с подробностями, видными даже в небольшие телескопы. Кольцо Сатурна и вытянутые в струнку спутники Юпитера придают ощущение объёма и придают картинке "космический вид".

    Астрономические наблюдения за Марсом - это на любителя, самое большее - полярные шапки удастся рассмотреть. Смены времён года и пятна пыльных бурь видны только в дорогие телескопы и при хорошей атмосфере.

    Наблюдение остальных планет приносит разочарование: самое большее, что видно в обычные недорогие телескопы - мутноватые маленькие диски (чаще просто слабые звёздочки). Зато всегда можно сказать: "Да, своими глазами видел - есть такая планета, астрономы не врут."

    Ни легендарного "лица Сфинкса" на Марсе, ни по-настоящему завораживающего восхода спутников планет вы не увидите даже в самый лучший телескоп. Впрочем, во время Великих противостояний, не навести на них трубу - просто преступление... Да и просто время от времени посмотреть... Конечно, если вы купите дорогой апохроматический рефрактор с большой апертурой или хороший светофильтр, то качество заметно повысится, но это уже не совсем для новичков.

  • Звёздные галактики, шаровые скопления и наверное сюда же надо отнести некоторые яркие планетарные туманности, например . Это действительно красиво. Но, опять же - при наличии телескопа с большой апертурой и действительно тёмного неба. На светлом городском небе даже , различается с трудом. Так что, если хотите порадовать себя и друзей - планируйте поездку за город.
    в созвездии Геркулеса - один из излюбленных объектов наблюдений и неофициальный измеритель качества телескопа на предмет "разрешает он звёзды до центра или нет".
  • Газовые туманности. Откровенно говоря, наблюдать их - неблагодарное занятие при любительской технике нижнего, да и среднего уровня. Светимость у этих облаков газа - низкая. Поэтому требования к черноте неба - повышенные. Цвета и у галактик-то увидеть - за праздник, а у туманностей... Исключение - яркая диффузная . Впрочем, со специальными фильтрами, которые не пропускают определённые длины волн от городских фонарей, некоторые туманности видны неплохо. А, если дорвётесь до настоящего телескопа в настоящей обсерватории, с большим полем зрения, то удовольствие запомните надолго:).
  • Кометы, да ещё хвостатые... Тут объяснять нечего. Они и так красивы, а в телескоп тем более.
  • Искусственные спутники Земли. Неожиданно интересные объекты наблюдений! Своеобразный вид спорта - у кого снимок МКС качественнее получился:-) Тут нужно учитывать столько параметров, что это и впрямь похоже на спортивную охоту. И умение хорошо и быстро ориентироваться на небосводе, и вычисление координат (тут программы помогают), и учёт погодных условий, и, наконец, у кого спортивный снаряд круче (телескоп, фотоаппарат...) На самом деле, это действительно увлекательно, если вы азартны и с авантюрными наклонностями. Вид галактик и планет по большому счёту известен и предсказуем, а тут постоянно "что-то новое запустили".

    Неважно - показываете ли вы близким людям что-то интересное в небе, или сами смотрите - всегда нелишне заранее знать, что, собственно говоря, искать в небе именно сегодня. И главное - где именно. Кроме того, если вдруг вы планируете свой отпуск с астрономическим уклоном, то нужно многое учесть:

  • Фазы Луны, которая в полнолуние даёт настолько сильную засветку, что кроме неё на небе ничего толком не рассмотришь. Я бы не стал планировать отпуск на это время...
  • Дни наибольших сближений с пролетающими кометами и астероидами;
  • То же самое касается и планет - нужно учитывать их высоту над горизонтом, и не пропустить дни наибольшего сближения с нашей планетой.
  • Время года для астрономических наблюдений. Летом ночи очень светлые, многие объекты просто теряются при такой засветке. Хорошее время - зима. Зимой темнеет рано - не надо отпрашиваться у домочадцев. То же самое - начало весны, когда уже не так холодно, но ещё нет сильной засветки.
    Однако, всё зависит от вашего климата. В Подмосковье, например, погода не балует - облачность повышенная, да и холодно. Мне больше нравится с конца августа до середины октября - небо уже довольно тёмное, ещё не так холодно... Осень считается дождливой, но в последние годы в первую её половину с осадками и облачностью часто везёт - видимо климат меняется. Ближе к зиме облачность резко повышается, в ноябре-декабре посмотреть в Подмосковье редко удаётся. Ещё по этой теме:
    Что видно в телескоп в зависимости от его размера

    Назад  или расскажите друзьям:

  • Если вам хочется побыть наедине с собой, отвлечься от повседневной текучки, дать волю дремлющей в вас фантазии, приходите на свидание со звездами. Отложите сновидения на утренние часы. Вспомните бессмертные строки И. Ильфа и Е. Петрова: «В сквере приятно сидеть именно ночью. Воздух чист, и в голову лезут умные мысли».

    А какое наслаждение созерцать тонкую, поистине волшебную небесную роспись! Не зря охотники, рыбаки и туристы, устроившись на ночлег, любят подолгу разглядывать небо. Как часто, лежа у погасшего костра и глядя в бескрайнюю даль, они искренне сожалеют, что их знакомство со звездами ограничивается ковшом Большой Медведицы. При этом многие и мысли не допускают, что это знакомство можно расширить, и считают, что небо для них — тайна за семью печатями. Довольно распространенное заблуждение. Поверьте, сделать первый шаг на пути астронома-любителя — дело вовсе не трудное. Он доступен и младшему школьнику, и студенту, и начальнику конструкторского бюро, и пастуху, и трактористу, и пенсионеру.

    У значительного большинства людей бытует предвзятое представление, что любительская астрономия начинается с телескопе («Вот сделаю небольшой телескоп и буду наблюдать звезды».) Однако зачастую благодатный порыв оказывается в плену абсолютно неразрешимой проблемы: где купить нужные линзы для самодельного телескопа-рефрактора или стекла необходимой толщины для изготовления зеркала к телескопу-рефлектору? Три-четыре бесплодные попытки, и диалог со звездным небом откладывается на неопределенное время, а то и навсегда. А жаль! Ведь если вы хотите приобщиться к астрономии или помочь сделать это своим детям, и способа, чем наблюдения метеоров, вам не найти.

    Помните только, что начинать их целесообразно в период максимального действия какого-либо интенсивного метеорного потока. Лучше всего это сделать в ночи с 11 на 12 и с 12 на 13 августа, когда активизируется поток Персеид. Для школьников это вообще исключительно удобное время. На этом этапе для наблюдений не понадобятся никакие оптические инструменты или приспособления. Нужно только выбрать место для наблюдений, расположенное вдали от источников света и дающее достаточно большой обзор неба. Оно может находиться в поле, на холме, в горах, на большой опушке леса, на плоской крыше дома, в достаточно широком дворе. При себе необходимо иметь только тетрадь (журнал наблюдений), карандаш и любые часы, наручные, настольные или даже настенные.

    Задача заключается в том, чтобы каждый час подсчитывать количество увиденных вами метеоров, а результат запоминать или записывать. Наблюдения желательно вести как можно дольше, скажем с 22 часов и до рассвета. Наблюдать можно лежа, сидя или стоя: наиболее удобную позу вы выберете себе сами. Наибольший участок неба можно: охватить наблюдениями, лежа на спине. Однако такая поза довольно рискованна: многие начинающие астрономы-любители засыпают во второй половине ночи, оставляя метеорам возможность «бесконтрольно» носиться по небу.

    Закончив наблюдения, составьте таблицу, в первую графу которой внесите часовые интервалы наблюдений, например с 2 до 3 ч, с 3 до 4 ч и т. д., а во вторую — соответственное им количество увиденных метеоров: 10, 15, ... Для большей наглядности можно построить график зависимости числа метеоров от времени суток — и будете иметь картину, показывающую, как менялось количество метеоров в течение ночи. Это будет вашим маленьким «научным открытием». Сделать его можно уже в самую первую ночь наблюдений. Пусть вас вдохновляет мысль, что все увиденные вамп в эту ночь метеоры неповторимы. Ведь каждый из них — это мимолетный прощальный автограф исчезающей навсегда межпланетной частички. В случае удачи, наблюдая метеоры, можно увидеть один, а то и более болидов. Болид может завершиться выпадением метеорита, поэтому будьте готовы к следующим действиям: по часам установите момент пролета болида, по наземным или небесным ориентирам постарайтесь запомнить (зарисовать) его траекторию, прислушайтесь, а не последует ли каких-нибудь звуков (удара, взрыва, гула) после погасания болида или его исчезновения за горизонтом. Данные занесите в журнал наблюдений. Сведения, полученные вами, могут оказаться полезными специалистам в случае организации поиска места падения метеорита.

    Уже в первую ночь, проводя наблюдения, вы обратите внимание на наиболее яркие звезды, на их взаимное расположение. А если будете продолжать наблюдения и далее, то за несколько пусть даже неполных ночей привыкнете к ним и будете их узнавать. Еще в древности звезды были объединены в созвездия. Созвездия нужно постепенно изучить. Этого уже нельзя сделать, не имея карты звездного неба. Ее следует приобрести в книжном магазине. Отдельно карты или атласы звездного неба продаются редко, чаще они прилагаются к различным книгам, например к учебнику астрономии для 10-го класса, к «Школьному астрономическому календарю», к научно-популярной астрономической литературе.

    Отождествлять звезды на небе с их изображениями на карте дело нетрудное. Нужно только приспособиться к масштабу карты. Выходя на наблюдения с картой, захватите с собой фонарик. Чтобы карта не освещалась слишком ярко, свет фонарика можно ослабить, обернув его бинтом. Знакомство с созвездиями — занятие чрезвычайно увлекательное. Решение «Звездных кроссвордов» никогда но надоедает. Мало того, опыт показывает, что дети, например, с удовольствием играют в звездную игру и очень быстро запоминают и названия созвездий, и их расположение на небе.

    Итак, уже через неделю вы довольно свободно сможете плавать по небесному морю и говорить на «ты» со многими звездами. Хорошее знание звездного неба расширит вашу научную программу наблюдений метеоров. Правда, при этом экипировка несколько усложнится. Кроме часов, журнала и карандаша нужно взять фонарик, карту, линейку, ластик, подложку для карты (какую-нибудь фанерку или маленький столик). Теперь при наблюдениях траектории всех увиденных вами метеоров вы наносите на карту карандашом в виде стрелок. Если наблюдения проводились в дату максимума потока, то некоторые стрелки (а иногда и большинство) будут расходиться по карте веером. Продолжите стрелки назад штриховыми линиями: эти линии пересекутся в некоторой области или даже точке звездной карты. Это будет означать, что метеоры принадлежат метеорному потоку, а найденная вами точка пересечения штриховых линий — приблизительный радиант этого потока. Остальные нанесенные вами стрелки могут быть траекториями спорадических метеоров.

    Описанные наблюдения проводятся, как уже отмечалось, без применения каких-либо оптических инструментов. Если в вашем распоряжении имеется бинокль, то появляется возможность наблюдать не только метеоры и болиды, но и их следы. Очень удобно работать с биноклем, если укрепить его на штативе. После пролета болида, как правило, на небе виден слабосветящийся след. Наведите на него бинокль. На ваших глазах след под влиянием воздушных течений будет менять свою форму, в нем образуются сгустки и разрежения. Очень полезно зарисовать несколько последовательных видов следа.

    Не представляет значительных трудностей и фотографирование метеоров. Для этих целей можно использовать любой фотоаппарат. Самый простой способ — укрепить фотоаппарат на штативе или положить его, скажем, на табуретку и направить в зенит. При этом установить затвор на длительную выдержку и фотографировать звездное небо в течение 15—30 мин. После этого перевести пленку на один кадр и продолжить фотографирование. На каждом снимке изображения звезд получаются в виде параллельных дуг, а метеоры — в виде прямых линий, как правило, пересекающих дуги. Следует иметь в виду, что поле зрения одного обычного объектива не очень велико, и поэтому вероятность сфотографировать метеор достаточно мала. Нужно терпение и, конечно, немного удачи. При проведении фотографических наблюдений хороша кооперация: несколько фотоаппаратов, направленных в различные области небесной сферы аналогично тому, как это делают профессиональные астрономы. Однако если уж вам удастся создать небольшую группу охотников за метеорами, полезно разделить ее на две группы. Каждая группа должна облюбовать свое место наблюдений в достаточной удаленности друг от друга и проводить совместные наблюдения по заранее согласованной программе.

    Сами фотографические наблюдения — занятие сравнительно простое: щелкай затворами, перематывай пленку, записывай время начала и конца экспозиций и моменты пролета метеоров. Значительно сложнее обработка полученных снимков. Впрочем, пугаться сложностей не следует. Если уж вы решили наладить с небом дружеские отношения, то будьте готовы к необходимости известного интеллектуального напряжения.

    А как быть с наблюдением комет? Если бы кометы появлялись так же часто, как метеоры, то для любителей астрономии лучшего и желать бы не надо. Но, увы! Прождать комету можно целую «вечность» и тем не менее остаться ни с чем. Пассивность здесь — враг номер один. Кометы надо искать. Искать с энтузиазмом, с большим желанием, с верой в успех. Очень многие яркие кометы были открыты именно любителями. Их имена навечно записаны в анналах истории.

    Где же нужно искать кометы, в какой области неба? Есть ли хоть какая-то зацепка для начинающего наблюдателя?

    Есть. Яркие кометы следует искать недалеко от Солнца, т. е. утром перед восходом Солнца на востоке, вечером после захода Солнца на западе. Вероятность успеха сильно возрастет, если вы изучите созвездия, привыкнете к расположению звезд, к их блеску. Тогда появление «постороннего» объекта не ускользнет от вашего внимания. Если в вашем распоряжении имеется биноколь, зрительная труба, телескоп или другой инструмент, позволяющий наблюдать и более слабые объекты, будет очень полезным составить себе карту туманностей и шаровых скоплений, иначе сердце ваше не раз будет учащенно биться по случаю открытия вами ложной кометы. А это, поверьте, очень обидно! Сам процесс наблюдений несложен, нужно регулярно осматривать присолнечную утреннюю и вечернюю часть неба, подстегивая себя желанием во что бы то ни стало обнаружить комету.

    Наблюдения кометы необходимо проводить в тление всего периода ее видимости. Если комету не удается сфотографировать, то сделайте серию рисунков ее внешнего вида с обязательным указанием времени и даты. Особенно тщательно зарисуйте различные детали в голове и хвосте кометы. Всякий раз наносите положение кометы на звездную карту, «прокладывая» ее маршрут.

    При наличии фотоаппарата не скупитесь на фотографии. Объединив фотоаппарат с телескопом, вы получите светосильный астрограф, и ваши фотографии будут ценными вдвойне.

    Помните, что и при визуальных наблюдениях с биноклем или телескопом, и при фотографировании телескоп и фотоаппарат должны быть укреплены на штативе, иначе изображение объекта будет «дрожать от холода».

    Хорошо, если при наблюдениях даже чисто визуальных с телескопом или биноклем удается оценить блеск кометы. Дело в том, что очень активные кометы могут сильно «мигать», то повышая, то уменьшая свою яркость. Причинами могут оказаться внутренние процессы в ядре (внезапный выброс вещества) или внешнее воздействие потоков солнечного ветра.

    Вы, вероятно, помните, что определить яркость звездообразного объекта можно путем сравнения ее с блеском известных звезд. Так оценивается, например, звездная величина астероида. С кометой дело сложнее. Ведь она видна не как звезда, а как туманное пятнышко. Поэтому применяется следующий довольно остроумный способ. Наблюдатель выдвигает окуляр телескопа, выводя изображения кометы и звезд из фокуса, в результате чего звезды из точек превращаются в размытые пятна. Наблюдатель выдвигает окуляр до тех пор, пока размеры звездных пятен не сравняются или почти не сравняются с размерами кометы. Затем выбираются две звезды для сравнения — одна несколько ярче кометы, вторая — слабее. Находятся по звездному каталогу их звездные величины.

    Бесспорно, представляет интерес и наблюдение уже ранее открытых комет. Списки таких комет, наблюдение которых ожидается в данном году, публикуются в «Астрономическом календаре» (Переменная часть). Такие календари выходят ежегодно. Правда, очень часто после описания истории кометы и условий ее предстоящего наблюдения добавляется очень неприятная фраза:

    «Любительским наблюдениям недоступна». Так, все пять короткопериодических комет, наблюдавшиеся в 1988 году, любителям были недоступны из-за их малой яркости. Да, поистине, надо открывать свои кометы!

    Очень слабые кометы обычно открывают, просматривая негативы с изображением звездного неба. Если вы не забыли, точно так же открывают и новые астероиды.

    Наблюдать астероиды невооруженным глазом практически нельзя. Но в небольшие телескопы это сделать удается. В том же «Астрономическом календаре» публикуется список астероидов, доступных наблюдениям в данном году.

    Примите к сведению один совет. Никогда не полагайтесь только на свою память, результаты наблюдений обязательно занесите в журнал и как можно подробное. Лишь в этом случае можно рассчитывать на то, что ваше прекрасное хобби будет полезным науке.