Open Library - открытая библиотека учебной информации. Методом замены плоскостей проекций Способ замены плоскостей проекций позволяет

Сущность способа замены плоскостей проекций состоит в том, что заданную систему плоскостей проекций заменяют новой системой так, что геометрические фигуры оказываются в частном положении относительно новой системы плоскостей проекций.

Проследим, как изменятся проекции точки B , если плоскость V заменить на новую плоскость проекций V 1 (рис. 5.1, а ). Плоскость V 1 проводим перпендикулярно плоскости Н , положение которой остается без изменения. Плоскости Н и V 1 пересекутся по прямой 0х 1 , определяющей новую ось проекций. В новой системе плоскостей проекций вместо проекций b и b" получим новые проекции b и b 1 ′ . Легко убедиться, что расстояние от новой проекции точки b 1 ′ до новой оси 0х 1 (координата Z ) равно расстоянию от заменяемой проекции b" до заменяемой оси . Чтобы перейти от пространственного чертежа к эпюру, нужно совместить плоскость V 1 с плоскостью Н . На эпюре (рис. 5.1, 6 ) для построения новой проекции b 1 ′ используем неизменность координаты Z точки B . Для этого достаточно из горизонтальной проекции b провести перпендикуляр к новой оси 0х 1 и от точки b X 1 отложить координату Z , определяемую расстоянием b"b x (Z B ) в прежней системе.

Замена горизонтальной плоскости Н новой плоскостью Н 1 (рис. 5.1, в ) производится аналогично, с той лишь разницей, что теперь не изменяется фронтальная проекция точки b" , для построения новой горизонтальной проекции b 1 необходимо из сохраняемой фронтальной проекции b" провести линию связи к новой оси 0х 1 и отложить от новой оси расстояние, равное расстоянию от заменяемой проекции b до заменяемой оси .

Замена плоскостей проекций может осуществляться только последовательно, нельзя менять обе плоскости сразу.

Рассмотрим на примерах, как производится замена плоскостей проекций и строятся новые проекции фигур.

Задача 1. Определить длину отрезка прямой АВ общего положения.

Заменяем плоскость V плоскостью V 1 , параллельной отрезку АВ (рис. 5.2, а ). Проводим новую ось Х 1 параллельно ab и на перпендикулярах, проведенных к ней из точек а и b, откладываем а X 1 а 1 ′ = а x а" и b X 1 b 1 ′ = b x b". Получаем новую проекцию a 1 ′b 1 ′ = AB и одновременно угол α наклона прямой к плоскости Н.

Если плоскость Н заменим плоскостью H 1 параллельной отрезку АВ (рис. 5.2, б ), то получим а 1 b 1 = АВ и угол β наклона прямой к плоскости V.

Задача 2. Определить натуральную величину и форму треугольника ABC .

Задача решается последовательной заменой двух плоскостей проекций.

Сначала плоскость V заменяем плоскостью V 1 , перпендикулярной к плоскости треугольника (рис. 5.3). Для этого в плоскости треугольника проводим горизонталь AD (ad, a"d") и новую ось Х 1 располагаем перпендикулярно к ad. На новой плоскости проекций треугольник спроецируется в прямую b 1 ′а 1 ′с 1 . На втором этапе плоскость Н заменяем плоскостью Н 1 , параллельной плоскости треугольника, располагая ось Х 2 параллельно прямой b 1 ′а 1 ′с 1 ′. Построенная проекция a 1 b 1 с 1 определяет натуральную величину и форму треугольника ABC.

Часто графическое решение задач существенно упрощается, если заданные плоскости проекций заменить на новые, такие, что в результате замены геометрические объекты займут частное положение.

Сущность способа замены плоскостей проекций заключается в том, что заданные плоскости последовательно заменяются на новые при неизменном положении геометрических объектов в пространстве. Каждая новая плоскость проекций располагается перпендикулярно незаменяемой плоскости проекций.

Важно отметить, что обе заданные плоскости проекций нельзя заменить сразу. Когда требуется замена двух плоскостей проекций, нужно заменить сначала одну, а затем другую, т.е. сделать два преобразования.

При введении новой фронтальной плоскости проекций координаты Z всех геометрических объектов остаются неизменными как в исходной системе плоскостей проекций, так и в новой; при введении новой горизонтальной плоскости проекций неизменными и в исходной, и в новой системе плоскостей проекций остаются координаты Y.

Указанные положения наглядно проиллюстрированы на рис. 37, где показаны преобразования, которые необходимо выполнить при введении (замене) новой плоскости проекций П 4 .

СПОСОБЫ ВРАЩЕНИЯ И ПЛОСКОПАРАЛЛЕЛЬНОГО

ПЕРЕНОСА

Суть метода вращения состоит в том, что при неизменном положении основных плоскостей проекций изменяется положение заданных геометрических образов относительно них путем вращения объектов вокруг некоторой оси до тех пор, пока объекты не занимают частное положение в исходной системе плоскостей.

В качестве осей вращения удобнее принимать проецирующие прямые или прямые уровня, причем точки геометрических объектов вращаются в плоскостях, параллельных или перпендикулярных заданным плоскостям проекций. При повороте какого-либо геометрического образа радиус поворота у каждой его точки свой, а угол поворота для всех точек одинаков. На комплексном чертеже при использовании метода вращения принято показывать положение оси вращения.

При вращении вокруг горизонтально-проецирующей прямой i горизонтальная проекция А 1 точки А перемещается по окружности, а фронтальная (А 2) - по прямой, представляющей собой проекцию окружности той плоскости, в которой вращается точка А (рис. 38).

Отметим, что проекции точек на фронтальной плоскости проекций лежат на прямых, перпендикулярных исходным линиям связи. Используя это, можно не задаваться изображением оси вращения и не устанавливать величину его радиуса, на чем и основан метод плоскопараллельного перемещения как частный случай метода вращения. Рассмотрим способ плоскопараллельного переноса на примере решения задачи об определении натуральной величины треугольника ABC (рис. 39).

Решение. Заданный треугольник надо расположить так, чтобы горизонтальная проекция горизонтали плоскости треугольника оказалась перпендикулярной оси X. Поскольку горизонталь плоскости треугольника после такого преобразования станет фронтально-проецирующей прямой, а все горизонтали плоскости параллельны, плоскость треугольника ABC станет фронтально-проецирующей. Сущность следующего преобразования – сделать плоскость треугольника параллельной горизонтальной плоскости проекций. Для этого линию А 2 = В 2 = нужно расположить параллельно оси X. Тогда треугольник A 1 = B 1 = C 1 = станет представлять натуральную величину треугольника ABC.

ЧЕТЫРЕ ИСХОДНЫЕ ЗАДАЧИ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА

Подавляющее большинство метрических задач рассматривает прямые и плоскости. Если заранее известно, какие построения нужно выполнить, чтобы прямая (или плоскость) общего положения заняла частное, решение многих метрических задач значительно облегчается.

Частных положений, как у прямой, так и у плоскости - два (прямая (плоскость) уровня и проецирующая). Это означает, что существуют четыре исходные задачи преобразования чертежа, в результате которых: прямая общего положения становится прямой уровня; прямая общего положения становится проецирующей; плоскость общего положения переходит в проецирующую; плоскость общего положения становится плоскостью уровня.

Для решения подобных задач воспользуемся методом замены плоскостей проекций, хотя каждая из них может решаться как способом вращения, так и способом плоскопараллельного переноса.

Задача 1. Преобразовать прямую общего положения (АВ) в прямую уровня (рис. 40). Для решения задачи введем новую фронтальную плоскость проекций П 4 , расположенную параллельно горизонтальной проекции A 1 B 1 прямой (АВ). Т.к. при введении новой фронтальной плоскости проекций координаты Z точек А и В не изменяются, дальнейшие построения ясны из

чертежа, причем проекция А 4 В 4 представляет собой натуральную величину отрезка [АВ]. Таким образом, решение рассмотренной задачи преобразования комплексного чертежа представляет собой еще один способ нахождения натуральной величины отрезка прямой общего положения.

Задача 2. Прямую общего положения необходимо преобразовать в положение проецирующей прямой (рис. 41).

Решение. Задача решается путем двух преобразований, поскольку нужно сделать две замены плоскостей проекций: первой прямая общего положения переводится в положение прямой уровня, а второй полученная прямая уровня переводится в проецирующую. Первое преобразование представляет собой решение рассмотренной выше задачи. Т.к. вводимая во втором преобразовании плоскость проекций (П 5) является новой горизонтальной плоскостью проекций, точка А 5 располагается на линии проекционной связи А 4 А 5 на расстоянии, равном величине координаты Y точки А в системе плоскостей проекций П 1 -П 4 .

Овладев алгоритмом решения приведенной задачи, можно легко найти расстояния между параллельными и скрещивающимися прямыми, от точки до плоскости, а также натуральную величину двугранного угла (представив линию пересечения двух плоскостей в виде проецирующей прямой).

Задача 3. Перевести плоскость общего положения, заданную треугольником ABC, в проецирующую (рис. 42).

Решение. Плоскость, заданная любым способом, представима как множество соответствующих прямых уровня - либо ее горизонталей, либо фронталей. Поэтому преобразования нужно проводить так, чтобы прямые уровня плоскости спроецировались в точки. Тогда плоскость спроецируется в совокупность точек, расположенных на одной прямой. Следовательно, если в заданной плоскости общего положения провести прямые какого-либо уровня, то, расположив новую плоскость проекций перпендикулярно горизонтальной проекции горизонтали или фронтальной проекции фронтали плоскости, можно получить соответствующую проецирующую плоскость (рис. 42).

Такой подход позволяет находить расстояния от точки до прямой, между плоскостью и параллельной ей прямой, между параллельными плоскостями.

Задача 4. Плоскость общего положения, заданную треугольником ABC, перевести в положение плоскости уровня (рис. 43).

Решение. Задача решается с помощью двух преобразований. Первым плоскость общего положения переводится в положение проецирующей (решение исходной задачи 3, изложенное выше), а вторым полученная проецирующая плоскость переводится в положение плоскости уровня (на рис. 42 это плоскость горизонтального уровня). Точки А 5 , В 5 и C s расположены от оси X, разделяющей плоскости П 4 и П 5 , на расстояниях, равных величинам координат Y для точек А, В и С в системе плоскостей проекций П 1 -П 4 .

Решение рассмотренной задачи позволяет находить натуральные величины плоских фигур (следовательно, сторон многоугольников и плоских углов). Решение этой же задачи методом плоскопараллельного переноса приведено на рис. 39.

Вопросы

1. Способы преобразования чертежа.

2. В чем заключается способ замены плоскостей?

3. Прямая какого положения используется при определении натуральной величины отрезка способы вращения?

4. Суть плоско-параллельного переноса..

5. сколько раз надо вращать плоскую фигуру вокруг проецирующей прямой для определения натуральной величины?

Тесты к теме « Четыре исходные задачи преобразования чертежа»

1. Как располагается дополнительная плоскость проекций относительно прямой при определении натуральной величины отрезка?

а) параллельно

б) перпендикулярно

в) произвольно

2. Как располагается дополнительная плоскость проекций относительно исходных плоскостей проекций?

а) перпендикулярно одной плоскости проекции

б) перпендикулярно двум плоскостям проекции

в) произвольно

3. Как располагается новая ось относительно проекций отрезка прямой при определении натуральной величины отрезка?

а) параллельно проекции отрезка, расположенной в плоскости перпендикулярной к дополнительной

б) перпендикулярно проекции отрезка, расположенной в плоскости перпендикулярной к дополнительной

в) произвольно

4. Сколько преобразований необходимо для определения натуральной величины плоской фигуры?

5. Сколько необходимо ввести дополнительных плоскостей проекции для преобразования прямой общего положения в проецирующую?

Сущность способа замены плоскостей рассмотрим на примере. На (рис. 5.1). дана точка А в системе плоскостей проекций p 1 / p 2 . Заменим одну из них, например p 2 , другой вертикальной плоскостью p 4 ^ p 1 , т.е. перейдём к новой системе плоскостей проекций p 4 / p 1 . Определим новую фронтальную проекцию точки А 4 , использую для этого неизменность координаты Z точки А , т.к. горизонтальная плоскость проекций p 1 является общей для исходной и новой системы. На эпюре из горизонтальной проекции А 1 проведём линию связи, перпендикулярную к новой оси x 14 и отложим координату Z точки А .


Рис. 5.1. Способ замены плоскостей.

Способом замены плоскостей определяют натуральную величину прямой, плоскости, определяют расстояние между прямыми, плоскостями и т.д. При решении задач приходится менять последовательно либо одну, либо две плоскости проекций так, чтобы геометрические объекты оказались в частном положении относительно новой системы.

Рассмотрим задачи на преобразование прямой и плоскости:

Задача: Дана прямая АВ общего положения (рис. 5.2). Преобразовать прямую АВ в проецирующую прямую.


Рис. 5.2.

Решение: Прямую общего положения возможно преобразовать в проецирующую прямую только двумя последовательными заменами плоскостей проекций. Т.к. плоскость проекций, перпендикулярная к прямой общего положения, не будет перпендикулярна не к p 1 , не к p 2 . Первоначально заменим плоскость проекций p 2 на p 4 (^ p 1) параллельно прямой АВ , новая ось проекций x 14 || А 1 В 1 . Построим новую фронтальную проекцию А 4 В 4 , отложив неизменную координату Z . Прямая АВ преобразована в новой системе p 1 / p 4 во фронталь, А 4 В 4 – натуральная величина отрезка прямой, а угол a - угол наклона прямой к плоскости проекций p 1 . Затем заменим плоскость проекций p 1 на p 5 (^ p 4) перпендикулярно прямой АВ , новая ось проекций x 45 ^ А 4 В 4 . Построим новую горизонтальную проекцию А 5 В 5 , отложив неизменную координату Y , прямая АВ , Выражается в точку A 5 º B 5 и является горизонтально – проецирующей прямой в новой системе плоскостей p 4 / p 5 .

Задача: Даны две параллельные прямые линии АВ и СD (рис. 5.3). Определить расстояние между ними.


Рис. 5.3.

Решение: Чтобы определить расстояние между параллельными прямыми, необходимо преобразовать их в проецирующие прямые. Этого можно добиться двумя последовательными заменами плоскостей проекций. Первая замена плоскости проекций p 1 на p 5 параллельно данным прямым, новая ось проекций Х 25 || С 2 D 2 || А 2 В 2 . Прямые АВ и СD преобразованы в новой системе плоскостей проекций p 2 / p 5 в горизонтали. Вторая замена плоскости проекций p 2 на p 4 перпендикулярно прямым АВ и СD , новая ось проекций x 45 ^ С 5 D 5 ^ (А 5 В 5) На новую горизонтальную плоскость p 5 прямые АВ и СD проецируются в точки A 5 º B 5 , C 5 º D 5 . Измеряем расстояние между точками.

Задача: Дана плоскость, треугольник АВС общего положения (рис. 5.4). Определить натуральную величину треугольника АВС .


Рис. 5.4.

Решение: Чтобы определить натуральную величину плоскости, необходимо расположить её параллельно плоскости проекций. Плоскость общего положения невозможно сразу преобразовать в плоскость уровня, т.к. параллельная ей новая плоскость проекций не будет перпендикулярна ни к p 1 , ни к p 2 . Поэтому, необходимо выполнить две последовательные замены плоскостей проекций, преобразовав данную плоскость сначала в проецирующую, а затем в плоскость уровня.

Заменим плоскость проекций p 2 на p 4 перпендикулярно треугольнику АВС . Чтобы определить направление p 4 , проведём в треугольнике АВС горизонталь h . Новая плоскость проекций p 4 будет перпендикулярна горизонтали, новая ось проекций x 14 ^ h 1 . На линии связи откладываем неизменные координаты Z A , Z B , Z C . Новая фронтальная проекция A 4 B 4 C 4 в системе плоскостей p 1 /p 2 представляет собой прямую линию, плоскость (АВС ) преобразована во фронтально проецирующую.

Затем заменим плоскость проекций p 1 на плоскость p 5 параллельно треугольнику АВС , новая ось проекций x 45 || А 4 В 4 С 4 , неизменной остаётся координата Y . В новой системе плоскостей p 4 / p 5 треугольник АВС является горизонтальной плоскостью уровня. Новая горизонтальная проекция А 5 В 5 С 5 – натуральная величина треугольника АВС .

Способ вращения

Суть способа вращения состоит в том, что геометрический объект вращают в пространстве вокруг выбранной оси i до требуемого положения относительно плоскостей проекций. Траектории движения точек объекта являются дугами окружностей, центр которых находится на оси вращения.

ОБЩИЕ ПОЛОЖЕНИЯ

СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА

Лекция 4

Решение ряда задач в начертательной геометрии значительно упрощается, когда геометрические фигуры занимают частное положение относительно плоскостей проекций. Задачи на определение взаимного положения фигур и метрические задачи (определение натуральных величин плоскостей, отрезков и т.д.). Для этого существуют различные способы преобразования комплексного чертежа. Каждый из них основан на одном из следующих принципов:

1. на изменении положения плоскостей проекций относительно неподвижных геометрических фигур;

2. на изменении положения заданных геометрических фигур относительно неподвижных плоскостей проекций;

Рассмотрим некоторые из них.

Сущность способа состоит в том, что заданные геометрические фигуры неподвижны в заданной системе плоскостей проекций (П 1 , П 2 ). Последовательно вводятся новые плоскости проекций (П 4 , П 5 ), относительно которых геометрические фигуры займут частное положение. Новая плоскость проекций выбирается с таким расчетом, чтобы она была перпендикулярной к незаменяемой плоскости проекций.

Большинство задач решается с применением одного или двух последовательных преобразований исходной системы плоскостей проекций. Одновременно можно заменять только одну плоскость проекций П 1 (или П 2 ), другая плоскость П 2 (или П 1 ) должна оставаться неизменной.
На рисунке 1 представлено наглядное изображение метода замены плоскостей проекций. Фронтальная плоскость П 2 заменяется на новую фронтальную плоскость П 4 . Новые проекции точки А (А 1 А 4 ), при этом, как видно из рисунка, высота точки А осталась прежней.

Необходимо запомнить правило построения новых проекций точек при методе замены:

  1. линии связи всегда перпендикулярны новым осям проекций;
  2. расстояние от новой оси проекций до новой проекции точки всегда берется с той плоскости, которую заменяют.

Рисунок 1.Наглядное изображение метода замены плоскостей проекций.

Рисунок 2.Изображение метода замены плоскостей проекций на эпюре.

Большинство задач в начертательной геометрии решаются на базе четырех задач:

  1. Преобразовать прямую общего положения в прямую уровня;
  2. Преобразовать прямую общего положения в проецирующую прямую;
  3. Преобразовать плоскость общего положения в проецирующую плоскость;
  4. Преобразовать плоскость общего положения в плоскость уровня .

Задача №1

Рассмотрим решение задачи №1 . Дана прямая АВ – общего положения, преобразуем ее в прямую уровня (рис.3). Для этого вводим новую фронтальную плоскость проекций П 4 , ось Х 1,4 проводим параллельно А 1 В 1 АВ А 4 В 4. В новой системе плоскостей проекций прямая АВ – фронталь.



Рисунок 3.

Преобразование прямой общего положения в прямую уровня (фронталь)

Задача №2

Дана прямая АВ – общего положения, преобразуем ее в проецирующую прямую (рис.4). Для решения этой задачи необходимо выполнить последовательно два преобразования:

  1. Преобразовать прямую общего положения в прямую уровня, то есть решить сначала задачу №1;
  2. Преобразовать прямую уровня в проецирующую прямую.

Вычертить условие задачи №1, самостоятельно решить ее, затем приступить к выполнению второго преобразования. Вводим новую горизонтальную плоскость проекций П 5 Х 4 , 5 перпендикулярно проекции А 4 В 4 и строим новую проекцию прямой А 5 В 5. В системе плоскостей П 4 ,П 5 , прямая АВ является горизонтально проецирующей прямой.

На базе задач №1 и №2 решаются следующие задачи:

1. определение расстояния от точки до прямой;

2. определение расстояния между параллельными и скрещивающимися прямыми;

3. определение натуральной величины прямой;

4. определение величины двугранного угла.

Рисунок 4.

Преобразование прямой общего положения в проецирующую прямую.

Задача №3.

Дана плоскость АВС – общего положения, преобразуем ее в проецирующую плоскость (рис.5). Для решения этой задачи необходимо в плоскости провести линию уровня, если такая отсутствует. Новую ось проекций проводим перпендикулярно лини уровня. В треугольнике АВС проводим горизонталь h. Ось проекций Х 14 проводим перпендикулярно h 1 , новую проекцию плоскости А 4 В 4 С 4 , строим по правилам, разобранным в предыдущих задачах.

В системе плоскостей проекций П 1 ,П 4, плоскость треугольника является фронтально-проецирующей плоскостью.

Рисунок 5.

Преобразование плоскости общего положения в проецирующую плоскость.

Задача №4.

Рисунок 6.

Преобразование плоскости общего положения в плоскость уровня.

Дана плоскость АВС – общего положения, преобразуем ее в плоскость уровня (рис.6). Для решения этой задачи необходимо выполнить последовательно два преобразования:

  1. Преобразовать плоскость общего положения в проецирующую плоскость, то есть решить сначала задачу №3;
  2. Преобразовать проецирующую плоскость в плоскость уровня.

Вычертить условие задачи №3, самостоятельно решить ее, затем приступить к выполнению второго преобразования. Вводим новую горизонтальную плоскость проекций П 5 , для этого проводим новую ось проекций Х 4 , 5 параллельно проекции А 4 В 4 С 4 и строим новую проекцию треугольника А 5 В 5 С 5. В системе плоскостей П 4 ,П 5 , треугольник АВС является горизонтальной плоскостью уровня.

На базе задач №3 и №4 решаются следующие задачи:

1. определение расстояния от точки до плоскости;

2. определение расстояния между параллельными плоскостями;

3. определение натуральных (истинных) величин геометрических фигур;

определение углов наклона плоскости к плоскостям проекций

Метод плоскопараллельного перемещения

Все вышерассмотренные задачи можно решить используя метод плоско-параллельного перемещения, при котором плоскости проекций остаются на месте, а проекция фигуры перемещается (рис.7).

Рисунок 7. Определение натуральной величины отрезка методом плоско-параллельного перемещения.

Дана прямая АВ – общего положения, преобразуем ее в прямую уровня (рис.7). Для этого перемещаем проекцию А 1 В 1 параллельно оси Х . Строим новую проекцию прямой АВ А 2 ` В 2 ` , которая будетявляться- натуральной величиной отрезка. Этот метод используется для определения натуральных величин ребер многогранников при построении развертки.

Метод вращения

Частным случаем плоско-параллельного перемещения является метод вращения вокруг проецирующих прямых и прямых уровня.

ПРЕОБРАЗОВАНИЕ ИЗОБРАЖЕНИЙ. ЧЕТЫРЕ ОСНОВНЫЕ ЗАДАЧИ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

Лекция 6

Для упрощения решения метрических, а также некоторых позиционных задач могут применяться методы, позволяющие переходить от задания фигур общих положений к частным. Эти методы основываются на двух принципах:

1) замещение системы плоскостей проекций на новую систему плоскостей, в которой неподвижный геометрический объект занимает какое-либо частное положение (способ замены плоскостей проекций );

2) перемещение геометрического объекта в пространстве таким образом, чтобы он занял какое-либо частное положение в неподвижной системе плоскостей проекций (способ вращения ).

В зависимости от расположения оси в пространстве, вокруг которой вращается геометрический объект, различают следующие виды способа вращения:

1) вращение вокруг линии уровня;

2) вращение вокруг проецирующей прямой;

3) плоско-параллельное перемещение.

Эти способы преобразования включают в себя четыре основные задачи начертательной геометрии :

1. Преобразование комплексного чертежа таким образом, чтобы прямая общего положения стала линией уровня.

2. Преобразование комплексного чертежа таким образом, чтобы линия уровня стала проецирующей прямой.

3. Преобразование комплексного чертежа таким образом, чтобы плоскость общего положения стала проецирующей плоскостью уровня.

4. Преобразование комплексного чертежа таким образом, чтобы проецирующая плоскость стала плоскостью уровня.

Сущность этого метода заключается в том, что проецируемый объект не изменяет своего положения в пространстве, а заменяется система плоскостей проекций. Может быть заменена одна, две и более плоскостей. Замена производится до тех пор, пока геометрический объект не займет частное положение относительно новой плоскости проекций. При этом новая плоскость должна быть перпендикулярна оставшейся «старой» плоскости проекций.

Возьмем точку А , расположенную в ортогональной системе плоскостей проекций , и повернем вокруг нее горизонтальную плоскость проекций P 1 в положение , получив таким образом новую ортогональную систему плоскостей проекций . При этом должно соблюдаться следующее условие:

Расстояние от точки до «старой» плоскости проекций в новой системе плоскостей проекций должно остаться неизменным.



1 основная задача. Преобразованием прямой общего положения в прямую уровня можно определить:

Натуральную длину отрезка;

Углы наклона прямой к плоскостям проекций.

2 основная задача. С помощью преобразования прямой уровня в проецирующую прямую можно найти:


Расстояние между точкой и прямой;

Расстояние между параллельными или скрещивающимися прямыми и т.п.

3 основная задача. Преобразованием плоскости общего положения в проецирующую плоскость можно определить:

Расстояние от точки до плоскости или расстояние между параллельными плоскостями;

Углы наклона плоскости к плоскостям проекций.

4 основная задача. Преобразованием проецирующей плоскости в плоскость уровня можно найти:

Натуральную величину плоской фигуры;

Угол между пересекающимися прямыми;

Центр описанной или вписанной окружности;

Построить биссектрису угла и т.п.