Как находить момент инерции тела. Момент инерции тела относительно произвольной оси. Работа момента сил

Как уже отмечалось выше, к числу простых плоских фигур относятся три фигуры: прямоугольник, треугольник и круг. Простыми эти фигуры считаются потому, что положение центра тяжести этих фигур заранее известно. Все остальные фигуры могут быть составлены из этих простых фигур и считаются сложными. Вычислим осевые моменты инерции простых фигур относительно их центральных осей.

1. Прямоугольник. Рассмотрим сечение прямоугольного профиля размерами(Рис.4.6). Выделим элемент сечения двумя бесконечно близко расположенными сечениями на расстоянииот центральной оси
.

Вычислим момент инерции прямоугольного сечения относительно оси:

. (4.10)

Момент инерции прямоугольного сечения относительно оси
найдем аналогично. Здесь вывод не приводится.

. (4.11)


и
равен нулю, так как оси
и
являются осями симметрии, а, следовательно, главными осями.

2. Равнобедренный треугольник. Рассмотрим сечение треугольного профиля размерами
(Рис.4.7). Выделим элемент сечения двумя бесконечно близко расположенными сечениями на расстоянииот центральной оси
. Центр тяжести треугольника находится на расстояни
от основания. Треугольник принимается равнобедренным, так что ось
сечения является осью симметрии.

Вычислим момент инерции сечения относительно оси
:

. (4.12)

Величину определим из подобия треугольников:

; откуда
.

Подставляя выражения для в (4.12) и интегрируя, получим:

. (4.13)

Момент инерции для равнобедренного треугольника относительно оси
находится аналогичным образом и равен:

(4.14)

Центробежный момент инерции относительно осей
и
равен нулю, так как ось
является осью симметрии сечения.

3. Круг . Рассмотрим сечение круглого профиля диаметром(Рис.4.8). Выделим элемент сечения двумя бесконечно близко расположенными концентрическими окружностями, расположенными на расстоянииот центра тяжести круга.

Вычислим полярный момент инерции круга, воспользовавшись выражением (4.5):

. (4.15)

Используя условие инвариантности для суммы осевых моментов инерции относительно двух взаимно перпендикулярных осей (4.6) и учитывая, что для круга в силу симметрии
, определяем величину осевых моментов инерции:

. (4.16)

. (4.17)

Центробежный момент инерции относительно осей иравен нулю, так как оси
и
являются осями симметрии сечения.

4.4. Зависимости между моментами инерции относительно параллельных осей

При вычислении моментов инерции для сложных фигур следует запомнить одно правило: значения для моментов инерции можно складывать, если они вычислены относительно одной и той же оси . Для сложных фигур чаще всего центры тяжести отдельных простых фигур и всей фигуры не совпадают. Не совпадают, соответственно, и центральные оси для отдельных простых фигур и всей фигуры. В связи с этим существуют приемы приведения моментов инерции к одной оси, например, центральной оси всей фигуры. Это может быть связано с параллельным переносом осей инерции и дополнительными вычислениями.

Рассмотрим определение моментов инерции относительно параллельных осей инерции, изображенных на рис.4.9.

Пусть осевые и центробежный моменты инерции изображенной на рис.4.9. фигуры относительно произвольно выбранных осей
и
с началом координат в точкеизвестны. Требуется вычислить осевые и центробежный моменты инерции фигуры относительно произвольных параллельных осей
и
с началом координат в точке. Оси
и
проведены на расстоянияхисоответственно от осей
и
.

Воспользуемся выражениями для осевых моментов инерции (4.4) и для центробежного момента инерции (4.7). Подставим в эти выражения вместо текущих координат
и
элемента с бесконечно малой площадью координаты
и
в новой системе координат. Получим:

Анализируя полученные выражения, приходим к выводу, что при вычислении моментов инерции относительно параллельных осей к моментам инерции, вычисленных относительно исходных осей инерции, следует призводить добавки в виде дополнительных членов, которые могут оказаться намного больше значений для моментов инерции относительно исходных осей. Поэтому пренебрегать этими дополнительными членами ни в коем случае нельзя.

Рассмотренный случай представляет собой самый общий случай параллельного переноса осей, когда в качестве исходных были взяты произвольные оси инерции. В большинстве расчетов встречаются частные случаи определения моментов инерции.

Первый частный случай . Исходные оси являются центральными осями инерции фигуры. Тогда, используя основное свойство для статического момента площади, можно исключить из уравнений (4.18)(4.20) члены уравнений, в которые входит статический момент площади фигуры. В результате получим:

. (4.21)

. (4.22)

. (4.23)

Здесь оси
и
центральные оси инерции.

Второй частный случай . Исходные оси являются главными осями инерции. Тогда, учитывая, что относительно главных осей инерции центробежный момент инерции равен нулю, получим:

. (4.24)

. (4.25)

. (4.26)

Здесь оси
и
главные оси инерции.

Воспользуемся полученными выражениями и рассмотрим несколько примеров вычисления моментов инерции для плоских фигур.

Пример 4.2. Определить осевые моменты инерции фигуры, приведенной на рис. 4.10, относительно центральных осейи.

В предыдущем примере 4.1 для изображенной на рис.4.10 фигуры было определено положение центра тяжести С. Координата центра тяжести откладывалась от оси и составила
. Вычислим расстоянияимежду осямиии осямии. Эти расстояния составили соответственно
и
. Так как исходные осииявляются центральными осями для простых фигур в виде прямоугольников, для определения момента инерции фигуры относительно осивоспользуемся выводами для первого частного случая, в частности, формулой (4.21).

Момент инерции относительно оси получим путем сложения моментов инерции простых фигур относительно этой же оси, так как осьявляется общей центральной осью для простых фигур и для всей фигуры.

см 4 .

Центробежный момент инерции относительно осей иравен нулю, так как ось инерцииявляется главной осью (осью симметрии фигуры).

Пример 4.3. Чему равен размер b (в см) фигуры, изображенной на рис. 4.11, если момент инерции фигуры относительно оси равен 1000 см 4 ?

Выразим момент инерции относительно оси через неизвестный размер сечения, воспользовавшись формулой (4.21), учитывая, что расстояние между осямииравно 7см:

см 4 . (а)

Решая выражение (а) относительно размера сечения , получим:

см.

Пример.4.4. Какая из фигур, изображенных на рис.4.12 , имеет больший момент инерции относительно оси , если обе фигуры имеют одинаковую площадь
см 2 ?

1. Выразим площади фигур через их размеры и определим:

а) диаметр сечения для круглого сечения:

см 2 ; Откуда
см.

б) размер стороны квадрата:

; Откуда
см.

2. Вычисляем момент инерции для круглого сечения:

см 4 .

3. Вычисляем момент инерции для сечения квадратной формы:

см 4 .

Сравнивая полученные результаты, приходим к выводу, что наибольшим моментом инерции будет обладать сечение квадратной формы по сравнению с сечение круглой формы при одинаковой у них площади.

Пример 4.5. Определить полярный момент инерции (в см 4) сечения прямоугольной формы относительно его центра тяжести, если ширина сечения
см, высота сечения
см.

1. Найдем моменты инерции сечения относительно горизонтальной и вертикальнойцентральных осей инерции:

см 4 ;
см 4 .

2. Определяем полярный момент инерции сечения как сумму осевых моментов инерции:

см 4 .

Пример 4.6. Определить момент инерции фигуры треугольной формы изображенной на рис.4.13, относительно центральной оси , если момент инерции фигуры относительно осиравен 2400 см 4 .

Момент инерции сечения треугольной формы относительно главной оси инерции будет меньше по сравнению с моментом инерции относительно осина величину
. Поэтому при
см момент инерции сечения относительно осинайдем следующим образом.

При изучении вращения твердых тел будем пользоваться понятием момента инерции.

Разобьем тело на такие малые части, что каждую из них можно считать материальной точкой. Пусть m i – масса i- й материальной точки, r i – ее расстояние до некоторой оси O .

Величина, равная произведению массы материальной точки на квадрат кратчайшего расстояния ее до данной оси, называется моментом инерции материальной точки относительно оси:

Сумма моментов инерции всех материальных точек тела называется моментом инерции тела относительно некоторой оси:

Момент инерции твердого тела зависит, как нетрудно видеть, от распределения масс относительно интересующей нас оси.

Если тело представляет собой обруч массы m , толщина которого мала по сравнению с радиусом R , то момент его инерции относительно оси, проходящей через центр и перпендикулярной к плоскости обруча, равен

Для тел более сложной формы суммирование выражения (5.2) производится методами интегрального исчисления согласно формуле

где интегрирование производится по всему объему тела. Величина r
в этом случае есть функция положения точки с координатами x , y , z .

В качестве примера найдем момент инерции однородного диска относительно оси, перпендикулярной к плоскости диска и проходящей через его центр. Разобьем диск на кольцевые слои толщиной dr .

Все точки одного слоя будут находиться на одинаковом расстоянии от оси, равном r . Объем такого слоя равен:

,

где b – толщина диска. Поскольку диск однороден, плотность его во всех точках одинакова и

где dm – масса кольцевого слоя.

Теперь по формуле (5.4) находим момент инерции

,

где R – радиус диска;

.

Наконец, введя массу диска m равную произведению плотности на объем диска , получим

Моменты инерции некоторых однородных твердых тел относительно оси, проходящей через центр масс тела , приведены в табл. 5.1.

Таблица 5.1

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то можно найти момент инерции относительно любой другой параллельной оси. Для этого надо воспользоваться теоремой Гюйгенса – Штейнера :

момент инерции тела I относительно произвольной оси равен моменту его инерции I c относительно параллельной ей оси, проходящей через центр масс C тела, сложенному с произведением массы тела m на квадрат расстояния a между осями:

Найдем связь между моментами инерции тела относительно двух параллельных осей, одна из которых проходит через центр масс. Найдем момент инерции тела относительно оси z параллельной оси z C . Ось z C проходит через центр масс тела. Разделим мысленно тело на частицы массой m i , где i – порядковый номер. Определим положение каждой частицы относительно осей z и z C . В соответствии с определением момента инерции , где – это кратчайшее расстояние до оси вращения (радиус окружности, которую описывает точка при своем движении вокруг оси вращения).

На рис. 5.3 видно, что , тогда момент инерции точки массой m i относительно оси z равен: , а для всего тела момент инерции относительно оси z равен сумме моментов инерции всех частиц тела относительно этой же оси:

(5.7)

По определению – момент инерции тела относительно оси z C , проходящей через центр масс тела; , тогда . Выражение можно преобразовать . Величина, равная определяет положение центра масс тела относительно оси z C . Из рисунка видно, что , т.к. центр масс лежит на оси z C .

Тогда получим

(5.8)

– момент инерции I z тела относительно произвольной оси равен сумме момента инерции тела относительно параллельной ей оси z C , проходящей через центр масс, и величины ma 2 , где m – масса тела, a – расстояние между осями.

Пример. Момент инерции тонкого стержня (массы m и длины ) относительно оси, перпендикулярной стрежню и проходящей через его конец, равен.

Введенные формулами (3.26), (3.27) величины оказываются существенно необходимыми при изучении динамики вращательных движений твердого тела или системы тел. Эти характеристики инерции зависят как от положения начала координат, так и от направлений выбранных коор­динатных осей. Однако в данной точке тела шесть величин вместе с суммарной массой М пол­ностью определяют его инерцию. Иначе говоря, зная эти ве­личины, можно найти момент инерции относительно оси про­извольного направления и центробежный момент инерции для пары новых (повернутых) осей, а также, при известной геометрии тела, перейти к инерционным характеристикам, определенным для другого начала координат. Пусть требуется найти момент инерции относительного заданного направления (оси ξ ), характеризуемого ортом . Моментом инерции системы материальных точек относи­тельно оси называется сумма произведений масс этих точек на квадраты их расстояний до оси

Легко сообразить, что квадрат расстояния h, , можно подсчи­тать по формуле (рис. 53)

(3.28)

Запишем полученное выражение (3.29) иначе

Мы изменили порядок сомножителей во втором скалярном произведении и отбросили скобки; первое делать можно, а второе? При этом появилась новая величина , в которой два вектора перемножаются, но не скалярно и не векторно, а каким-то новым способом; такое умножение на­зываетсядиадным (или тензорным),а само произведение - диадой, которая представляет собой тензор второго ранга. Аналитическое определение тензора состоит в следующем: совокупность Зn величин (в трехмерном пространстве), преобразующихся при повороте координатной системы как произведения n координат, называется тензором n-го ранга. По этому определению диада будет тензором 2-го ранга, вектор -тензором 1-го ранга, а скалярная величина - тензором нулевого ранга. Очевидно, что диада не изменится при перестановке ее сомножителей - это симметричная диада. Более общий случай получим, перемножая два разных вектора, например и ; диада уже не будет симметричнойи переставлять сомножители у нее нельзя:

Так как векторы и можно представить в виде

то диада может быть записана в виде суммы девяти сла­гаемых

(3.30)

Здесь ….. элементарные диады, а коэффици­енты при них называются составляющими или компонентами тензора. Тензор второго ранга (диаду) можно записать также в виде квадратной матрицы. Так, для тензора (3.30)

(3.31)

Хотя развернутый вид (3.30) тензора и не имеет таблич­ного вида (3.31), однако положение каждой составляющей в таб­лице устанавливается сразу по ее множителю - элементар­ной диаде: левый орт указывает строку, а правый орт - стол­бец, орты соответствуют положению данной составляющей в матрице (3.31). Теперь легко понять неравенство ; пе­рестановка сомножителей в диаде означает замену строк столбцами (и наоборот) в матрице (3.31), а тензор будет транспонированным по отношению к первоначальному тен­зору .Из теории матриц известно, что квадратную матрицу (3.31) можно умножить справа на вектор-столбец или слева на вектор-строку. Запись тензора в форме (3.30) позволяет эти операции свести к скалярному умножению ортов. Тензор второго ранга можно умножить скалярно как справа, так и слева на вектор а ; при этом результат будет различным, так как при правом умножении тензора на вектор будут по­являться скалярные произведения правых ортов элементар­ных диад на орты вектора, а при левом умножении вектора на тензор в скалярных произведениях будут участвовать левые орты элементарных диад. В результате останутся орты элементарных диад, которые не участвовали в скаляр­ных произведениях, поэтому скалярное произведение тензора и вектора будет векторной величиной. Легко сообразить, что , где означает транспонированный тензор. В случае сим­метричного тензора транспонированный тензор равен перво­начальному и разница между правым и левым произведени­ями исчезает. В нашем случае симметричный тензор и его разверну­тое выражение типа (3.29) оказывается проще:

Если тензор (второго ранга) умножать скалярно на век­торы и слева, и справа, то участвовать в скалярных произве­дениях будут как левые, так и правые орты элементарных диад, и в результате получится скалярная величина. Именно это мы имеем в формуле (3.29). Записывая эту формулу в виде

где тензор представлен выше в виде (3.32), сразу понимаем, что в результате двойного скалярного перемножения в (3.33) исчезают те слагаемые, в которых встречаются произведе­ния (скалярные) разных ортов. Остающиеся слагаемые легко написать сразу; это будут те же компоненты тензора , что и представленные в формуле (3.32), только орты в этой фор­муле следует заменить на соответствующие проекции вектора . Тогда получим

Сравнивая результат (3.34) с формулой (3.38а), убеждаемся и законности опускания скобок в формуле (3.29). Простейшим тензором второго ранга будет единичный тензор:

(3.35)

Нетрудно сообразить, что диагональные элементы мат­рицы, соответствующей тензору (3.35), будут единицами, а остальные, недиагональные - нулями. Название «единич­ный тензор» совершенно оправдано, так как, умножая на него любой вектор (справа или слева - это безразлично), мы опять получим вектор :

Это свойство единичного тензора приводит к следую­щему интересному соотношению:

(3.36)

Соотношения (3.36) и (3.29) позволяют написать формулу (3.28) В ином виде

= (3.38)

Величина

= , (3.39)

вошедшая в выражение для (формула 3.38), представляет собой тензор инерции твердого тела в точке О . Вводя этот тензор, переписываем формулу (3.38) для момента инерции относи­тельно оси , заданной направлением орта , в очень про­стом виде

Тела m на квадрат расстояния d между осями :

J = J c + m d 2 , {\displaystyle J=J_{c}+md^{2},}

где m - полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

J = J c + m d 2 = 1 12 m l 2 + m (l 2) 2 = 1 3 m l 2 . {\displaystyle J=J_{c}+md^{2}={\frac {1}{12}}ml^{2}+m\left({\frac {l}{2}}\right)^{2}={\frac {1}{3}}ml^{2}.}

Осевые моменты инерции некоторых тел

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения
Тело Описание Положение оси a Момент инерции J a
Материальная точка массы m На расстоянии r от точки, неподвижная
Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра m r 2 {\displaystyle mr^{2}}
Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра 1 2 m r 2 {\displaystyle {\frac {1}{2}}mr^{2}}
Полый толстостенный цилиндр массы m с внешним радиусом r 2 и внутренним радиусом r 1 Ось цилиндра m r 2 2 + r 1 2 2 {\displaystyle m{\frac {r_{2}^{2}+r_{1}^{2}}{2}}}
Сплошной цилиндр длины l , радиуса r и массы m 1 4 m ⋅ r 2 + 1 12 m ⋅ l 2 {\displaystyle {1 \over 4}m\cdot r^{2}+{1 \over 12}m\cdot l^{2}}
Полый тонкостенный цилиндр (кольцо) длины l , радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс 1 2 m ⋅ r 2 + 1 12 m ⋅ l 2 {\displaystyle {1 \over 2}m\cdot r^{2}+{1 \over 12}m\cdot l^{2}}
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс 1 12 m l 2 {\displaystyle {\frac {1}{12}}ml^{2}}
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец 1 3 m l 2 {\displaystyle {\frac {1}{3}}ml^{2}}
Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы 2 3 m r 2 {\displaystyle {\frac {2}{3}}mr^{2}}
Шар радиуса r и массы m Ось проходит через центр шара 2 5 m r 2 {\displaystyle {\frac {2}{5}}mr^{2}}
Конус радиуса r и массы m Ось конуса 3 10 m r 2 {\displaystyle {\frac {3}{10}}mr^{2}}
Равнобедренный треугольник с высотой h , основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину 1 24 m (a 2 + 12 h 2) {\displaystyle {\frac {1}{24}}m(a^{2}+12h^{2})}
Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс 1 12 m a 2 {\displaystyle {\frac {1}{12}}ma^{2}}
Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс 1 6 m a 2 {\displaystyle {\frac {1}{6}}ma^{2}}
Прямоугольник со сторонами a и b и массой m Ось перпендикулярна плоскости прямоугольника и проходит через центр масс 1 12 m (a 2 + b 2) {\displaystyle {\frac {1}{12}}m(a^{2}+b^{2})}
Правильный n-угольник радиуса r и массой m Ось перпендикулярна плоскости и проходит через центр масс m r 2 6 [ 1 + 2 cos ⁡ (π / n) 2 ] {\displaystyle {\frac {mr^{2}}{6}}\left}
Тор (полый) с радиусом направляющей окружности R , радиусом образующей окружности r и массой m Ось перпендикулярна плоскости направляющей окружности тора и проходит через центр масс I = m (3 4 r 2 + R 2) {\displaystyle I=m\left({\frac {3}{4}}\,r^{2}+R^{2}\right)}

Вывод формул

Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобьём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJ i . Тогда

J = ∑ d J i = ∑ R i 2 d m . (1) . {\displaystyle J=\sum dJ_{i}=\sum R_{i}^{2}dm.\qquad (1).}

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

J = ∑ R 2 d m = R 2 ∑ d m = m R 2 . {\displaystyle J=\sum R^{2}dm=R^{2}\sum dm=mR^{2}.}

Толстостенный цилиндр (кольцо, обруч)

Вывод формулы

Пусть имеется однородное кольцо с внешним радиусом R , внутренним радиусом R 1 , толщиной h и плотностью ρ . Разобьём его на тонкие кольца толщиной dr . Масса и момент инерции тонкого кольца радиуса r составит

d m = ρ d V = ρ ⋅ 2 π r h d r ; d J = r 2 d m = 2 π ρ h r 3 d r . {\displaystyle dm=\rho dV=\rho \cdot 2\pi rhdr;\qquad dJ=r^{2}dm=2\pi \rho hr^{3}dr.}

Момент инерции толстого кольца найдём как интеграл

J = ∫ R 1 R d J = 2 π ρ h ∫ R 1 R r 3 d r = {\displaystyle J=\int _{R_{1}}^{R}dJ=2\pi \rho h\int _{R_{1}}^{R}r^{3}dr=} = 2 π ρ h r 4 4 | R 1 R = 1 2 π ρ h (R 4 − R 1 4) = 1 2 π ρ h (R 2 − R 1 2) (R 2 + R 1 2) . {\displaystyle =2\pi \rho h\left.{\frac {r^{4}}{4}}\right|_{R_{1}}^{R}={\frac {1}{2}}\pi \rho h\left(R^{4}-R_{1}^{4}\right)={\frac {1}{2}}\pi \rho h\left(R^{2}-R_{1}^{2}\right)\left(R^{2}+R_{1}^{2}\right).}

Поскольку объём и масса кольца равны

V = π (R 2 − R 1 2) h ; m = ρ V = π ρ (R 2 − R 1 2) h , {\displaystyle V=\pi \left(R^{2}-R_{1}^{2}\right)h;\qquad m=\rho V=\pi \rho \left(R^{2}-R_{1}^{2}\right)h,}

получаем окончательную формулу для момента инерции кольца

J = 1 2 m (R 2 + R 1 2) . {\displaystyle J={\frac {1}{2}}m\left(R^{2}+R_{1}^{2}\right).}

Однородный диск (сплошной цилиндр)

Вывод формулы

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R 1 = 0 ), получим формулу для момента инерции цилиндра (диска):

J = 1 2 m R 2 . {\displaystyle J={\frac {1}{2}}mR^{2}.}

Сплошной конус

Вывод формулы

Разобьём конус на тонкие диски толщиной dh , перпендикулярные оси конуса. Радиус такого диска равен

r = R h H , {\displaystyle r={\frac {Rh}{H}},}

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска. Масса и момент инерции такого диска составят

d J = 1 2 r 2 d m = 1 2 π ρ r 4 d h = 1 2 π ρ (R h H) 4 d h ; {\displaystyle dJ={\frac {1}{2}}r^{2}dm={\frac {1}{2}}\pi \rho r^{4}dh={\frac {1}{2}}\pi \rho \left({\frac {Rh}{H}}\right)^{4}dh;}

Интегрируя, получим

J = ∫ 0 H d J = 1 2 π ρ (R H) 4 ∫ 0 H h 4 d h = 1 2 π ρ (R H) 4 h 5 5 | 0 H == 1 10 π ρ R 4 H = (ρ ⋅ 1 3 π R 2 H) 3 10 R 2 = 3 10 m R 2 . {\displaystyle {\begin{aligned}J=\int _{0}^{H}dJ={\frac {1}{2}}\pi \rho \left({\frac {R}{H}}\right)^{4}\int _{0}^{H}h^{4}dh={\frac {1}{2}}\pi \rho \left({\frac {R}{H}}\right)^{4}\left.{\frac {h^{5}}{5}}\right|_{0}^{H}=={\frac {1}{10}}\pi \rho R^{4}H=\left(\rho \cdot {\frac {1}{3}}\pi R^{2}H\right){\frac {3}{10}}R^{2}={\frac {3}{10}}mR^{2}.\end{aligned}}}

Сплошной однородный шар

Вывод формулы

Разобьём шар на тонкие диски толщиной dh , перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

r = R 2 − h 2 . {\displaystyle r={\sqrt {R^{2}-h^{2}}}.}

Масса и момент инерции такого диска составят

d m = ρ d V = ρ ⋅ π r 2 d h ; {\displaystyle dm=\rho dV=\rho \cdot \pi r^{2}dh;} d J = 1 2 r 2 d m = 1 2 π ρ r 4 d h = 1 2 π ρ (R 2 − h 2) 2 d h = 1 2 π ρ (R 4 − 2 R 2 h 2 + h 4) d h . {\displaystyle dJ={\frac {1}{2}}r^{2}dm={\frac {1}{2}}\pi \rho r^{4}dh={\frac {1}{2}}\pi \rho \left(R^{2}-h^{2}\right)^{2}dh={\frac {1}{2}}\pi \rho \left(R^{4}-2R^{2}h^{2}+h^{4}\right)dh.}

Момент инерции шара найдём интегрированием:

J = ∫ − R R d J = 2 ∫ 0 R d J = π ρ ∫ 0 R (R 4 − 2 R 2 h 2 + h 4) d h = = π ρ (R 4 h − 2 3 R 2 h 3 + 1 5 h 5) | 0 R = π ρ (R 5 − 2 3 R 5 + 1 5 R 5) = 8 15 π ρ R 5 = = (4 3 π R 3 ρ) ⋅ 2 5 R 2 = 2 5 m R 2 . {\displaystyle {\begin{aligned}J&=\int _{-R}^{R}dJ=2\int _{0}^{R}dJ=\pi \rho \int _{0}^{R}\left(R^{4}-2R^{2}h^{2}+h^{4}\right)dh=\\&=\pi \rho \left.\left(R^{4}h-{\frac {2}{3}}R^{2}h^{3}+{\frac {1}{5}}h^{5}\right)\right|_{0}^{R}=\pi \rho \left(R^{5}-{\frac {2}{3}}R^{5}+{\frac {1}{5}}R^{5}\right)={\frac {8}{15}}\pi \rho R^{5}=\\&=\left({\frac {4}{3}}\pi R^{3}\rho \right)\cdot {\frac {2}{5}}R^{2}={\frac {2}{5}}mR^{2}.\end{aligned}}}

Тонкостенная сфера

Вывод формулы

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R :

J 0 = 2 5 M R 2 = 8 15 π ρ R 5 . {\displaystyle J_{0}={\frac {2}{5}}MR^{2}={\frac {8}{15}}\pi \rho R^{5}.}

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR .

J = d J 0 d R d R = d d R (8 15 π ρ R 5) d R = = 8 3 π ρ R 4 d R = (ρ ⋅ 4 π R 2 d R) 2 3 R 2 = 2 3 m R 2 . {\displaystyle {\begin{aligned}J&={\frac {dJ_{0}}{dR}}dR={\frac {d}{dR}}\left({\frac {8}{15}}\pi \rho R^{5}\right)dR=\\&={\frac {8}{3}}\pi \rho R^{4}dR=\left(\rho \cdot 4\pi R^{2}dR\right){\frac {2}{3}}R^{2}={\frac {2}{3}}mR^{2}.\end{aligned}}}

Тонкий стержень (ось проходит через центр)

Вывод формулы

Разобьём стержень на малые фрагменты длиной dr . Масса и момент инерции такого фрагмента равна

d m = m d r l ; d J = r 2 d m = m r 2 d r l . {\displaystyle dm={\frac {mdr}{l}};\qquad dJ=r^{2}dm={\frac {mr^{2}dr}{l}}.}

Интегрируя, получим

J = ∫ − l / 2 l / 2 d J = 2 ∫ 0 l / 2 d J = 2 m l ∫ 0 l / 2 r 2 d r = 2 m l r 3 3 | 0 l / 2 = 2 m l l 3 24 = 1 12 m l 2 . {\displaystyle J=\int _{-l/2}^{l/2}dJ=2\int _{0}^{l/2}dJ={\frac {2m}{l}}\int _{0}^{l/2}r^{2}dr={\frac {2m}{l}}\left.{\frac {r^{3}}{3}}\right|_{0}^{l/2}={\frac {2m}{l}}{\frac {l^{3}}{24}}={\frac {1}{12}}ml^{2}.}

Тонкий стержень (ось проходит через конец)

Вывод формулы

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l ⁄ 2 . По теореме Штейнера новый момент инерции будет равен

J = J 0 + m r 2 = J 0 + m (l 2) 2 = 1 12 m l 2 + 1 4 m l 2 = 1 3 m l 2 . {\displaystyle J=J_{0}+mr^{2}=J_{0}+m\left({\frac {l}{2}}\right)^{2}={\frac {1}{12}}ml^{2}+{\frac {1}{4}}ml^{2}={\frac {1}{3}}ml^{2}.}

Безразмерные моменты инерции планет и спутников

Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr 2 ). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение доплеровского смещения радиосигнала, передаваемого АМС , пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара - 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра .

Центробежный момент инерции

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины :

J x y = ∫ (m) x y d m = ∫ (V) x y ρ d V , {\displaystyle J_{xy}=\int \limits _{(m)}xydm=\int \limits _{(V)}xy\rho dV,} J x z = ∫ (m) x z d m = ∫ (V) x z ρ d V , {\displaystyle J_{xz}=\int \limits _{(m)}xzdm=\int \limits _{(V)}xz\rho dV,} J y z = ∫ (m) y z d m = ∫ (V) y z ρ d V , {\displaystyle J_{yz}=\int \limits _{(m)}yzdm=\int \limits _{(V)}yz\rho dV,}

где x , y и z - координаты малого элемента тела объёмом dV , плотностью ρ и массой dm .

Ось OX называется главной осью инерции тела , если центробежные моменты инерции J xy и J xz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции данного тела .

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела , а моменты инерции относительно этих осей - его главными центральными моментами инерции . Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции .

Геометрические моменты инерции

Геометрический момент инерции объёма

J V a = ∫ (V) r 2 d V , {\displaystyle J_{Va}=\int \limits _{(V)}r^{2}dV,}

где, как и ранее r - расстояние от элемента dV до оси a .

Геометрический момент инерции площади относительно оси - геометрическая характеристика тела, выражаемая формулой :

J S a = ∫ (S) r 2 d S , {\displaystyle J_{Sa}=\int \limits _{(S)}r^{2}dS,}

где интегрирование выполняется по поверхности S , а dS - элемент этой поверхности.

Размерность J Sa - длина в четвёртой степени ( d i m J S a = L 4 {\displaystyle \mathrm {dim} J_{Sa}=\mathrm {L^{4}} } ), соответственно единица измерения СИ - 4 . В строительных расчетах, литературе и сортаментах металлопроката часто указывается в см 4 .

Через геометрический момент инерции площади выражается момент сопротивления сечения:

W = J S a r m a x . {\displaystyle W={\frac {J_{Sa}}{r_{max}}}.}

Здесь r max - максимальное расстояние от поверхности до оси.

Геометрические моменты инерции площади некоторых фигур
Прямоугольника высотой h {\displaystyle h} и шириной b {\displaystyle b} : J y = b h 3 12 {\displaystyle J_{y}={\frac {bh^{3}}{12}}}

J z = h b 3 12 {\displaystyle J_{z}={\frac {hb^{3}}{12}}}

Прямоугольного коробчатого сечения высотой и шириной по внешним контурам H {\displaystyle H} и B {\displaystyle B} , а по внутренним h {\displaystyle h} и b {\displaystyle b} соответственно J z = B H 3 12 − b h 3 12 = 1 12 (B H 3 − b h 3) {\displaystyle J_{z}={\frac {BH^{3}}{12}}-{\frac {bh^{3}}{12}}={\frac {1}{12}}(BH^{3}-bh^{3})}

J y = H B 3 12 − h b 3 12 = 1 12 (H B 3 − h b 3) {\displaystyle J_{y}={\frac {HB^{3}}{12}}-{\frac {hb^{3}}{12}}={\frac {1}{12}}(HB^{3}-hb^{3})}

Круга диаметром d {\displaystyle d} J y = J z = π d 4 64 {\displaystyle J_{y}=J_{z}={\frac {\pi d^{4}}{64}}}

Момент инерции относительно плоскости

Моментом инерции твёрдого тела относительно некоторой плоскости называют скалярную величину, равную сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до рассматриваемой плоскости .

Если через произвольную точку O {\displaystyle O} провести координатные оси x , y , z {\displaystyle x,y,z} , то моменты инерции относительно координатных плоскостей x O y {\displaystyle xOy} , y O z {\displaystyle yOz} и z O x {\displaystyle zOx} будут выражаться формулами:

J x O y = ∑ i = 1 n m i z i 2 , {\displaystyle J_{xOy}=\sum _{i=1}^{n}m_{i}z_{i}^{2}\ ,} J y O z = ∑ i = 1 n m i x i 2 , {\displaystyle J_{yOz}=\sum _{i=1}^{n}m_{i}x_{i}^{2}\ ,} J z O x = ∑ i = 1 n m i y i 2 . {\displaystyle J_{zOx}=\sum _{i=1}^{n}m_{i}y_{i}^{2}\ .}

В случае сплошного тела суммирование заменяется интегрированием.

Центральный момент инерции

Центральный момент инерции (момент инерции относительно точки O, момент инерции относительно полюса, полярный момент инерции ) J O {\displaystyle J_{O}} - это величина, определяемая выражением :

J a = ∫ (m) r 2 d m = ∫ (V) ρ r 2 d V , {\displaystyle J_{a}=\int \limits _{(m)}r^{2}dm=\int \limits _{(V)}\rho r^{2}dV,}

Центральный момент инерции можно выразить через главные осевые моменты инерции, а также через моменты инерции относительно плоскостей :

J O = 1 2 (J x + J y + J z) , {\displaystyle J_{O}={\frac {1}{2}}\left(J_{x}+J_{y}+J_{z}\right),} J O = J x O y + J y O z + J x O z . {\displaystyle J_{O}=J_{xOy}+J_{yOz}+J_{xOz}.}

Тензор инерции и эллипсоид инерции

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором s → = ‖ s x , s y , s z ‖ T , | s → | = 1 {\displaystyle {\vec {s}}=\left\Vert s_{x},s_{y},s_{z}\right\Vert ^{T},\left\vert {\vec {s}}\right\vert =1} , можно представить в виде квадратичной (билинейной) формы :

I s = s → T ⋅ J ^ ⋅ s → , {\displaystyle I_{s}={\vec {s}}^{T}\cdot {\hat {J}}\cdot {\vec {s}},\qquad } (1)

где - тензор инерции . Матрица тензора инерции симметрична, имеет размеры 3 × 3 {\displaystyle 3\times 3} и состоит из компонент центробежных моментов:

J ^ = ‖ J x x − J x y − J x z − J y x J y y − J y z − J z x − J z y J z z ‖ , {\displaystyle {\hat {J}}=\left\Vert {\begin{array}{ccc}J_{xx}&-J_{xy}&-J_{xz}\\-J_{yx}&J_{yy}&-J_{yz}\\-J_{zx}&-J_{zy}&J_{zz}\end{array}}\right\Vert ,} J x y = J y x , J x z = J z x , J z y = J y z , {\displaystyle J_{xy}=J_{yx},\quad J_{xz}=J_{zx},\quad J_{zy}=J_{yz},\quad } J x x = ∫ (m) (y 2 + z 2) d m , J y y = ∫ (m) (x 2 + z 2) d m , J z z = ∫ (m) (x 2 + y 2) d m . {\displaystyle J_{xx}=\int \limits _{(m)}(y^{2}+z^{2})dm,\quad J_{yy}=\int \limits _{(m)}(x^{2}+z^{2})dm,\quad J_{zz}=\int \limits _{(m)}(x^{2}+y^{2})dm.}

Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора J ^ {\displaystyle {\hat {J}}} :

J ^ d = Q ^ T ⋅ J ^ ⋅ Q ^ , {\displaystyle {\hat {J}}_{d}={\hat {Q}}^{T}\cdot {\hat {J}}\cdot {\hat {Q}},} J ^ d = ‖ J X 0 0 0 J Y 0 0 0 J Z ‖ , {\displaystyle {\hat {J}}_{d}=\left\Vert {\begin{array}{ccc}J_{X}&0&0\\0&J_{Y}&0\\0&0&J_{Z}\end{array}}\right\Vert ,}

где Q ^ {\displaystyle {\hat {Q}}} - ортогональная матрица перехода в собственный базис тензора инерции. В собственном базисе координатные оси направлены вдоль главных осей тензора инерции, а также совпадают с главными полуосями эллипсоида тензора инерции. Величины J X , J Y , J Z {\displaystyle J_{X},J_{Y},J_{Z}} - главные моменты инерции. Выражение (1) в собственной системе координат имеет вид:

I s = J X ⋅ s x 2 + J Y ⋅ s y 2 + J Z ⋅ s z 2 , {\displaystyle I_{s}=J_{X}\cdot s_{x}^{2}+J_{Y}\cdot s_{y}^{2}+J_{Z}\cdot s_{z}^{2},}

откуда получается уравнение эллипсоида в собственных координатах. Разделив обе части уравнения на I s {\displaystyle I_{s}}

(s x I s) 2 ⋅ J X + (s y I s) 2 ⋅ J Y + (s z I s) 2 ⋅ J Z = 1 {\displaystyle \left({s_{x} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{X}+\left({s_{y} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{Y}+\left({s_{z} \over {\sqrt {I_{s}}}}\right)^{2}\cdot J_{Z}=1}

и произведя замены:

ξ = s x I s , η = s y I s , ζ = s z I s , {\displaystyle \xi ={s_{x} \over {\sqrt {I_{s}}}},\eta ={s_{y} \over {\sqrt {I_{s}}}},\zeta ={s_{z} \over {\sqrt {I_{s}}}},}

получаем канонический вид уравнения эллипсоида в координатах ξ η ζ {\displaystyle \xi \eta \zeta } :

ξ 2 ⋅ J X + η 2 ⋅ J Y + ζ 2 ⋅ J Z = 1. {\displaystyle \xi ^{2}\cdot J_{X}+\eta ^{2}\cdot J_{Y}+\zeta ^{2}\cdot J_{Z}=1.}

Расстояние от центра эллипсоида до некоторой его точки связано со значением момента инерции тела вдоль прямой, проходящей через центр эллипсоида и эту точку.

Рассмотрим материальную точку массой m, которая находится на расстоянии r, от неподвижной оси (рис. 26). Моментом инерции J материальной точки относительно оси называется скалярная физическая величина, равная произведению массы m на квадрат расстояния r до этой оси:

J = mr 2 (75)

Момент инерции системы N материальных точек будет равен сумме моментов инерции отдельных точек:

Рис. 26.

К определению момента инерции точки.

Если масса распределена в пространстве непрерывно, то суммирование заменяется интегрированием. Тело разбивается на элементарные объемы dv, каждый из которых обладает массой dm.

В результате получается следующее выражение:

Для однородного по объему тела плотность ρ постоянна, и записав элементарную массу в виде:

dm = ρdv, преобразуем формулу (70) следующим образом:

Размерность момента инерции - кг*м 2 .

Момент инерции тела является мерой инертности тела во вращательном движении, подобно тому, как масса тела является мерой его инертности при поступательном движении.

Момент инерции — это мера инертных свойств твердого тела при вращательном движении, зависящая от распределения массы относительно оси вращения. Иными словами, момент инерции зависит от массы, формы, размеров тела и положения оси вращения.

Всякое тело, независимо от того, вращается оно или покоится, обладает моментом инерции относительно любой оси, подобно тому, как тело обладает массой независимо от того, движется оно или находиться в покое. Аналогично массе момент инерции является величиной аддитивной.

В некоторых случаях теоретический расчёт момента инерции достаточно прост. Ниже приведены моменты инерции некоторых сплошных тел правильной геометрической формы относительно оси, проходящей через центр тяжести.

Момент инерции бесконечно плоского диска радиуса R относительно оси, перпендикулярной плоскости диска :

Момент инерции шара радиуса R :

Момент инерции стержня длиной L относительно оси, проходящей через середину стержня перпендикулярно ему:

Момент инерции бесконечно тонкого обруча радиуса R относительно оси, перпендикулярной его плоскости:

Момент инерции тела относительно произвольной оси рассчитывается с помощью теоремы Штейнера :

Момент инерции тела относительно произвольной оси равен сумме момента инерции относительно оси, проходящей через центр масс параллельно данной, и произведения массы тела на квадрат расстояния между осями.

Рассчитаем при помощи теоремы Штейнера момент инерции стержня длиной L относительно оси, проходящей через конец перпендикулярно ему (рис. 27).

К расчету момента инерции стержня

Согласно теореме Штейнера, момент инерции стержня относительно оси O′O′ равен моменту инерции относительно оси OO плюс md 2 . Отсюда получаем:


Очевидно: момент инерции неодинаков относительно разных осей, и поэтому, решая задачи на динамику вращательного движения, момент инерции тела относительно интересующей нас оси каждый раз приходится искать отдельно. Так, например, при конструировании технических устройств, содержащих вращающиеся детали (на железнодорожном транспорте, в самолетостроении, электротехнике и т. д.), требуется знание величин моментов инерции этих деталей. При сложной форме тела теоретический расчет его момента инерции может оказаться трудно выполнимым. В этих случаях предпочитают измерить момент инерции нестандартной детали опытным путем.

Момент силы F относительно точки O