Центробежная скорость формула. Центростремительная и центробежная силы. Темы для изучения

Рассмотрим вращение камня массой m на веревке (рис. 4.8).

Рис. 4.8

В каждый момент времени камень должен был бы двигаться прямолинейно по касательной к окружности. Однако он связан с осью вращения веревкой. Веревка растягивается, появляется упругая сила, действующая на камень, направленная вдоль веревки к центру вращения. Это и есть центростремительная сила (при вращении Земли вокруг оси в качестве центростремительной силы выступает сила гравитации).

Но так как то

(4.5.2)
(4.5.3)

Центростремительная сила возникла в результате действия камня на веревку, т.е. это сила, приложенная к телу, – сила инерции второго рода . Она фиктивна – ее нет.

Сила же, приложенная к связи и направленная по радиусу от центра, называется центробежной .

Помните, что центростремительная сила приложена к вращающемуся телу, а центробежная сила – к связи.


Сила гравитационного притяжения направлена к центру Земли.
Сила реакции опоры (нормального давления) направлена перпендикулярно к поверхности движения.

Центробежная сила – сила инерции первого рода. Центробежной силы, приложенной к вращающемуся телу, не существует.

С точки зрения наблюдателя, связанного с неинерциальной системой отсчета, он не приближается к центру, хотя видит, что F цс действует (об этом можно судить по показанию пружинного динамометра). Следовательно, с точки зрения наблюдателя в неинерциальной системе есть сила, уравновешивающая F цс, равная ей по величине и противоположная по направлению:

Т.к. a n = ω 2 R (здесь ω – угловая скорость вращения камня, а υ – линейная), то

F цб = m ω 2 R . (4.5.4)

Все мы (и физические приборы тоже) находимся на Земле, вращающейся вокруг оси, следовательно, в неинерциальной системе (рис 4.9).


Рис. 4.9

Чаще всего силы инерции проявляются статически в давлении, которое какое-либо тело, развивающее силу инерции, оказывает на другое тело, повинное в изменении состояния движения первого тела. Груз, ускоренно поднимаемый кверху, оказывает на платформу вследствие силы инерции дополнительное давление (рис. 23). Наблюдателю, тянущему канат, кажется, что груз тем более «увеличивается в весе», чем с большим ускорением его поднимают.

Рис. 23. «Увеличение веса» при поднятии с ускорением происходит за счет развиваемой телом силы инерции.

Когда давление или натяжение со стороны каких-либо тел вынуждает некоторое движущееся тело отклоняться от прямолинейного пути, мы говорим, что отклоняющееся от прямолинейного пути тело развивает центробежную силу инерции, направленную противоположно центростремительной силе, с которою тела, вызвавшие искривление траектории, давят на движущееся тело или тянут его. По закону равенства действия и противодействия эти две силы численно всегда одинаковы, поэтому центробежная сила определяется формулой

или, что то же:

Центростремительная сила направлена всегда к центру кривизны и приложена к движущемуся телу; центробежная сила равна центростремительной по величине, но направлена в противоположную сторону, т. е. от центра кривизны в сторону выпуклости траектории, и приложена к телам, вызывающим искривление траектории движущегося тела.

Массивный шар, подвешенный на прочной нити, натягивает ее при покое с силой тяжести шара но, будучи приведен в колебание, он натягивает ее с силой большей, чем его тяжесть, на величину развиваемой им центробежной силы инерции:

Автомобиль, проезжающий помосту, несколько прогибающемуся под его тяжестью, давит на мост с силой, превышающей вес автомобиля на величину центробежной силы инерции. Поэтому при прочих равных условиях давление автомобиля на вогнутый мост будет тем более велико, чем больше скорость движения автомобиля. Чтобы избежать действия центробежных сил, мосты делают обычно несколько выпуклыми (рис. 24). В этом случае вес быстро движущихся по мосту машин частью проявляется динамически, сообщая им центростремительное ускорение, направленное вниз; поэтому давление на выпуклый мост быстро проезжающих по нему машин будет меньше их веса.

На закруглениях пути колеса вагонов поезда или трамвая оказывают внешний рельс горизонтальное давление вследствие

Рис. 24 Проезжая по выпуклому мосту, автомобиль давит на моете силой, меньшей своего веса

развиваемой вагоном центробежной силы инерции. Чтобы не происходило опрокидывания вагона, равнодействующая давления, создаваемого весом вагона, и центробежной силы должна быть направлена между рельсами перпендикулярно к поверхности рельса; для этого на закруглениях внешний рельс прокладывают несколько выше внутреннего (рис. 25).

Рис. 25. На закруглениях внешний рельс укладывают выше внутреннего,

По аналогичным причинам конькобежец, описывая окружность, наклоняет свой корпус к центру окружности (рис. 26). Отметим еще раз, что на рис. 25 и 26, как это вообще принято в данном курсе, волнистыми стрелками показаны статические проявления сил (в первом случае - сил, приложенных к рельсу, во втором - ко льду). На рис. 26, кроме того, показано, как реакция опоры и вес конькобежца обеспечивают в сумме центростремительную силу, которая приложена к центру инерции конькобежца и проявляется динамически в центростремительном ускорении при движении конькобежца по дуге окружности. Точно таким же построением можно было бы дополнить и рис. 25. Центростремительное ускорение, обеспечивающее движение вагона по закруглению пути, при правильном подъеме наружного рельса (как и в случае, изображенном на рис. 26) создается за счет геометрической суммы реакции рельсов и веса вагона. Наклон полотна хотя и не устраняет горизонтальной составляющей давления колес на рельсы, но снижает (при правильном угле наклона - до нуля) боковое давление бандажей, параллельное плоскости шпал. Если бы наружный рельс не был приподнят и, таким образом, на закруглениях вагон двигался бы строго вертикально, то, кроме тенденции к опрокидыванию, развивались бы большие силы, смещающие крепление рельсов к шпалам; в этом случае центростремительная сила на закруглениях пути создавалась бы за счет указанных сил, стремящихся оторвать наружный рельс, тогда как при правильном наклоне полотна никаких смещающих сил в плоскости полотна нет, так как итоговое давление на рельсы перпендикулярно к этой плоскости,

В случаях, подобных представленному на рис. 26, центростремительная сила приложена к центру тяжести движущегося тела, а точки приложения центробежной силы определяются геометрическими условиями соприкосновения движущегося тела с телом, к которому приложена центробежная сила и противодействие которого обеспечивает кривизну траектории; поэтому указанные

численно равные силы хотя и направлены, как действие и противодействие, антипараллельно, но не по одной прямой.

Вещество вращающегося твердого тела находится в напряженном состоянии, так как каждая частица вращающегося тела развивает центробежную силу инерции, приложенную к смежным частицам тела, препятствующим рассматриваемой частице удалиться от оси вращения. Силы инерции, направленные по радиусу от центра, стремятся оторвать внешние слои вещества от внутренних.

Рис. 26 Описывая дугу окружности, конькобежец наклоняет свой корпус так, чтобы реакция льда проходила через центр тяжести тела, тогда равнодействующая реакции R и веса дает центростремительную силу

Если прочность вещества недостаточна, то при большой скорости вращения центробежные силы инерции разрушают тело, разрывая его на части. Во избежание подобных аварий все быстро вращающиеся части машин (роторы) и быстроходные маховики изготовляют из наиболее прочных металлов (обычно из стали).

О величине центробежных сил инерции во вращающихся частях машин можно судить по следующему примеру. Ротор одного из гирокомпасов при диаметре 12 см и весе 2,5 кг делает 20 000 об/мин. Центробежная сила, развиваемая на его ободе какой-либо массой, в 25 тысяч раз превышает вес этой массы.

Силы инерции часто оказывают разрушительное действие на отдельные части машин. Когда колесо насажено на ось так, что вся масса его распределена симметрично относительно оси вращения, то центробежные силы инерции, развиваемые отдельными частицами колеса, уравновешиваются на оси вращения и сказываются только в упругом натяжении вещества колеса. При очень больших скоростях это натяжение может привести к разрыву колеса. Но если масса колеса распределена относительно оси вращения несимметрично, то уже при сравнительно небольших скоростях центробежные силы инерции, которые в этом случае не уравновешиваются на оси, могут привести к поломке оси.

У колес паровоза несимметричное распределение сил инерции способно создать одностороннее давление на ось в несколько тонн; в связи с этим при вращении такого колеса давление колеса на рельс то возрастает (когда результирующая неуравновешенных центробежных сил направлена вниз), то убывает (когда она направлена вверх) - рельс как бы находится под действием ударов тяжелого молота.

При проектировании какой-либо новой машины производят детальный расчет сил инерции, которые могут возникнуть в ней при различных условиях ее работы. С проявлением неуравновешенных сил инерции приходится вести борьбу посредством точного распределения масс и согласования движений отдельных частей машины.

Но силы инерции, в частности центробежные силы, имеют в технике также и положительное применение, весьма обширное и разнообразное (работа молотов, центробежные машины, центрифуги и т. д.).

Заметим, что термин «центробежная сила» не вполне удачен; он наталкивает на неправильное понимание этой силы. Термин «центробежная сила» побуждает думать о движении от центра вращения по радиусу. Хотя центробежная сила и действует по радиусу от центра, но никакого движения в этом направлении она не вызывает и не способна вызвать потому, что она приложена к связям. Если связи, удерживавшие тело на неизменном расстоянии от центра, вдруг устранены (например, разорвалась веревка, к которой привязан камень, вращаемый нами по окружности), то двигавшееся по окружности тело будет удаляться от центра окружности, конечно, не по радиусу, а по касательной к окружности, так как оно по инерции сохранит то направление скорости, которое имело в момент разрыва связей.

На любой объект, который вращается по круговой траектории, действует сила. Она направлена к центральной точке окружности, описываемой траектории. Такая сила называется центростремительной.

Центробежная сила часто упоминается как или фиктивная сила. Она в основном используется для ссылки на силы, которые связаны с движением в неинерциальной системе отсчета.

Согласно третьему закону Ньютона, каждое действие имеет противоположное ему по направлению и равное по силе противодействие. И в этой концепции, центробежная сила на действие центростремительной силы.

Обе силы являются инерциальными, так только при движении объекта. Также они всегда появляются парами и уравновешивают друг друга. Поэтому на практике ими часто можно пренебречь.

Примеры центробежной и центростремительной силы

Если взять камень и привязать к нему веревку, а затем начать вращать веревку над головой, то возникнет центростремительная сила. Она будет действовать через веревку на камень и не позволять ему удаляться на расстояние больше длины самой веревки, как это произошло бы при обычном броске. Центробежная сила будет действовать противоположным образом. Она будет количественно равна и противоположна по направлению центростремительной силе. Такая сила тем больше, чем массивнее тело, движущееся по замкнутой траектории.

Общеизвестно, что Луна вращается вокруг Земли по круговой орбите. Сила притяжения, которая существует между Землей и Луной есть результат действия центростремительной силы. Центробежная сила, в этом случае, является виртуальной и на самом деле не существует. Это вытекает из третьего закона Ньютона. Однако, несмотря на абстрактность, центробежная сила выполняет очень важную роль во взаимодействии двух небесных тел. Благодаря ей Земля и ее спутник не отдаляются и не сближаются друг с другом, а движутся по стационарным орбитам. Без центробежной силы они давно столкнулись бы.

Заключение

1. В то время как центростремительная сила направлена к центру окружности, центробежная противоположна ей.

2. Центробежную силу часто называют инерциальной или фиктивной.

3. Центробежная сила всегда равна по количественному значению и противоположна по направлению центростремительной силе.

5. Слово «центростремительная» было получено от латинских слов. «Centrum» означает центр, а «petere» значит «искать». Понятие «центробежная» получено от латинских слов «centrum» и «fugere»,

Святого Писания, без труда вспомнит сюжет сражения Давида с Голиафом. Сражён страшный великан был при помощи пращи. А ведь праща - совершенно реально существовавший предмет, самое что ни на есть простое устройство, оружие, которое применялось во времена, когда лук считался передовой техникой. Самые ранние, обнаруженные при раскопках артефакты, классифицированные как праща, имеют возраст в десяток тысяч лет. Надо сказать, что, несмотря на чрезвычайно простое устройство, праща не была столь безобидной. Камень, выпущенный из пращи рукой опытного метальщика, летел в сторону врага со скоростью около ста метров в секунду. Максимальная реально зафиксированная дальность броска составила более 400 метров.

На каких же физических законах основаны столь внушительные результаты? Ответ: начальную скорость камню (а позднее - металлическому снаряду в форме шара) придавала именно эта загадочная, непонятно откуда берущаяся центробежная сила. Кроме пращи, это физическое явление легло в основу создания ещё многих и многих других машин и механизмов, используемых человеком.

Описание силы с позиций физики

Очень часто люди, а иногда, страшно сказать, даже студенты технических вузов используют в разговоре такое выражение, как центростремительная сила, отождествляя его с центробежной. Безусловно, у двух терминов много общего, хотя это отнюдь не одно и то же. Чтобы получше представить себе, о каких явлениях идет речь, нужно вспомнить немного школьной физики.

Что такое инерция. Револьверная пуля весит около 9 граммов. Если подбросить её вверх примерно на метр и затем поймать рукой (скорость менее 1,0 м/с.), можно почувствовать лёгкий толчок. Та же пуля, выпущенная из оружия и летящая со скоростью около 500 м/с. с лёгкостью пробивает сосновую доску толщиной в дюйм. И наконец, кусочек космического мусора той же массы, летящий по орбите с первой космической скоростью (8 000 м/с.), как кусок масла, с лёгкостью прошьёт тяжёлый танк.

Любое тело, обладающее массой m и движущееся со скоростью V, обладает кинетической энергией :

Для подброшенной пули:

Е = 0,009∙1 2 /2=0,0045 Дж.

Для выпущенной из пистолета:

Е = 0,009∙500 2 /2=1 125 Дж.

Для космического мусора:

Е = 0,009∙8 000 2 /2=288 000 Дж

Для того чтобы движущееся тело остановить, необходимо приложить такую же энергию; чтобы неподвижное тело разогнать до такой скорости, необходимо эту же энергию затратить.

Теперь представим, что некое тело, летящее по прямой, заставляют изменить направление движения.

Изображённое на рисунке тело имеет скорость в направлении оси x - V x , изменение направления его движения придаёт ему скорость в направлении оси ординат - V y , на что, соответственно требуется затратить энергию:

Наконец, вооружившись знаниями об инерции, можно вернуться к праще. Если коротко, то это камень (груз), вращающийся по круговой траектории на нити.

Тело, обладающее массой m, не держи его нить, полетит прямо (что, собственно, и испытал на себе Голиаф), но, удерживаемое нитью, постоянно меняет своё направление. Очевидно, что это происходит под действием какой-то силы, которую и принято называть центростремительной - F цс. В рассматриваемом случае - это сила натяжения нити.

Но почему в этом случае камень не летит в руку пращника? Всему виной третий закон гениального Ньютона, который гласит, что любая сила, приложенная к предмету, порождает силу противодействия, равную по величине и противоположную по направлению. Вот так и рождается центробежная сила F цб.

Примеры из жизни

Не случайно в начале статьи рассматривается именно праща - самый простой пример действия центробежной силы, который проще простого смоделировать, попробовать и ощутить. Но кроме этого, данная физическая величина присутствует в целом ряде ежедневно окружающих нас вещей и предметов. Так, центробежная сила, работая в катушках ремней безопасности, делает поездки безопасными.

Любители рыбалки так без этой силы вообще не смогли бы заниматься любимым хобби и затем рассказывать нам небылицы. Например, заброс тяжёлой кормушки - один в один имитация боевой пращи. А спиннинг или карповая снасть в руке рыбака представляет собой не что иное, как то же самое оружие, только вместо смертоносного камня - блесна, воблер или джиг.

Как рассчитать центробежную силу

Скалярная величина центробежной силы рассчитывается по формуле:

F - искомое значение центробежной силы, Н;

m - масса тела, кг;

V - скорость движения тела, м/с.;

r - радиус вращения, м.

Примеры расчётов

Рассчитаем, с какой силой выталкивается камень из пращи: длина ремня от руки пращника до ложа 1 метр. Воин вращает своё орудие со скоростью 2 оборота в секунду. В праще лежит камень весом 200 граммов.

L = 2πR = 2∙3,14∙1=6,28 м.

Таким образом, в секунду камень пролетает 2∙L = 6,28∙2 = 12,56 м, это и есть его скорость - 12,56 м/с.

Искомая величина находится таким образом:

F = mV 2 /r = 0,2 кг∙12,56 2 /1 = 31,55 Н.

Сила, поставленная на службу

Примеров, где центробежная сила выполняет полезную работу, множество. Кроме боевого метательного оружия, она прекрасно работает в современном спорте. Техника метания молота и в меньшей степени - диска основана на придании снаряду скорости путём именно раскручивания.

Тысячи всевозможных машин имеют принцип действия, основанный на применении центробежной силы. Не нужно далеко ходить, достаточно вспомнить название одного из самых распространенных типов насосов. А название он носит «центробежный». Внутри т.н. «улитки» колесо с лопастями раскручивает какое-то рабочее тело (жидкость или газ). После чего у внешней стенки окружности насоса благодаря центробежным силам образуется область повышенного давления, а в центре улитки, где скорость вращения минимальна, - пониженного. Таким образом, транспортируемая среда, поступив в полость насоса через патрубок в центральной части, под давлением выбрасывается через выходное отверстие во внешней стенке.

И это только один из примеров. Центробежные силы работают во всевозможных очистных машинах в сельском хозяйстве. Принцип сепарации (разделения) сыпучих материалов основан на разности энергий, полученных частицами из-за разной плотности и массы.

Ну и, наконец, пример самый что ни на есть бытовой, для созерцания которого не нужно ехать ни на стадион, ни на зерноток. Достаточно посмотреть, как работает самая обычная стиральная машина-автомат на отжиме. Бельё прижимается к стенкам барабана благодаря центробежной силе, да так, что после отжима на 1000 об./мин. бельё достаётся их машины почти сухим.

Когда с ней борются

Но не всегда центробежная сила желательна. В некоторых случаях с ней приходится бороться. Детали больших размеров в станкостроении, корабельных механизмах в моторах карьерных самосвалов испытывают при вращении огромные нагрузки. Каждый более-менее тяжёлый элемент конструкции, закреплённый на вращающейся основе, стремиться оторваться и улететь в сторону, противоположную центру вращения. А крепление, например, вертолётных лопастей - вообще целая наука.

Каждый автомобилист знает, что на скользкой дороге машину сносит так же в сторону, противоположную закруглению полотна. Иногда можно заметить, как на наиболее крутых поворотах дорожники специально делают уклон к центру кривизны.

Центробежная сила в природе

Ярким примером проявления центробежной силы в природе могут служить приливы - отливы в экваториальных областях. Дело в том, что не только Луна вращается вокруг Земли. Наша планета, хоть и намного тяжелее своего спутника, но всё же немного «подтанцовывает» ему, чуть вращаясь вокруг него по небольшому радиусу. Это приводит к тому, что в двух областях - направленной к Луне и противоположной - образуются как бы горбы вод мирового океана.

К слову сказать, Луне от приливных сил досталось больше. Именно они остановили её вращение вокруг своей оси. Благодаря центробежной силе жители голубой планеты могут видеть лишь одну сторону своего естественного спутника.

Краткое резюме

Итак, центробежная сила является ответной реакцией на силу центростремительную. Скалярная величина центробежной силы прямо пропорциональна произведению массы тела на квадрат его линейной скорости и обратно пропорциональна радиусу вращения. Вектор силы проходит через центр вращения и имеет направление - от него.