Возбуждающий постсинаптический потенциал приводит к деполяризации мембраны. Возбуждающий постсинаптический потенциал — впсп. Принцип рефлекторной работы

Процессы подобного возбуждения или торможения связаны с деятельностью еще одного типа ионных каналов - лиганд-зависимых (хемочувствительных). Они находятся на мембране, непосредственно окружающей синаптический контакт. Обычно они закрыты. Их открывание происходит лишь при появлении медиатора, несущего сигнал химического вещества (отсюда термин «хемочувствительные»).

Лиганд-зависимые каналы можно разделить на три основных класса: избирательно проницаемые по отношению к ионам Na + , ионам К + и ионам Cl − . Отрывание первых из них приведет к входу в клетку ионов Na + и деполяризации нейрона (рис. 3.14, а), во время которой разность потенциалов на мембране оказывается приближенной к порогу запуска ПД. В этот момент меньший, чем обычно, стимул может вызвать реакцию нейрона, т. е. нервная клетка находится в относительно возбужденном состоянии. В связи с этим локальная деполяризация мембраны под действием медиатора была названа возбуждающим постсинаптическим потенциалом (ВПСП). Медиаторы, вызывающие ВПСП, отнесены к группе возбуждающих медиаторов.

Открывание хемочувствительных Cl − -каналов приводит к входу в клетку ионов хлора; открывание К + -каналов - к выходу ионов калия. В этих случаях возникает гиперполяризация и разность потенциалов на мембране нейрона увеличивается по абсолютной величине (рис. 3.14, б), поэтому для запуска ПД необходим больший, чем обычно, стимул. Следовательно, нервная клетка находится в относительно заторможенном состоянии. В связи с этим локальная гиперполяризация мембраны под действием медиатора была названа тормозным постсинаптическим потенциалом (ТПСП). Медиаторы, вызывающие ТПСП, отнесены к группе тормозных медиаторов.

Усредненные параметры ВПСП и ТПСП весьма близки (рис. 3.14). Их длительность составляет обычно около 10 мс (иногда 50-100 мс), что существенно больше, чем в случае ПД. Амплитуда ВПСП и ТПСП определяется длительностью и крутизной наклона их первой фазы, которая зависит от количества и длительности существования медиатора в синаптической щели. Амплитуда одиночных постсинаптических потенциалов в ЦНС составляет 1-5 мВ. В крупном нервно-мышечном синапсе аналог ВПСП - потенциал концевой пластинки, может достигать 40 и более мВ.

При детальном анализе сигнала можно видеть, что первые фазы ВПСП и ТПСП имеют ступенчатый характер, т. е. нарастают дискретно, шагами (квантами). Такая дискретность связана с тем, что выброс медиатора в синаптическую щель также идет квантами, где квант - одна везикула. В каждой везикуле содержится несколько тысяч молекул медиатора, и их воздействие на постсинаптическую мембрану вызывает сдвиг потенциала примерно на 0,1 мВ.

В подавляющем большинстве случаев (кроме потенциала концевой пластинки) одиночный ВПСП не способен запустить ПД, так как возбуждение, вызываемое медиатором, не дорастает до порогового уровня. Для достижения порога запуска ПД необходима суммация (наложение) нескольких ВПСП.

Выделяют два варианта суммации - временную и пространственную. Временная суммация - объединение эффектов стимулов, пришедших по одному «каналу» с большой частотой (рис. 3.15): если к еще не угасшему ВПСП присоединить второй, затем третий и т.д., - возникнет реальная возможность запустить ПД. Это означает, что сигнал, достигший синапса, достаточно интенсивен и «заслуживает» того, чтобы быть переданным дальше по сети нейронов.

Пространственная суммация заключается в наложении друг на друга ВПСП соседних синапсов 1 -3 в некоторой близлежащей точке постсинаптической мембраны 4 (рис. 3.16), обладающей потенциал-зависимыми ионными каналами. Схема пространственной суммации напоминает логическую ячейку по типу «И», т. е. результат положительный, если несколько условий будут выполнены (несколько входных сигналов одновременно достигнут нервной клетки).

В ходе деятельности нейронов эффекты пространственной и временной суммации объединяются, и чем больше синапсов участвуют в этом процессе (срабатывают относительно одномоментно), тем больше вероятность достичь порога запуска ПД. При этом часть синапсов может обладать тормозными свойствами и вызывать ТПСП, вычитающиеся из суммы возбуждающих влияний. В результате в первом приближении условие запуска ПД в каждый момент времени можно определить следующим образом:



ПП + (сумма всех ВПСП) − (сумма всех ТПСП) > порог запуска ПД

22. Возбудимость мембраны различных частей нейрона

В нейроне подавляющее большинство нейрональных синапсов находится на дендритах нейрона. Однако наиболее эффективно вызывают возбуждение нейрона синаптические контакты, расположенные на теле нейрона. Это связано с тем, что постсинаптические мембраны этих синапсов располагаются в непосредственной близости от места первичного возникновения ПД, располагающегося в аксонном холмике (место отхождения аксона от тела). Близость соматических синапсов к аксонному холмику обеспечивает участие их возбуждающего постсинаптического потенциала (ВПСП) в механизмах генерации ПД (некоторые авторы называют их генераторными синапсами). Также большой возбудимостью обладает мембрана в местах первого ветвления крупных дендритов. Чем ближе конкретный синапс к этим точкам, тем больше его вклад в управление генерацией ПД. Одного ТПСП, возникшего рядом с аксональным холмиком, может оказаться достаточно для прекращения проведения сигнала.

Генераторный пункт нейрона, т. е. место возникновения ПД - аксонный холмик (но ПД также может возникать в перехватах Ранвье, и на части мембраны дендритов). Синапсы на нем отсутствуют, отличительной особенностью мембраны аксонного холмика является ее высокая возбудимость, в 3 - 4 раза превосходящая возбудимость сома-дендритной мембраны нейрона, что объясняется более высокой концентрацией Na-каналов на аксонном холмике, отсутствием на нем миелиновой оболочки. ВПСП достигает аксонного холмика, обеспечивая здесь уменьшение мембранного потенциала до критического уровня. В этот момент в аксонном холмике возникает ПД.

Роль дендритов в возникновении возбуждения до сих пор дискутируется. Дендритные синапсы удалены на значительное расстояние от генераторного пункта нейрона, по этой причине их ВПСП не могут вызвать там должную деполяризацию и обеспечить генерацию ПД. Считают, что синаптический аппарат дендритов проявляет себя при одновременном поступлении возбуждения к значительному числу дендритных синапсов. При этом суммарный дендритный ВПСП, изменяя мембранный потенциал генераторного пункта на подпороговом уровне, лишь делает возбудимость большей или меньшей в зависимости от временных и амплитудных характеристик колебаний мембранного потенциала генераторного пункта относительно величины критического уровня деполяризации.

23. Возможные механизмы генерации потенциала действия нейрона в естественных условиях

Потенциал действия - это электрофизиологический процесс, выражающийся в быстром колебании мембранного потенциала покоя вследствие перемещения ионов в клетку и из клетки и способный распространяться без затухания. ПД обеспечивает передачу сигналов между нервными клетками, между нервными центрами и рабочими органами. ПД подчиняется закону «все или ничего», но не подчиняется закону силовых отношений, т. е. закону силы. При малом раздражении клетки ПД либо совсем не возникает, либо достигает максимальной величины, если раздражение является пороговым или сверхпороговым. Слабое (подпороговое) раздражение может вызвать локальный потенциал, который подчиняется закону силы: с увеличением силы стимула величина его также возрастает.

Запуск импульсной активности в нервной системе осуществляют два основных фактора. Первый из них - стимулы, действующие на чувствительные клетки сенсорных систем и изменяющие проницаемость их мембраны. Это приводит к развитию особых рецепторных потенциалов и в итоге - к генерации ПД.

Второй фактор - выделение медиатора из пресинаптического окончания. Попав в синаптическую щель, медиатор воздействует на постсинаптическую мембрану, возбуждая или тормозя следующий нейрон.

Механизм возникновения ПД. Если действие раздражителя на клеточную мембрану приводит к началу развития ПД, далее сам процесс развития ПД вызывает фазовые изменения проницаемости клеточной мембраны, что обеспечивает быстрое движение Na + в клетку, а К + - из клетки. Это наиболее часто встречаемый вариант возникновения ПД. Величина мембранного потенциала при этом сначала уменьшается до нуля, изменяет знак заряда, а затем снова восстанавливается до исходного уровня. Эти изменения мембранного потенциала предстают в виде пикового потенциала - ПД. Если заблокировать процесс выработки энергии, ПД некоторое время будет возникать. Но после исчезновения градиентов концентраций ионов (устранения потенциальной энергии) клетка генерировать ПД не будет. ПД проходит следующие фазы: 1). фаза деполяризации - процесс исчезновения заряда клетки до нуля; 2) фаза инверсии - изменение заряда клетки на противоположный, т.е. весь период ПД, когда внутри клетки заряд положительный, а снаружи отрицательный; 3) фаза реполяризации - восстановление заряда клетки до исходной величины (возврат к потенциалу покоя). Главную роль в возникновении ПД играет Na + , входящий в клетку при повышении проницаемости клеточной мембраны и обеспечивающий всю восходящую часть пика ПД. Однако проницаемость мембраны для К + тоже играет важную роль. Если повышение проницаемости для К + предотвратить, то мембрана после ее деполяризации реполяризуется гораздо медленнее, только за счет медленных неуправляемых каналов (каналов утечки ионов), через которые К + будет выходить из клетки.

Для достижения порога запуска ПД необходима суммация (наложение) нескольких ВПСП. Выделяют два варианта суммации - временную и пространственную. Временная суммация - объединение эффектов стимулов, пришедших по одному «каналу» с большой частотой: если к еще не угасшему ВПСП присоединить второй, затем третий и т.д., - возникнет реальная возможность запустить ПД.

Пространственная суммация заключается в наложении друг на друга ВПСП соседних синапсов в некоторой близлежащей точке постсинаптической мембраны.

В ходе деятельности нейронов эффекты пространственной и временной суммации объединяются, и чем больше синапсов участвуют в этом процессе (срабатывают относительно одномоментно), тем больше вероятность достичь порога запуска ПД. При этом часть синапсов может обладать тормозными свойствами и вызывать ТПСП, вычитающиеся из суммы возбуждающих влияний. В результате условие запуска ПД в каждый момент времени можно определить следующим образом:

ПП + (сумма всех ВПСП) − (сумма всех ТПСП) > порог запуска ПД

Интересным вариантом генерации ПД являются пейсмекерные нейроны (клетки-пейсмекеры). Они обладают большой постоянной проницаемостью мембраны для ионов Na + . В результате у клеток-пейсмекеров не существует стабильного ПП. Разность потенциалов на их мембране постоянно стремится вверх. Когда она достигает порогового значения, происходит запуск ПД. После ПД заряд внутри клетки оказывается на довольно низком уровне, ПП вновь растет и запускается следующий ПД, в целом же наблюдается ритмический рисунок разрядов (рис. 3.12). Рост заряда 1 внутри клетки, связанный с большим током утечки Na + , приводит к периодической самопроизвольной генерации потенциалов действия. Нейроны-пейсмекеры находятся в дыхательном центре продолговатого мозга, сходные же свойства имеют клетки центра сердечного автоматизма.

Рис. 3.12. Изменение разности потенциалов на мембране пейсмекерного нейрона

Принципиальна новое, что вносит пейсмекерный потенциал в функционирование нейрона, заключается в следующем: пейсмекерный потенциал превращает нейрон из сумматора синаптических потенциалов в генератор.

При изучении нейронов оказалось что даже если нейрон «молчит», на постсинаптической мембране все равно наблюдаются периодические изменения мембранного потенциала - редкие, очень низкоамплитудные, кратковременные случаи деполяризации. Эти потенциалы были названы миниатюрными потенциалами (МП).

МП возникают в ответ на случаи спонтанного выброса медиатора из пресинапса в синаптическую щель. Как правило, свое содержимое в этом случае выбрасывают буквально единичные везикулы, поэтому МП отражают действие на постсинаптическую мембрану одного кванта медиатора - минимально возможной порции медиатора, которая может быть выброшена в щель, то есть содержимого одной везикулы.

Внутрь постсинаптической клетки, в результате открытия лиганд-зависимых ионных каналов . Это противоположность тормозным постсинаптическим потенциалам (ТПСП ), которые обычно возникают в результате тока отрицательных ионов в клетку или положительных ионов из клетки. ВПСП могут быть результатом уменьшения выходящего тока положительных зарядов, в то время как ТПСП иногда вызываются увеличением выходящего тока положительных зарядов.

ВПСП , так же как и ТПСП , градуальны (т. е. имеют аддитивный эффект). Когда несколько ВПСП образуются на одном участке постсинаптической мембраны , их совместный эффект будет являться суммой отдельных ВПСП . ВПСП с большей амплитудой приводят к большей деполяризации мембраны, что увеличивает вероятность достижения критического уровня деполяризации мембраны, необходимого для генерации потенциала действия .

Энциклопедичный YouTube

    1 / 1

    Neuronal synapses (chemical) | Human anatomy and physiology | Health & Medicine | Khan Academy

Субтитры

Я думаю, мы уже имеем правильное представление о том, как сигнал передается вдоль отростка нейрона. Мы видели, что несколько дендритов, может быть этот и этот, и еще один, были возбуждены, в них, вероятно, возник потенциал действия. Когда мы говорим, что дендрит возбужден, мы имеем в виду, что при этом открываются некоторые виды каналов. Это является пусковым сигналом. Открытый канал позволяет ионам войти внутрь клетки или, в некоторых случаях, ионы, наоборот, выходят из клетки наружу. В таких случаях запускается торможение. Но давайте рассмотрим случай, когда ионы входят внутрь клетки электротоническим способом. Вход ионов в клетку изменяет заряд или разность потенциала на мембране клетки. Если благодаря этим совместным эффектам изменение разности потенциала мембраны около аксонального бугорка достаточно велико и достигает порога, то натриевые каналы, расположенные здесь, откроются, и натрий войдет внутрь клетки. В этой ситуации потенциал становится более положительным. Калиевые каналы открываются для того, чтобы вернуть потенциал к исходному значению, но в данный момент потенциал более положительный, что электротонически влияет на соседний натриевый канал. И опять возникает ситуация, когда натриевые ионы входят в клетку, и таким образом сигнал распространяется по отростку нейрона. Теперь возникает естественный вопрос, что происходит в местах контакта нейронов? Мы говорили, что этот дендрит получил пусковой сигнал или был возбужден. В большинстве случаев он получает пусковой сигнал или бывает возбужден другим нейроном. Иногда это может быть что-то еще. В нашем примере, когда аксон возбуждается, он возбуждает другую клетку. Это может быть мышечная клетка или, в большинстве случаев, аксон возбуждает другой нейрон. Как он это делает? Итак, это терминаль аксона. Недалеко от него может находиться дендрит другого нейрона. Это другой нейрон имеет собственный аксон и сому. Аксон должен каким-то образом передать пусковой сигнал на дендрит. Как это происходит? Каким образом сигнал переходит с одного нейронального аксона на дендрит соседнего нейрона? На самом деле сигнал не всегда переходит с аксона на дендрит, но такой вариант наиболее типичен. Также сигнал может передаваться с аксона на аксон, с дендрита на дендрит, с аксона на сому нейрона, но давайте сосредоточимся на передаче сигнала с аксона на дендрит, так как это наиболее традиционный способ, с помощью которого нейроны передают информацию от одной клетки к другой. Теперь давайте увеличим эту часть рисунка. Я увеличу во много раз этот кусочек, обведенный квадратиком. Это терминаль аксона. И теперь давайте увеличим всю эту область. Теперь мы увеличим область дендрита соседнего нейрона, и я поверну весь рисунок. Хотя, на самом деле, мне даже не надо ничего поворачивать. Сейчас я нарисую терминаль аксона. Допустим терминаль выглядит примерно так. Я во много раз ее увеличиваю. Это терминаль аксона данного нейрона. Это внутренняя часть нейрона. А здесь находится дендрит. Я рисую дендрит рядом с терминалью аксона. Теперь мы увеличим всю эту область. Это дендрит соседнего нейрона. Это внутренняя часть первого нейрона. Возникший в первом нейроне потенциал действия распространяется по аксону. Постепенно, возможно, здесь (я не знаю, сможем ли мы увеличить эту область) или здесь, потенциал действия повлияет на электрический потенциал мембраны и сделает его достаточно положительным для того, чтобы открыть натриевый канал. Возможно, я очень близок к тому, что происходит в действительности. Этот канал находится здесь. Он открывается, и ионы натрия входят в клетку. Затем все и начинается. В клетке есть калий, который может выйти из нее, но в настоящий момент натрий находится внутри, и возникший положительный заряд запускает другой канал, а тот может запустить другой натриевый канал, если дальше есть еще один натриевый канал. Но на конце аксона находятся кальциевые каналы. Я нарисую их розовым цветом. Это кальциевый канал, который обычно закрыт. Это кальциевый ионный канал. Кальций имеет заряд +2. Кальциевый канал обычно закрыт, но он управляется потенциалом. Когда потенциал становится достаточно большим, то канал открывается и ионы кальция входят в клетку. Это очень напоминает работу потенциал-управляемого натриевого канала в том смысле, что когда потенциал становится положительным в области ворот, канал открывается. Таким образом, кальциевые ионы с зарядом +2 входят в клетку. Сейчас вы можете у меня спросить, почему ионы кальция входят в клетку? У них положительный заряд. Вы можете напомнить мне, что я только что сказал, что потенциал клетки стал положительным в результате вхождения внутрь клетки ионов натрия. Почему ионы кальция будут входить в клетку? Причина, по которой кальций будет входить в клетку, состоит в том, что у клетки есть ионные кальциевые насосы, аналогичные тем насосам, которые откачивают натрий из клетки и накачивают калий внутрь клетки. Кальциевые насосы почти идентичны натрий-калиевым насосам, о которых я вам рассказывал, но они имеют дело с ионами кальция. В мембране есть специальные белки. Это фософолипидный слой мембраны. Я нарисую два слоя, чтобы вы понимали, что мембрана - двухслойная. Я нарисую это таким образом. Так это будет выглядеть ближе к действительности, хотя все вместе это выглядит не очень реалистично. Это билипидный слой мембраны. Вы уже, наверно, поняли, но я хочу нарисовать, чтобы прояснить этот момент. В мембране находятся кальциевые ионные насосы, которые являются разновидностью АТФаз, так же, как и натрий-калиевые насосы. Одна молекула АТФ связывается с белком, ион кальция связывается с этим же белком в другом месте. Фосфат отщепляется от АТФ, и энергии, освобожденной благодаря этому, достаточно для изменения конформации белка, что приводит к выталкиванию ионов кальция наружу. Существенно то, с каким участком связывается кальций, и в зависимости от этого при открытии канала кальций может только войти в клетку. Все это очень похоже на работу натрий-калиевого насоса, но неплохо знать, что в состоянии покоя концентрация ионов кальция снаружи очень высока, и движение ионов кальция управляется АТФ. Концентрация кальция снаружи значительно больше, чем внутри, и перемещение ионов кальция осуществляется этими ионными насосами. Таким образом, потенциал действия, достигший терминали, запускает не другой натриевый канал, а открывает ворота кальциевого канала, и ионы кальция входят в терминаль аксона. Теперь ионы кальция связываются с другими белками. Но перед тем, как я перейду к другим белкам, мы должны получить представление о том, что происходит в месте контакта. Я, кажется, уже использовал слово "синапс", а, может быть, и нет. Место, где этот аксон встречается с дендритом, называется синапсом. Вы можете представить это как место соединения, контакта или касания. Этот нейрон называется пресинаптическим. Я напишу это название. Всегда хорошо иметь небольшой запас терминов под рукой. А это постсинаптический нейрон. Пространство между двумя нейронами, между этим аксоном и этим дендритом, называется синаптической щелью. Это очень небольшое пространство. Мы сейчас говорим о химическом синапсе. Обычно, когда люди говорят о синапсе, они говорят о химическом синапсе. Существуют также электрические синапсы, но я не буду останавливаться на них. Химический синапс - это наиболее распространенный вариант синапса. Синаптическая щель в химических синапсах равна примерно 20 нанометрам, что очень мало. Диаметр клетки в среднем обычно колеблется от 10 до 100 микрон. Микрон равен 10 в минус 6 степени метра. Нанометр соответственно равен 10 в минус 9 степени метра. То есть это очень маленькое расстрояние. В этом есть смысл, посмотрите, какими большими выглядят клетки по сравнению с небольшой щелью между ними. Итак, это очень узкая щель. У пресинаптического нейрона в терминале находятся везикулы. Помните, что такое везикулы? Это пузырьки, окруженные мембраной, которые находятся внутри клетки. У нас есть везикулы в терминале. Мембраны везикул также состоят из фосфолипидных слоев. Вы можете рассматривать везикулы как контейнеры. Я нарисую один такой пузырек. Они могут содержать в себе молекулы, которые называют нейротрансмиттерами. Я нарисую нейротрансмиттеры зеленым цветом. В везикулах содержатся молекулы нейротрансмиттеров. Возможно, вы слышали это слово раньше. На самом деле, множество веществ, которые люди используют для лечения депрессии или других состояний, относящихся к состоянию мозга, влияют на синтез или на действие трансмиттеров. Я не буду вдаваться в детали, но везикулы содержат нейротрансмиттеры. Когда кальциевые каналы открываются (они потенциал- управляемые и открываются при изменении потенциала в положительную сторону), ионы кальция входят внутрь. Затем кальций связывается с белками, которые удерживают везикулы у мембраны. Эти маленькие везикулы прикреплены к пресинаптической мембране или к мембране аксональной терминали, вот здесь. Эти белки называют якорными белками. SNARE - английская аббревиатура, но это слово также означает "удерживать", что хорошо подходит в данном случае, так как эти белки в буквальном смысле "заякоривают" везикулы к мембране. В этом заключается функция этих белков. Когда ионы кальция входят в клетку, они связываются с этими белками, прикрепляются к белкам и изменяют их конформацию таким образом, что белки подтаскивают везикулы ближе к мембране и раздвигают обе мембраны, что приводит к их слиянию. Я увеличу эту часть рисунка, чтобы было понятнее, что на самом деле происходит. После того, как ионы кальция связались с белками (так все выглядело до того, как ионы кальция вошли в клетку), якорные белки подтягивают везикулы близко-близко к пресинаптической мембране. После этого везикула и пресинаптическая мембрана выглядит таким образом. Здесь находятся якорные белки. Я рисую не совсем точно так, как это выглядит в клетке, но эта картинка дает представление о том, как это происходит. Якорные белки подтягивают мембраны друг к другу, затем раздвигают их так, чтобы они могли соединиться. Самое главное последствие этого события - причина, по которой все и происходит - освобождение нейротрасмиттеров из везикул прямо в синаптическую щель. Нейротрансмиттеры, находившиеся внутри везикулы, попадают в синаптическую щель. Этот процесс называется экзоцитозом. Можно сказать, что это процесс выхода веществ из цитоплазмы пресинаптического нейрона. Возможно, вы слышали какие-то из названий нейротрансмиттеров, например, серотонин, дофамин, эпинефрин (или адреналин). Адреналин является также и гормоном, но он действует и как нейротрансмиттер. Норэпинефрин (или норадреналин) - тоже одновременно и гормон, и нейротрансмиттер. .Возможно, вы слышали эти слова раньше. Как бы то ни было, эти вещества освобождаются в синаптическую щель и связываются с мембраной постсинаптического нейрона или этого дендрита. Допустим, они связываются здесь, здесь и здесь. Они связываются со специальными белками на поверхности этой мембраны, но главным результатом этого связывания является открытие ионных каналов. Таким образом этот нейрон возбуждает этот дендрит. Когда эти нейротрансмиттеры связываются с этой мембраной, возможно, открываются натриевые каналы. Возможно, это вызовет открытие натриевого канала. В этом случае натриевый канал не потенциал-управляемый, а лиганд-управляемый. Нейротрансмиттер открывает натриевый канал, затем ионы натрия входят в клетку, что мы уже обсуждали ранее, когда говорили об исходном сигнале. Вход ионов натрия соответствует возникновению возбуждения. Клетка становится более положительно заряженной. Если она достаточно положительно заряжена, то в этой точке аксонального бугорка электротонически увеличивается потенциал. Если рядом находится другой нейрон (как в рассмотренном случае), этот нейрон тоже возбуждается. Вот как это происходит. Сигнал может быть также тормозным. Можно представить, что вместо запуска натриевого ионного канала, происходит открытие калиевого ионного канала. Если происходит открытие калиевого ионного канала, то концентрационный градиент ионов калия заставит калий выходить из клетки. Таким образом, в случае калия положительный заряд уходит из клетки. Помните, я использовал для обозначения ионов калия треугольники. Если положительный заряд выходит из клетки, то содержимое нейрона становится менее положительным. Таким образом, достичь порог возникновения потенциала действия станет труднее, так как для этого понадобится большее изменение потенциала в положительную сторону. Надеюсь, я не запутал вас этими объяснениями. Этот контакт, если следовать первому описанию, которое я дал, возбуждающий. Когда терминаль нейрона возбуждается потенциалом действия, ионы кальция входят внутрь. В результате, везикулы изливают свое содержимое в синаптическую щель, а затем освобожденные нейротрансмиттеры открывают натриевые каналы и стимулируют нейрон. Если нейротрансмиттер открывает калиевые каналы, то он тормозит нейрон. Так работают синапсы. Я хотел было сказать, что существуют миллионы синапсов, но это было бы неправильно. Синапсов триллионы. По самым точным оценкам в коре головного мозга от 100 до 500 триллионов синапсов. Это только в коре головного мозга. Причина, почему у нас так много синапсов, заключается в том, что один нейрон может образовывать множество синапсов. Вы можете представить, что у этой нарисованной клетки синапс может быть здесь, и здесь, и здесь. Даже один нейрон может образовывать сотни и тысячи синапсов. Этот нейрон может иметь синапс с этим нейроном, и с этим, и с этим. Итак, у нас много много контактов. Именно синапсы делают нас сложными существами, именно они заставляют нас действовать характерным для человеческого разума образом. Надеюсь, что вам этот видеоурок показался полезным.

Постсинаптические потенциалы. Их отличие от ПД. Суммация ЦНС

Действие медиатора на постсинаптическую мембрану химического синапса приводит к возникновению в ней постсинаптического потенциала. Постсинаптические потенциалы могут быть двух типов:

· деполяризующие (возбуждающие);

· гиперполяризующие (тормозные).

Возбуждающие постсинаптические потенциалы (ВПСП) обусловлены суммарным входящим током положительных зарядов внутрь клетки. Такой ток может возникнуть в результате повышения проводимости мембраны для натрия, калия и, возможно, других ионов, например, кальция. В результате мембранный потенциал смещается по направлению к нулю (становится менее отрицательным. *Постсинаптические потенциалы* - градуальные реакции (их амплитуда зависит от количества выделившегося медиатора или силы стимула). Этим они отличаются от потенциала действия, который подчиняется закону «все или ничего».

ВПСП необходим для генерации нервного импульса (ПД). Это происходит в том случае, если ВПСП достигнет порового значения. После этого процессы становятся необратимыми, и возникает ПД.

Если в мембране открываются каналы, обеспечивающие суммарный выходящий ток положительных зарядов (ионов калия) или входящий ток отрицательных зарядов (ионов хлора), то в клетке развивается тормозный постсинаптический потенциал (ТПСП ) . Такие токи приведут к удержанию мембранного потенциала на уровне потенциала покоя или к некоторой гиперполяризации.

Прямое химическое синаптическое торможение происходит при активации каналов для отрицательно заряженных ионов хлора. Стимуляция тормозных входов вызывает небольшую гиперполяризацию клетки – тормозный постсинаптический потенциал (ТПСП). В качестве медиаторов, вызывающих ТПСП, обнаружены глицин и гамма-аминомасляная кислота (ГАМК); их рецепторы связаны с каналами для хлора, и при взаимодействии этих медиаторов со своими рецепторами происходит движение ионов хлора внутрь клетки и увеличение мембранного потенциала (до -90 или -100 мВ). Этот процесс называется постсинаптическое торможение .

Однако в ряде случаев торможение не может быть объяснено только в рамках постсинаптического изменения проводимости. Дж. Экклсом было открыто пресинаптическое торможение . В результате пресинаптического торможения происходит уменьшение высвобождения медиатора из возбуждающих окончаний. При пресинаптическом торможении тормозные аксоны устанавливают синаптический контакт с окончаниями возбуждающих аксонов. В качестве медиатора пресинаптического торможения чаще всего встречается ГАМК. В результате действия ГАМК на пресинаптическое окончание также происходит значительное увеличение проводимости для хлора и в результате снижение амплитуды ПД в пресинаптическом окончании.



Функциональное значение этих двух видов торможений в ЦНС сильно различается. Постсинаптическое торможение уменьшает возбудимость всей клетки в целом, делая ее менее чувствительной ко всем возбуждающим входам. Пресинаптическое торможение гораздо более специфично и избирательно. Оно направлено на определенный вход, давая возможность клетке интегрировать информацию из других входов.


В нервных центрах осуществляется суммация возбуждений. Различают два вида суммации:

временная или последовательная , если импульсы возбуждения приходят к нейрону по одному и тему же пути через один синапс с интервалом меньше, чем время полной реполяризации постсинаптической мембраны. В этих условиях ВПСП на постсинаптической мембране суммируются и доводят ее деполяризацию до уровня, достаточного для генерации нейроном потенциала действия;

пространственная или одновременная - наблюдается в том случае, когда импульсы возбуждения поступают к нейрону одновременно через разные синапсы (рис. 10).

Потенциал действия, приходящий в пресинаптическое окончание, вызывает выделение медиатора в синаптическую щель. Когда медиатор достигает постсинаптического окончания, он связывается с рецепторами на постсинаптической мембране возникает миниатюрный возбуждающий постсинаптической потенциал (ВПСП) – около 0,05 мВ. Такой местный потенциал недостаточен для изменения состояния клетки. Однако возникает сразу много возбуждающих постсинаптических потенциалов, они, в отличие от потенциала действия, суммируются, для того чтобы был достигнут критической уровень деполяризации. Когда достигнут КУД, начинается генерация потенциала действия. Возбуждающие постсинаптические потенциалы могут суммироваться только в том случае, если они возникают одновременно, синхронно (в этом случае не успевает восстановиться потенциал покоя и деполяризация мембраны нарастает).

Иногда происходят спонтанные выбросы медиатора из пресинаптического окончания вследствие случайных столкновений везикул и мембраны. Однако потенциал действия в этом случае не возникает из-за небольшой величины возбуждающего постсинаптического потенциала.

Помимо процессов возбуждения на мембране могут происходить и обратные процессы торможения. Торможение в НС – это не пассивный процесс отсутствия деятельности, а активная блокирующая деятельность. В случае торможения на мембране возникают не возбуждающие постсинаптические потенциалы, а тормозные постсинаптические потенциалы , ТПСП. При возникновении тормозных постсинаптических потенциалов происходит гиперполяризация мембраны. ТПСП вызывает не снижение, а увеличение разности потенциалов на мембране, которое препятствует формированию потенциала действия. На мембране образуются сходящиеся токи, то есть, гиперполяризация «стекается» к аксону со всех мест, где произошло тормозное воздействие. ТПСП возникают при поступлении в клетку анионов, которые легко проходят через каналы. Чаще всего это Cl-.

Раньше считалось, что за возникновение ВПСП и ТПСП отвечают различные медиаторы. К основным тормозным медиаторам относят ГАМК (в корковых и подкорковых отделах) и глицин (на периферии и СМ). Однако сейчас считается, что за генерацию ВПСП либо ТПСП отвечает не собственно медиатор (ГАМК может вызывать и активирующее влияние). Медиатор, попадая на постсинаптическую мембрану, связывается с рецептором, который, в свою очередь, влияет на особый G-белок, активирующий белки ионного канала. G-белок связывается с посредником-мессенджером, который оказывает влияние на работу ионного канала. В зависимости от деятельности этого G-белка происходит открытие либо анионных, либо катионных каналов, и, соответственно, генерируется либо ВПСП, либо ТПСП.

Свойства постсинаптического потенциала :

  1. Возникают только конкретно в том месте, где произошло воздействие медиатора. Обычно, это дендрит или сома.
  2. Величина = 0,05 мВ
  3. В отличие от ПД, суммируются.

Медиатор, находящийся в пузырьках, выделяется в синаптическую щель с помощью экзоцитоза Его выделение происходит небольшими порциями – квантами . Небольшое количество квантов выходит из окончания и в состоянии покоя. Когда нервный импульс, т.е. ПД, достигает пресинаптического окончания, происходит деполяризация его пресинаптической мембраны. Открываются ее кальциевые каналы и ионы кальция входят в синаптическую бляшку. Начинается выделение большого количества квантов нейромедиатора. Молекулы медиатора диффундируют через синаптическую щель к постсинаптической мембране и взаимодействуют с её хеморецепторами. В результате образования комплексов медиатор-рецептор, в субсинаптической мембране начинается синтез так называемых вторичных посредников (в частности, цАМФ). Эти посредники активируют ионные каналы постсинаптической мембраны. Поэтому такие каналы называют хемозависимыми или рецепторуправляемыми. Т.е. они открываются при действии ФАВ на хеморецепторы. В результате открывания каналов изменяется потенциал субсинаптической мембраны. Такое изменение называется постсинаптическим потенциалом.

В ЦНС возбуждающими являются холин-, адрен-, дофамин-, серотонинергические синапсы и некоторые другие. При взаимодействии их медиаторов с соответствующими рецепторами, открываются хемозависимые натриевые каналы. Ионы натрия входят в клетку через субсинаптическую мембрану. Происходит ее местная или распространяющаяся деполяризация. Эта деполяризация называется возбуждающим постсинаптическим потенциалом (ВПСП).

Тормозными являются глицин- и ГАМК-ергические синапсы. При связывании медиатора с хеморецепторами, активируются калиевые или хлорные хемозависимые каналы. В результате ионы калия выходят из клетки через мембрану.

Ионы хлора входят через нее. Возникает только местная гиперполяризация субсинаптической мембраны . Она называется тормозным постсинаптическим потенциалом (ТПСП).

Величина ВПСП и ТПСП определяется количеством квантов медиатора, выделившихся из терминали, а, следовательно, частотой нервных импульсов. Т.е. синаптическая передача не подчиняется закону "все или ничего". Если количество выделившегося возбуждающего медиатора достаточно велико, то в субсинаптической мембране может генерироваться распространяющийся ПД. ТПСП, независимо от количества медиатора не распространяется за пределы субсинаптической мембраны.

ВОПРОС 26. Понятие о нервном центре, его функциях и свойствах

Н. центр – совокупность структур ЦНС, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт. Функциональный нервный центр может быть локализован в разных анатомических структурах. Например дыхат центр представлен нервными клетками, расположенными в спинном, продолговатом, промежуточном мозге, коре головного мозга.

В зависимости от выполняемой функции различают:

чувствительные нервные центры;

нервные центры вегетативных функций;

двигательные нервные центры и др.

Свойства :

2)Иррадиация возбуждения . В н центрах изменяется направление распространения возбуждения в зависимости от силы раздражителя и функционального состояния центральных нейронов. Увеличение силы раздражителя приводит к расширению области вовлекаемых в возбуждение центральных нейронов – т. е. иррадиации возбуждения.

3)Суммация возбуждения . Процесс пространственной суммации афферентных потоков возбуждения от разл участков рецептивного поля облегчается благодаря наличию на мембране н клетки сотен и тысяч синаптичаских контактов. Процесс временной суммации в ответ на многократное возбуждение одних и тех же рецепторов обусловлены суммацией ВПСП на постсинаптической мембране.

ПОЯСНЯЮ : По́стсинапти́ческий потенциа́л (ПСП) - это вре́менное изменение потенциала постсинаптической мембраны в ответ на сигнал, поступивший с пресинаптического нейрона. Различают:

возбуждающий постсинаптический потенциал (ВПСП), обеспечивающий деполяризацию постсинаптической мембраны, и

тормозный постсинаптический потенциал (ТПСП), обеспечивающий гиперполяризацию постсинаптической мембраны.

Отдельные ПСП обычно невелики по амплитуде и не вызывают потенциалов действия в постсинаптической клетке, однако в отличие от потенциалов действия они градуальны и могут суммироваться. Выделяют два варианта суммации:

временная - объединение пришедших по одному каналу сигналов (при поступлении нового импульса до затухания предшествующего)

пространственная - наложение ВПСП соседних синапсов

4) Наличие задержки .

Длительность рефлекторной реакции зависит от 2 факторов: cкорости движения возбуждения по нервным проводникам и времени распространения возбуждения через синапс. Основное время рефлекса приходится на синаптическую передачу возбуждения- синаптическая задержка. У человека она равна примерно 1 мс.

5)Высокая утомляемость . Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до исчезновения. Это связано с деятельностью синапсов: истощение запаса медиатора, уменьшаются энергетических ресурсы, происходит адаптация постсинаптического рецептора к медиатору.

6)Тонус . В покое определенное количество нервных клеток находится в состоянии постоянного возбуждения и генерирует фоновые импульсные токи.

7)Пластичность . Функциональная подвижность нервного центра может модифицировать картину осуществляемых рефлекторных реакций.

8)Конвергенция . Нервные центры высших отделов мозга - мощные коллекторы афферентной информации. В них содержится много нервных клеток, реагирующих на разные стимулы (свет, звук и др.)

9) Интеграция в нервных центрах . Для осуществления сложных координированных приспособительных реакций организма происходит образование функциональных объединений нервных центров.

10) Свойство доминанты . Доминантный очаг – временно господствующий очаг повышенной возбудимости в н центре. В нем устанавливается определенный уровень стационарного возбуждения, способствующий суммированию ранее подпороговых возбуждений и переводу на оптимальный для данных условий ритм работы. Домин. Очаг угнетает соседние очаги возбуждения.

11) Цефализация н. системы . Тенденция к перемещению функций регуляции и координации в головные отделы ЦНС.

ВОПРОС 27. Явление суммации возбуждения в нервных центрах, ее виды, значение, механизм. Свойства ВПСП и их роль в формировании суммации. (Примечане автора: Ребят, я извеняюсь за эту хрень, но это все что я могла найти. В учебнике не нашла)

Суммация возбуждения. В работе нервных центров значительное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой является постсинаптическая мембрана. Процесс пространственной суммации афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Процессы временной суммации обусловлены суммацией ВПСП на постсинаптической мембране.

В нервном волокне каждое одиночное раздражение (если оно не подпороговой и не свехпороговой силы) вызывает один импульс возбуждения. В нервных же центрах, как показал впервые И.М.Сеченов, одиночный импульс в афферентных волокнах обычно не вызывает возбуждения, т.е. не передается на эфферентные нейроны. Чтобы вызвать рефлекс необходимо быстрое нанесение допороговых раздражений одно за другим. Это явление получило название временной или последовательной суммации. Ее сущность состоит в следующем. Квант медиатора, выбрасываемого окончанием аксона при нанесении одного допорогового раздражения, слишком мал для того, чтобы вызвать возбуждающий постсинаптический потенциал, достаточный для критической деполяризации мембраны. Если же к одному и тому же синапсу идут быстро следующие один за другим допороговые импульсы, происходит суммирование квантов медиатора, и наконец его количество становится достаточным для возникновения возбуждающего постсинаптического потенциала, а затем и потенциала действия. Кроме суммации во времени, в нервных центрах возможна пространственная суммация. Она характеризуется тем, что если раздражать одно афферентное волокно раздражителем допороговой силы, то ответной реакции не будет, а если раздражать несколько афферентных волокон раздражителем той же допороговой силы, то возникает рефлекс, так как импульсы, приходящие с нескольких афферентных волокон суммируются в нервном центре.

Возбуждающий постсинаптический потенциал . В синапсах, в которых осуществляется возбуждение постсинаптической структуры, обычно происходит повышение проницаемости для ионов натрия. По градиенту концентрации Na+ входят в клетку, что вызывает деполяризацию постсинаптической мембраны. Эта деполяризация получила название: возбуждающий постсинаптический потенциал – ВПСП. ВПСП относится к локальным ответам и, следовательно, обладает способностью к суммации. Выделяют временную и пространственную суммацию.

Роль в суммации ;

Принцип временной суммации - заключается в том, что импульсы поступают к пресинаптическому окончанию с периодом меньшим, чем период ВПСП.

Сущность пространственной суммации заключается в одновременной стимуляции постсинаптической мембраны синапсами, расположенными близко друг от друга. В этом случае ВПСП каждого синапса суммируются.

Если величина ВПСП достаточно велика и достигает критического уровня деполяризации (КУД), то генерируется ПД. Однако не все участки мембраны обладают одинаковой способностью к генерации ВПСП. Так, аксонный холмик, являющийся начальным сегментом аксона относительно сомы, имеет приблизительно в 3 раза более низкий порог электрического раздражения. Следовательно, синапсы, расположенные на аксональном холмике, обладают большей возможностью к генерации ПД, чем синапсы дендритов и сомы. От аксонального холмика ПД распространяется в аксон, а также ретроградно в сому.

ВОПРОС 28.Явление трансформации ритма возбуждений в нервных центрах и его механизмы. Роль ВПСП и кольцевых связей в ЦНС . (Прим; Такая же херня что и с предыдущим вопросом - I’m sorryL)

Лат. transformatio - преобразование, превращение - одно из свойств проведения возбуждения в центре, заключающееся в способности нейрона изменять ритм приходящих импульсов. Особенно четко проявляется трансформация ритма возбуждения при раздражении афферентного волокна одиночными импульсами. На такой импульс нейрон отвечает серией импульсов. Это обусловлено возникновением длительного возбуждающего постсинаптического потенциала (роль ВПСП ), на фоне которого развивается несколько ликов (спайков- пиковых потенциалов). Другой причиной возникновения множественного разряда импульсов являются следовые колебания мембранного потенциала. Когда его величина достаточно велика, следовые колебания могут привести к достижению критического уровня деполяризации мембраны и обусловливают появление вторичных спайков. В нервных центрах может происходить и трансформация силы импульсов: слабые импульсы усиливаются, а сильные ослабевают.

ВОПРОС 29. Посттетаническая потенциация в нервных центрах.(Тут мало – но это все что было в учебнике)

Это интегративный феномен. При раздражении афферентного нерва стимулами с низкой частотой можно получить рефлекс определенной интенсивности. Если затем этот нерв подвергать высокочастотному ритмическому раздражению, то повторное редкое ритмическое раздражение приведет к резкому усилению реакции.

ВОПРОС 30. Одностороннее проведение возбуждения в нервных центрах. Роль синаптических структур .

Одностороннее проведение возбуждения . В рефлекторной дуге, включающей н центры, процесс возбуждения распространяется в одном направлении (от входа по афферентным путям к центру, затем по эфферентным путям к эффектору).

Роль синаптических структур .

В отличие от нервных и мышечных волокон, для которых характерен закон двухстороннего проведения, в синапсе возбуждение распространяется только в одном направлении – от пресинаптической клетки к постсинаптической.

31.Высокая утомляемость нервных центров :

Утомление -ослабление рефлекторной реакции вплоть до ее полного исчезновения, происходящее под действием длительного повторного раздражения рецептивного поля рефлекса. Высокая утомляемость связана с деятельностью синапсов, в которых запасы медиатора истощаются,уменьшаются энергетические ресурсы. а также высокая утомляемость нервных центров происходит из-за адаптации постсинаптических рецепторов к медиаторам.

32.тонус нервных центров и его механизмы:

Тонус -наличие определённой фоновой активности нервного центра. То есть,в покое, в отсутствие внешних раздражителей определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. например, во сне в высших отделах мозга остаётся некоторое количество фоновоактивных нервных клеток, определяющих тонус соответствующего нервного центра.