Теория юнга гельмгольца. Трехкомпонентная теория цветового зрения (теория юнга—гельмгольца). Дополнения по работе Гельмгольца в области цвета

В 1863 г. Гельмгольц обосновал свою резонансную теорию, исходя из предположения, что улитка при помощи явлений физического резонанса может разложить сложные звуки на простые тоны. Ввиду того что основная мембрана благодаря эластическим волокнам натянута в поперечном направлении и так как она имеет разную ширину у основания и верхушки улитки, Гельмгольц считал, что она представляет собой подходящее образование, которое разными участками резонирует на звуки разной высоты

Особенно много возражений против резонансной теории имеется со стороны физиков, и в настоящее время резонансная теория в старой трактовке должна быть оставлена. Новые наблюдения и теоретические соображения говорят против того, что в улитке при прохождении звука имеет место механический резонанс наподобие резонанса струн. Так как основная мембрана составляет одну цельную натянутую перепонку, любая деформация будет более или менее сильно сказываться на широкой полосе или даже на всей мембране, но с максимумом в определенном месте.

Указывалось также на то, что под влиянием звуков в лимфе улитки происходят сложные гидродинамические процессы, от которых деформации в мембранах зависят не в меньшей степени, чем от физических свойств самой основной перепонки. Поэтому большинство из последующих исследователей высказывается за большую протяженность деформации основной мембраны. Многие из авторов предлагали теорию, в основе которой лежит признавание механизма «пробегающей волны», наподобие той, какая наблюдается при сотрясении конца натянутой веревки.

Согласно этой теории , деформация основной перепонки, вызванная толчком стремени, движется с определенной быстротой в виде передвигающейся волны деформации по основной мембране.

Различие во взглядах отдельных авторов состоит лишь в том, что одни считают, что волна деформации быстро затухает, пройдя известное пространство по мембране, другие же считают, что бегущая волна проходит по всей длине перепонки, и третьи, наконец, допускают, что путем отражения образуются стоячие волны наподобие фигур Хладни (теория Эвальда).

Применяя современные достижения акустики , Бекеши (1928) изучил на модельных опытах, а также путем наблюдений за основной мембраной у морской свинки, произведенных при помощи оптических приборов и микроманипуляторов, характер изменений, которым подвергается основная мембрана при звуковом раздражении.

На весьма совершенных моделях , подбирая правильную упругость и толщину специальной резиновой пленки, он мог показать, что картины, полученные Эвальдом, являлись артефактом. В его опытах на мембране под влиянием звука возникала бегущая волна с быстро затухающей амплитудой. На месте максимальной амплитуды наблюдались вихри, скорость вращения которых пропорциональна величине амплитуды.

При сильных звуках получались точечные прорывы мембран, которые вызывались действием двух вихрей по обе стороны мембраны. Локализация этих перфораций зависела от частоты колебаний: чем выше звук, тем ближе к основанию образуется отверстие.

На препаратах улитки морской свинки Бекеши наблюдал, что экскурсии основной мембраны имеют более широкую зону при низких звуках и колебание перепонки заметно только у верхушки улитки. При помощи микроманипулятора он смог даже измерить величину прогиба основной мембраны.

Из современных теорий особенного внимания заслуживает теория Флетчера-Роафа, так как она расширяет наши понятия о резонансе-общепринятом в физике явлении, которое наилучшим образом объясняет анализ сложпого звука на его оставные. Эти авторы воспользовались данными Луца (Lutz), который показал, что в резонансе могут участвовать не только струны и мембраны, но и столбики жидкостей. Луц наполнял U-образные трубки разными порциями воды и вызывал колебания жидкости при помощи вибраторов. Оказалось, что интенсивность колебания столба жидкости зависит от частоты колебания вибратора.

При медленных вибрациях наибольший размах колебаний столба жидкости наблюдался в трубках, содержащих большое количество воды, наоборот, при частых колебаниях наиболее энергичные соколебания совершала жидкость небольшого объема.

Теория цветоощущения Гельмгольца (теория цветоощущения Юнга-Гельмгольца, трёхкомпонентная теория цветоощущения) теория цветоощущения, предполагающая существование в глазу особых элементов для восприятия красного, зелёного и синего цветов. Восприятие других цветов обусловлено взаимодействием этих элементов. Сформулирована Томасом Юнгом и Германом Гельмгольцем. Чувствительность палочек (пунктирная линия) и трёх типов колбочек к излучению с разной длиной волны.

В 1959 году теория была экспериментально подтверждена Джорджом Уолдом и Полом Брауном из Гарвардского университета и Эдвардом Мак-Николом и Уильямом Марксом из Университета Джонса Гопкинса, которые обнаружили, что в сетчатке существует три (и только три) типа колбочек, которые чувствительны к свету с длиной волны 430, 530 и 560 нм, т. е. к фиолетовому, зелёному и жёлто-зелёному цвету.

Теория Юнга Гельмгольца объясняет восприятие цвета только на уровне колбочек сетчатки, и не может объяснить все феномены цветоощущения, такие как цветовой контраст, цветовая память, цветовые последовательные образы, константность цвета и др., а также некоторые нарушения цветового зрения, например, цветовую агнозию. теория цветоощущения, предполагающая существование в глазу особых элементов для восприятия красного, зеленого и фиолетового цветов; восприятие других цветов обусловлено взаимодействием этих элементов.

15. Теория Эвальта Геринга

Эвальд Геринг предложил теорию оппонентных процессов. Он предположил, что три первичных цвета обрабатываются зрительной системой как антагонистические или оппонентные пары: красный/зеленый, желтый/синий и белый/черный. Стимуляция одного из оппонентов вызывает возбуждение (или торможение), тогда как стимуляция другого - противоположные эффекты (торможение или возбуждение, соответственно). Следовательно, когда стимулы сбалансированы (например, поступает соответствующее количество красного и зеленого цветов), разные компоненты такого канала отключаются, и система формирует ощущение желтого цвета. Такая обработка информации начинается, по-видимому, еще в сетчатке, но затем продолжается в НКТ (наружном коленчатом теле) и зрительной коре. Ограничиваясь пока сетчаткой, заметим, что доказано присутствие ганглиозных клеток с оппонентными свойствами в сетчатке кошки. В случае, приведенном на рис. 16.22 , показаны две ганглиозные клетки, одна из которых имеет концентрическое РП с центром ON-типа для красного и окружением, дающим OFF-ответ на зеленый, а другая - ON-ответ в центре на зеленый и OFF-ответ на красный на периферии. Клетки такого типа не дают мозгу слишком точной информации - рис. 16.22 показывает, что мозгу трудно будет различить маленькое яркое белое пятнышко в центре РП и большое зеленое пятно, покрывающее все поле. Связи в сетчатке, ответственные за цветовую оппонентность того типа, что показана на рис. 16.22 , продолжают изучаться. Понятно, однако, что субъективное ощущение цвета, которое представляется столь непосредственным и очевидным, возникает в результате сложных взаимодействий не только в сетчатке, но и на более высоких уровнях зрительной системы.

Существует ряд различных теорий цветового зрения . Небольшим признанием пользуетсятрехкомпонентная теория . Она допускает существование в сетчатке трех типов различных цветовоспринимающих фоторецепторов - колбочек.

О существовании трехкомпонентного механизма восприятия цветов говорил еще М. В. Ломоносов. В дальнейшем эта теория была сформулирована Т. Юнгом и Г. Гельмгольцем. Согласно этой теории колбочки содержат различные светочувствительные вещества. Одни колбочки содержат вещество, чувствительное к красному цвету, другие - к зеленому, третьи- к фиолетовому. Всякий цвет оказывает действие на все три вида цветоощущающих элементов, но в различной степени. Разложение светочувствительных веществ вызывает раздражение нервных окончаний. Возбуждения, дошедшие до коры мозга, суммируются и дают ощущение одного однородного цвета.

Трехкомпонентная теория получила в последнее время подтверждение в электрофизиологических исследованиях. В экспериментах на животных Р. Гранит отводил с помощью микроэлектродов импульсы от одиночных ганглиозных клеток сетчатки при освещении ее разными спектральными цветами. Оказалось, что электрическая активность в большинстве нейронов возникала при действии лучей видимого света любой длины волны. Так реагирующие элементы сетчатки названы доминаторами. В других же ганглиозных клетках сетчатки импульсы возникали лишь при освещении лучами только определенной длины волны.

Так реагировали элементы сетчатки, которые получили название модуляторов. По Р. Граниту, существуют 7 модуляторов, реагирующих на лучи, имеющие разную длину волны (от 400 до 600 ммк), Р. Гранит считает, что 3 компонента цветовосприятия, предполагавшиеся Т. Юнгом и Г. Гельмгольцем, получаются в результате усреднения кривых спектральной чувствительности модуляторов. Последние могут быть сгруппированы соответственно трем основным частям спектра: сине-фиолетовой, зеленой и оранжевой.

Согласно другой теории цветового зрения, предложенной Э. Герингом, в сетчатке существуют 3 гипотетических светочувствительных вещества: 1) бело-черное. 2) красно-зеленое, 3) желто-синее. Распад этих веществ (диссимиляция) происходит под влиянием световых лучей, при этом раздражаются нервные окончания и получается ощущение белого, красного или желтого цвета. Другие световые лучи вызывают синтез (ассимиляцию) этих гипотетических веществ, вследствие чего появляется ощущение черного, зеленого и синего цвета.

По теории Э. Геринга лучи, соответствующие тому или иному участку спектра, вызывают ассимиляцию или диссимиляцию красно-зеленого или желто-синего вещества и одновременно с этим диссимиляцию бело-черного вещества. Комбинацией указанных 4 цветов можно получить все остальные цвета. Если 2 каких-либо цвета вызывают одновременно и диссимиляцию и ассимиляцию одного и того же вещества и притом в равной степени, то, очевидно, оба эти процесса взаимно уравновешиваются и остается диссимиляция только бело-черного вещества, что вызывает ощущение белого цвета.


Г. Хартридж в недавнее время выдвинул полихроматическую теорию, допускающую наличие в сетчатке 7 типов рецепторов, реагирующих на различные цвета. Количество рецепторов, которое предполагается Картриджем, совпадает с числом модуляторов, описанных Гранитом, хотя отношение к лучам спектра этих рецепторов не точно соответствует кривым поглощения световых лучей модуляторами Гранита.

Наибольшим признанием пользуется трехкомпонентная теория. Она впрочем, как и другие перечисленные теорий цветового зрения , объясняет много фактов из физиологии и патологии цветного зрения. Однако некоторые факты не получают удовлетворительного разъяснения на основе всех этих теории.

Это прежде всего факт бинокулярного смешения цветов. Если, например, одним глазом смотреть через красный светофильтр, а другим через зеленый, то возникает ощущение желтого цвета, а не белого, как при монокулярном смешении. Желтый же и синий цвета при бинокулярном так же, как и при монокулярном, смешении дают бесцветное ощущение. По-видимому, процессы, определяющие ощущение цвета, протекают не только в сетчатке, но и в центральной нервной системе, что заставило некоторых исследователей построить более сложные теории цветоощущения, которые принимают во внимание, кроме процессов, протекающих в сетчатке, процессы, происходящие в нервных центрах.

Последовательные цветные образы. Если долго смотреть на окрашенный предмет, а затем перевести взор на белую поверхность, то виден тот же предмет, но окрашенный в дополнительный цвет.

По теории Гельмгольца, при длительном смотрении на какой-либо цвет происходит утомление одного какого либо компонента цветового восприятия; вследствие этого соответствующий цвет вычитается из последующего белого цвета; в итоге получается ощущение дополнительного цвета. По теории Геринга, усиленная диссимиляция одного из цветочувствительных веществ сменяется усиленной его ассимиляцией, когда на глаза начинает действовать бесцветный фон.

Колебания основания стремени сопровождаются перемещением перилимфы от окна преддверия к окну улитки. Движение жидкости в улитке вызывает колебание основной мембраны и расположенного на ней спи­рального органа. При этих колебаниях волоски слуховых клеток подвергаются сдавливанию или натяжению покровной мембраны, что является началом звукового восприятия. В этот момент физическая энергия колебания трансформируется в нервный процесс.

При изучении механизмов рецепции звуков, а также функции нерв­ных проводников и центров органа слуха до настоящего времени всё ещё возникают большие трудности. Для объяснения происходящих во внутреннем ухе процессов были предложены различные гипотезы.

Резонансная теория Гельмгольца.

Кратко суть его теории сводится к следующему. Основная мембрана состоит из волокон различной длинны: самые короткие волокна распо­ложены у основания улитки, самые длинные - на верхушке. Каждое во­локно имеет резонанс, т.е. частоту, при которой оно вибрирует мак­симально. Звуки низкой частоты вызывают вибрацию длинных волокон, звуки высокой частоты - коротких волокон. Соответственно той или иной частоте звука вибрацию испытывают леди лишь определённые груп­пы волокон, которые вызывают возбуждение находящихся на них волосковых клеток. Таким образом, вследствие резонанса волокон основной мембраны спиральный орган осуществляет частотный анализ звука.

Теорию резонанса Гельмгольца в 1923 - 1925 гг подтвердил сво­ими опытами на собаках Л.А.Андреев. Он пользовался методом услов­ных рефлексов, вызывая звуковыми раздражителями секрецию слюнной железы. После прочной выработки слюноотделения на звуковые раздражители Л.А. Андреев разрушал улитку животного на одной стороне. Эта операция не отражалась на условнорефлекторной реакции животного. Тогда автор последовательно разрушал отдельные части улитки соба­ки на другой стороне и получал выпадение слуха и условной реакции, соответствующее резонансной теории Гельмгольца, то есть выпадение высоких звуков у основания улитки, низких - у верхушки и средних - в средней части.

Более поздние исследования В.Ф. Ундрица подтвердили опыты Л.А. Андреева. Ундриц, последовательно разрушая отдельные части улитки, получал выпадение или ослабление биотоков, соответствующее резонансной теории Гельмгольца.

По мнению Л.Е. Комендантова, теория резонанса Гельмгольца не вскрывает истинную природу физиологических процессов. Трудно себе представить колебания изолированного волокна, поскольку эти волокна составляют одну соединительнотканную пластинку.

На основании изучения теории Гельмгольца можно сделать три вы­вода:

1) улитка является тем звеном слухового анализатора, где воз­никает первичный анализ звуков;

2) каждому простому звуку присущ оп­ределённый участок на основной мембране;

3) низкие звуки приводят в колебательное движение участки основной мембраны, расположенные у верхушки улитки, а высокие - у её основания.

Таким образом, теория Гельмгольца впервые позволила объяснить основные свойства уха, то есть определение высоты, силы и тембра. До сих пор эта теория считается классической. Действительно вывод Гельмгольца о том, что в улитке происходит первичный анализ звуков, полностью соответствует теории И.П. Павлова о способности к первич­ному анализу как концевых приборов афферентных нервов, так ив осо­бенности сложных рецепторных образований.

Резонансная теория Гельмгольца получила подтверждение и в клинике. Гистологическое исследование улиток умерших людей, страдавших островковыми выпадениями слуха, позволило обнаружить изменения кортиева органа в участках, соответствующих утраченной части слуха. Вместе с тем современные знания не требуют более точного объяснения пространственной рецепции звуков в улитке.

ТЕОРИЯ

Но для начала совсем немного теории, иначе не понятно как такое в принципе может быть и почему мы об этом с вами очень мало знаем.

Примерно 180 лет назад немецкий физик, физиолог Герман Гельмгольц высказал предположение о работе человеческого глаза. Что же предположил Гельмгольц? Он предположил, что глаз у человека имеет форму шара, в передней части находится хрусталик, двояковыпуклая линзочка, а вокруг хрусталика находится так называемая круговая цилиарная мышца.

Так как же человек видит по Гельмгольцу?

Когда цилиарная мышца расслаблена, хрусталик плоский, фокус хрусталика находится на сетчатке, и такой расслабленный глаз с плоским хрусталиком прекрасно видит вдаль, потому что четкое изображение далеких предметов по законам геометрической оптики строится в районе фокуса оптической системы. В данном случае четкое изображение далекого предмета будет как раз на сетчатке глаза.

Но вот человеку надо увидеть вблизи. Чтобы увидеть вблизи, надо изменить параметры этой оптической системы. И Гельмгольц предположил, что для того, чтобы увидеть вблизи, человек напрягает цилиарную мышцу, она со всех сторон сжимает хрусталик, хрусталик делается более выпуклым, меняет свою кривизну, фокусное расстояние выпуклого хрусталика уменьшается, фокус уходит внутрь глаза, и такой глаз с выпуклым хрусталиком прекрасно видит вблизи. Потому что четкое изображение близких предметом по законам той же геометрической оптики строится за фокусом оптической системы. В данном случае изображение этого близкого предмета опять получится точно на сетчатке глаза.

Итак, надо человеку увидеть вдаль. Он моргнул, расслабил цилиарную мышцу - хрусталик плоский, он видит вдаль. Надо увидеть вблизи - напрягает цилиарную мышцу, хрусталик выпуклый и он видит вблизи.

Что такое близорукость по Гельмгольцу?

У некоторых людей (Гельмгольц сам так и не понял почему) напрягается цилиарная мышца, хрусталик делается выпуклым, а назад эта мышца не расслабляется. Таких людей с выпуклым хрусталиком он назвал близорукими. Они вблизи видят хорошо, а вдаль они не видят, потому что четкое изображение далекого предмета строится в районе фокуса оптической системы. В данном случае четкое изображение будет внутри глаза. А на сетчатке будет какое-то неясное, размазанное, размытое пятно. И тогда Гельмгольц предложил компенсировать близорукость с помощью двояковогнутой отрицательной минусовой очковой линзы. А фокусное расстояние системы (вогнутая линза плюс выпуклый хрусталик) - увеличивается. С помощью очков фокус возвращается на сетчатку глаза и близорукие люди в минусовых очках прекрасно видят вдаль.



И вот с тех пор, 180 лет, все глазные врачи мира близоруким людям подбирают минусовые очки и рекомендуют их для постоянной носки.

У кого из вас близорукость? Поднимите руки, пожалуйста. Вот ваша, как говорится, беда и ваша проблема.

Что такое дальнозоркость по Гельмгольцу?

У многих людей, считал Гельмгольц, с возрастом ослабевает работа цилиарной мышцы. В результате - хрусталик плоский, фокус хрусталика находится на сетчатке, и классические дальнозоркие люди прекрасно видят вдаль. Но вот надо увидеть вблизи. Чтобы увидеть вблизи, надо сжать хрусталик, сделать его выпуклым. А силы мышце сжать хрусталик не хватает. И человек смотрит в книгу, а четкое изображение букв строится за фокусом оптической системы, где-то ближе к затылку. А на сетчатке будет просто неясное, размазанное, размытое пятно. И тогда Гельмгольц предложил компенсировать дальнозоркость с помощью двояковыпуклой плюсовой очковой линзы. А фокусное расстояние системы (выпуклая линза плюс плоский хрусталик) - уменьшается. С помощью очков фокус заводится внутрь глаза и дальнозоркие люди в плюсовых очках прекрасно видят вблизи.

И вот с тех пор, 180 лет, все глазные врачи мира дальнозорким людям подбирают плюсовые очки, рекомендуют их для чтения и для работы вблизи.

У кого из вас дальнозоркость? Поднимите руки, пожалуйста.