Равнобедренный треугольник и его свойства. Признаки, составляющие элементы и свойства равнобедренного треугольника 1 равнобедренный треугольник определение свойства

Равнобедренный треугольник - это треугольник, в котором длины двух его сторон равны между собой.

Примечание . Из определения равнобедренного треугольника следует, что правильный треугольник также является равнобедренным. Однако, необходимо помнить, что обратное утверждение - неверно.

Свойства равнобедренного треугольника

Свойства, приведенные ниже, используются при решении задач. Поскольку они широко известны, то подразумевается, что они не нуждаются в пояснении. Поэтому в текстах задач ссылка на них опущена.
  • Углы равны между собой.
  • Биссектрисы, медианы и высоты , проведённые из углов, противолежащих равным сторонам треугольника, равны между собой.
  • Биссектриса, медиана и высота , проведенные к основанию, совпадают между собой.
  • Центры вписанной и описанной окружностей лежат на высоте, биссектрисе и медиане (они совпадают) проведенных к основанию.
  • Углы , противолежащие равным сторонам равнобедренного треугольника, всегда острые .

Стороны в равнобедренном треугольнике могут быть вычислены с помощью формул, выражающих их длину через другие стороны и углы, величина которых известна.

Боковая сторона равнобедренного треугольника равна частному от деления основания на двойной косинус угла при основании (Формула 1). Данное тождество может быть получено путем несложных преобразований из теоремы косинусов.

Основание равнобедренного треугольника равно произведению боковой стороны на квадратный корень из удвоенной разности единицы и косинуса угла при вершине (Формула 2)

Основание равнобедренного треугольника равно удвоенному произведению боковой стороны на синус половины угла при вершине. (Формула 3)

Основание равнобедренного треугольника равно удвоенному произведению боковой стороны на косинус угла при его основании (Формула 4).

Радиус вписанной окружности в равнобедренный треугольник

Обозначения в формулах, можно посмотреть на рисунке выше.

Радиус вписанной окружности для равнобедренного треугольника можно найти, исходя из величин основания и каждой стороны. (Формула 1)

Радиус вписанной окружности для равнобедренного треугольника можно определить,исходя из величин основания и высоты, проведенной к этому основанию (Формула 2)

Радиус вписанной в равнобедренный треугольник окружности можно также вычислить через длину боковой стороны и высоту, проведенную к основанию треугольника (Формула 3)

Знание величины угла между боковыми сторонами и длины основания также позволяет определить радиус вписанной окружности (Формула 4)

Аналогичная формула (5) позволяет определить радиус вписанной окружности через боковые стороны и угол между ними

Признаки равнобедренного треугольника

Треугольник, у которого присутствуют перечисленные ниже признаки, является равнобедренным .
  • Два угла треугольника равны
  • Высота совпадает с медианой
  • Высота совпадает с биссектрисой
  • Биссектриса совпадает с медианой
  • Две высоты равны
  • Две медианы равны
  • Две биссектрисы равны

Площадь равнобедренного треугольника

Площадь равнобедренного треугольника находится по следующим формулам:

,
где
a - длина одной из двух равных сторон треугольника
b - длина основания
α - величина одного из двух равных углов при основании

β - величина угла между равными сторонами треугольника и противолежащего его основанию.

Среди всех треугольников есть два особенных вида: прямоугольные треугольники и равнобедренные треугольники. Чем же эти виды треугольников такие уж особенные? Ну, во-первых, такие треугольники чрезвычайно часто оказываются главными действующими «лицами» задач ЕГЭ первой части. А во-вторых, задачи про прямоугольные и равнобедренные треугольники решаются гораздо легче, чем другие задачи по геометрии. Нужно всего лишь знать несколько правил и свойств. Все самое интересное обсуждается в соответствующей теме, а сейчас рассмотрим равнобедренные треугольники. И прежде всего, что же такое - равнобедренный треугольник. Или, как говорят математики, каково определение равнобедренного треугольника?

Посмотри, как это выглядит:

Как и у прямоугольного треугольника, у равнобедренного треугольника есть специальные названия для сторон. Две равные стороны называются боковыми сторонами , а третья сторона - основанием .

И снова внимание на картинку:

Может быть, конечно, и так:

Так что будь внимательным: боковая сторона - одна из двух равных сторон в равнобедренном треугольнике, а основание - третья сторона.

Чем же так уж хорош равнобедренный треугольник? Чтобы это понять, давай проведём высоту к основанию. Ты помнишь, что такое высота?

Что же получилось? Из одного равнобедренного треугольника получилось два прямоугольных.

Это уже хорошо, но так получится в любом, самом «кособедренном» треугольнике.

Чем же отличается картинка для равнобедренного треугольника? Смотри ещё раз:

Ну, во-первых, конечно, этим странным математикам мало просто видеть - нужно непременно доказывать. А то вдруг эти треугольники чуть-чуть разные, а мы будем считать их одинаковыми.

Но не переживай: в данном случае доказывать почти так же просто, как и видеть.

Начнём? Посмотри внимательно, у нас есть:

И, значит, ! Почему? Да мы просто найдём и, и из теоремы Пифагора (помня ещё при этом, что)

Удостоверились? Ну вот, теперь у нас

А уж по трём сторонам - самый легкий (третий) признак равенства треугольников.

Ну вот, наш равнобедренный треугольник разделился на два одинаковых прямоугольных.

Видишь, как интересно? Получилось, что:

Как же об этом принято говорить у математиков? Давай по порядку:

(Вспоминаем тут, что медиана - линия, проведённая из вершины, которая делит сторону пополам, а биссектриса - угол.)

Ну вот, здесь мы обсудили, что хорошего можно увидеть, если дан равнобедренный треугольник. Мы вывели, что у равнобедренного треугольника углы при основании равны, а высота, биссектриса и медиана, проведенные к основанию, совпадают.

И теперь возникает другой вопрос: а как узнать равнобедренный треугольник? То есть, как говорят математики, каковы признаки равнобедренного треугольника?

И оказывается, что нужно просто «перевернуть» все высказывания наоборот. Так, конечно, не всегда бывает, но равнобедренный треугольник всё-таки отличная штука! Что же получится после «переворачивания»?

Ну вот смотри:
Если совпадают высота и медиана, то:


Если совпадают высота и биссектриса, то:


Если совпадают биссектриса и медиана, то:


Ну вот, не забывай и пользуйся:

  • Если дан равнобедренный треугольный треугольник, смело проводи высоту, получай два прямоугольных треугольника и решай задачу уже про прямоугольный треугольник.
  • Если дано, что два угла равны , то треугольник точно равнобедренный и можно проводить высоту и ….(Дом, который построил Джек…).
  • Если оказалось, что высота разделена сторону пополам, то треугольник - равнобедренный со всеми вытекающими бонусами.
  • Если оказалось, что высота разделила угол полам - тоже равнобедренный!
  • Если биссектриса разделила сторону пополам или медиана - угол, то это тоже бывает только в равнобедренном треугольнике

Давай посмотрим, как выглядит в задачах.

Задача 1 (самая простая)

В треугольнике стороны и равны, а. Найти.

Решаем:

Сначала рисунок.

Что здесь - основание? Конечно, .

Вспоминаем, что если, то и.

Обновлённый рисунок:

Обозначим за. Чему там равна сумма углов треугольника? ?

Пользуемся:

Вот и ответ: .

Несложно, правда? Даже высоту проводить не пришлось.

Задача 2 (Тоже не очень хитрая, но нужно повторить тему )

В треугольнике, . Найти.

Решаем:

Треугольник-то - равнобедренный! Проводим высоту (это и есть фокус, с помощью которого сейчас все решится).

Теперь «вычёркиваем из жизни» , рассмотрим только.

Итак, в имеем:

Вспоминаем табличное значения косинусов (ну, или глядим в шпаргалку…)

Осталось найти: .

Ответ: .

Заметим, что нам тут очень потребовались знания, касающиеся прямоугольного треугольника и «табличных» синусов и косинусов. Очень часто так и бывает: темы , «Равнобедренный треугольник» и в задачках ходят в связках, а с другими темами не слишком дружат.

Равнобедренный треугольник. Средний уровень.

Эти две равные стороны называются боковыми сторонами , а третья сторона - основание равнобедренного треугольника.

Посмотри на рисунок: и - боковые стороны, - основание равнобедренного треугольника.

Давай на одном рисунке поймём, почему так выходит. Проведем из точки высоту.

Значит, у них равны все соответствующие элементы.

Всё! Одним махом (высотой) доказали сразу все утверждения.

И ты запомни : чтобы решить задачу про равнобедренный треугольник часто бывает очень полезно опустить высоту на основание равнобедренного треугольника и разделить его на два равных прямоугольных треугольника.

Признаки равнобедренного треугольника

Верны и обратные утверждения:

Почти все из этих утверждений снова можно доказать «одним махом».

1. Итак, пусть в оказались равны и.

Проведём высоту. Тогда

2. a) Теперь пусть в каком-то треугольнике совпадают высота и биссектриса .

2. б) А если совпадают высота и медиана ? Все почти так же, ничуть не сложнее!

- по двум катетам

2. в) А вот если нет высоты , которая опущена на основание равнобедренного треугольника, то нет и никаких изначально прямоугольных треугольников. Плохо!

Но выход есть - читай его в следующем уровне теории, поскольку тут доказательство посложнее, а пока просто запомни, что если медиана и биссектриса совпали, то треугольник тоже окажется равнобедренным, и высота всё-таки тоже совпадёт с этими биссектрисой и медианой.

Подытожим:

  1. Если треугольник равнобедренный, то углы при основании равны, и высота, биссектриса и медиана, проведенные к основанию, совпадают.
  2. Если в каком-то треугольнике найдутся два равных угла, или какие-то две из трех линий (биссектриса, медиана, высота) совпадут, то такой треугольник - равнобедренный.

Равнобедренный треугольник. Краткое описание и основные формулы

Равнобедренный треугольник - треугольник, у которого есть две равные стороны.

Признаки равнобедренного треугольника:

  1. Если в некотором треугольнике два угла равны , то он - равнобедренный.
  2. Если в некотором треугольнике совпадают :
    а) высота и биссектриса или
    б) высота и медиана или
    в) медиана и биссектриса ,
    проведённые к одной стороне, то такой треугольник - равнобедренный.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Треугольник, у которого две стороны равны между собой, называется равнобедренным. Эти его стороны называют боковыми, а третью сторону называют основанием. В этой статье мы расскажем Вам о том, какие бывают свойства равнобедренного треугольника.

Теорема 1

Углы возле основания равнобедренного треугольника равны между собой

Доказательство теоремы.

Допустим, мы имеем равнобедренный треугольник ABC, основание которого AB. Давайте рассмотрим треугольник BAC. Эти треугольники, по первому признаку, равны между собой. Так и есть, ведь BC = AC, AC = BC, угол ACB = углу ACB. Отсюда вытекает, что угол BAC = углу ABC, ведь это соответствующие углы наших равных между собой треугольников. Вот Вам и свойство углов равнобедренного треугольника.

Теорема 2

Медиана в равнобедренном треугольнике, которую провели к его основанию, является также высотой и биссектрисой

Доказательство теоремы.

Допустим, мы имеем равнобедренный треугольник ABC, основание которого AB, а CD - это медиана, которую мы провели к его основанию. В треугольниках ACD и BCD угол CAD = углу CBD, как соответствующие углы при основании равнобедренного треугольника (Теореме 1). А сторона AC = стороне BC (по определению равнобедренного треугольника). Сторона AD = стороне BD, Ведь точка D делит отрезок AB на равные части. Отсюда выходит, что треугольник ACD = треугольнику BCD.

Из равенства этих треугольников мы имеем равенство соответствующих углов. То есть угол ACD = углу BCD и угол ADC = углу BDC. Из равенства 1 выходит, что CD - это биссектриса. А угол ADC и угол BDC - смежные углы, и из равенства 2 выходит, что они оба прямые. Получается, что CD - это высота треугольника. Это и есть свойство медианы равнобедренного треугольника.

А теперь немного о признаках равнобедренного треугольника.

Теорема 3

Если в треугольнике два угла равны между собой, то такой треугольник равнобедренный

Доказательство теоремы.

Допустим, мы имеем треугольник ABC, в котором угол CAB = углу CBA. Треугольник ABC = треугольнику BAC по второму признаку равенства между треугольниками. Так и есть, ведь AB = BA; угол CBA = углу CAB, угол CAB = углу CBA. Из такого равенства треугольников мы имеем равенство соответствующих сторон треугольника - AC = BC. Тогда выходит, что треугольник ABC равнобедренный.

Теорема 4

Если в любом треугольнике его медиана является также и его высотой, то такой треугольник равнобедренный

Доказательство теоремы.

В треугольнике ABC мы проведем медиану CD. Она также будет являться и высотой. Прямоугольный треугольник ACD = прямоугольному треугольнику BCD, так как катет CD общий для них, а катет AD = катету BD. С этого следует, что их гипотенузы равны между собой, как соответственные части равных треугольников. Это значит, что AB = BC.

Теорема 5

Если три стороны треугольника равны трем сторонам другого треугольника, то эти треугольники равны

Доказательство теоремы.

Допустим, мы имеем треугольник ABC и треугольник A1B1C1 такие, в которых стороны AB = A1B1, AC = A1C1, BC = B1C1. Рассмотрим доказательство этой теоремы от противного.

Допустим, что эти треугольники не равны между собой. Отсюда имеем, что угол BAC не равен углу B1A1C1, угол ABC не равен углу A1B1C1, угол ACB не равен углу A1C1B1 одновременно. В противном случае, эти треугольники были бы равны по вышерассмотренному признаку.

Допустим, что треугольник A1B1C2 = треугольнику ABC. У треугольника вершина C2 лежит с вершиной C1 относительно прямой A1B1 в одной полуплоскости. Мы предположили, что вершины C2 и C1 не совпадают. Допустим, что точка D - это середина отрезка C1C2. Так мы имеем равнобедренные треугольники B1C1C2 и A1C1C2, у которых есть общее основание C1C2. Выходит, что их медианы B1D и A1D - это также и их высоты. А это значит, что прямая B1D и прямая A1D перпендикулярны прямой C1C2.

B1D и A1D имеют разные точки B1 и A1, и соответственно, не могут совпадать. Но ведь через точку D прямой C1C2 мы можем провести всего одну перпендикулярную ей прямую. У нас получилось противоречие.

Теперь Вы знаете, какие бывают свойства равнобедренного треугольника!

Свойства равнобедренного треугольника выражают следующие теоремы.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Теорема 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Теорема 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Теорема 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Докажем одну из них, например теорему 2.5.

Доказательство. Рассмотрим равнобедренный треугольник ABC с основанием ВС и докажем, что ∠ В = ∠ С. Пусть AD - биссектриса треугольника ABC (рис.1). Треугольники ABD и ACD равны по первому признаку равенства треугольников (АВ = АС по условию, AD - общая сторона, ∠ 1 = ∠ 2, так как AD - биссектриса). Из равенства этих треугольников следует, что ∠ В = ∠ С. Теорема доказана.

С использованием теоремы 1 устанавливается следующая теорема.

Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны (рис. 2).

Замечание. Предложения, установленные в примерах 1 и 2, выражают свойства серединного перпендикуляра к отрезку. Из этих предложений следует, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке .

Пример 1. Доказать, что точка плоскости, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.

Решение. Пусть точка М равноудалена от концов отрезка АВ (рис. 3), т. е. AM = ВМ.

Тогда Δ АМВ равнобедренный. Проведем через точку М и середину О отрезка АВ прямую р. Отрезок МО по построению есть медиана равнобедренного треугольника АМВ, а следовательно (теорема 3), и высота, т. е. прямая МО, есть серединный перпендикуляр к отрезку АВ.

Пример 2. Доказать, что каждая точка серединного перпендикуляра к отрезку равноудалена от его концов.

Решение. Пусть р - серединный перпендикуляр к отрезку АВ и точка О - середина отрезка АВ (см. рис. 3).

Рассмотрим произвольную точку М, лежащую на прямой р. Проведем отрезки AM и ВМ. Треугольники АОМ и ВОМ равны, так как у них углы при вершине О прямые, катет ОМ общий, а катет ОА равен катету ОВ по условию. Из равенства треугольников АОМ и ВОМ следует, что AM = ВМ.

Пример 3. В треугольнике ABC (см. рис. 4) АВ = 10 см, ВС = 9 см, АС = 7 см; в треугольнике DEF DE = 7 см, EF = 10 см, FD = 9 см.

Сравнить треугольники ABC и DEF. Найти соответственно равные углы.

Решение. Данные треугольники равны по третьему признаку. Соответственно равные углы: А и Е (лежат против равных сторон ВС и FD), В и F (лежат против равных сторон АС и DE), С и D (лежат против равных сторон АВ и EF).

Пример 4. На рисунке 5 АВ = DC, ВС = AD, ∠B = 100°.

Найти угол D.

Решение. Рассмотрим треугольники ABC и ADC. Они равны по третьему признаку (АВ = DC, ВС = AD по условию и сторона АС - общая). Из равенства этих треугольников следует, что ∠ В = ∠ D, но угол В равен 100°, значит, и угол D равен 100°.

Пример 5. В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°. Найдите величину угла ABC . Ответ дайте в градусах.

Видео-решение.

Равнобедренный треугольник представляет собой простейший многоугольник, имеющий три угла и три стороны. Прежде чем выяснить, как найти углы равнобедренного треугольника, надо знать свойства этой геометрической фигуры.

Свойства равнобедренного треугольника

Рассмотрим, каковы свойства равнобедренного треугольника.

  • В равнобедренном треугольники две боковые стороны равны. Третья его сторона является основанием.
  • Углы у основания такого треугольника равны.
  • Биссектриса, медиана и высота, проведенные из углов к противоположной стороне геометрической фигуры также между собой равны.
  • Биссектриса, медиана и высота из верхнего угла к основанию равнобедренного треугольник совпадают.
  • Если внутри равнобедренного треугольника вписать круг, а также описать его вокруг такой фигуры, их центры будут лежать на одной линии.
  • Углы у основания могут быть только острыми.

Таким образом, если в треугольнике два угла равны, а его высота совпадает с медианой и биссектрисой, он является равнобедренным. Это основной признак равнобедренного треугольника.

Теперь, рассмотрим, как найти углы равнобедренного треугольника. Если такой треугольник является к тому же еще и прямоугольным, то найти два его угла не представляется сложным, так они всегда будут равны по 45 градусов, что вытекает из свойств и признаков равнобедренного треугольника.

  • Зная один из углов, всегда можно рассчитать необходимый. Например, угол при основании будем обозначать буквой α, угол у вершины фигуры будем обозначать буквой β. Отсюда угол α будет равен: (π - β)/2, где π является постоянной величиной.
  • Углы также можно рассчитать через арксинусы. Для этого надо описать вокруг такого треугольника окружность с радиусом, который обозначим большой буквой R. Тогда, угол α = arcsin(a/2R), а угол β = arcsin(b/2R), где а и b являются сторонами треугольника.

Пример решения задачи

Необходимо найти углы в равнобедренном треугольнике, если известно, что угол у его основания на 15 градусов больше угла, который противоположен основанию.

Решение: Обозначим противоположный угол β, тогда угол у основания будет равен: β + 15. Поскольку сумма в треугольнике всегда равна 180 градусам, находим:

β + 2х (β +15) = 180;

β + 2 β + 30 = 180;

Итак, угол у основания равен 50 градусам, а значит два других угла, будут равны по 65 градусов каждый. Теперь вы знаете правила того, как найти углы равнобедренного треугольника. Желаем вам удачи во всех расчетах!