Доказать достаточный признак экстремума функции одной переменной. Достаточные признаки существования экстремума (доказать одну из теорем). Достаточные условия экстремума функции

Признаки локального возрастания и убывания функции.

Одна из основных задач исследования функции — это нахождение промежутков ее возрастания и убывания. Такое исследование легко провести с помощью производной. Сформулируем соответствующие утверждения.

Достаточный признак возрастания функции . Если f’(х) > 0 в каждой точке интервала I, то функция f возрастает на I.

Достаточный признак убывания функции . Если f’(х) < 0 в каждой точке интервала I, то функция f убывает на I.

Доказательство этих признаков проводится на основании формулы Лагранжа (см. п. 19). Возьмем два любых числа х 1 и x 2 из интервала. Пусть x 1 существует число с∈(х 1 , x 2 ), такое, что

(1)

Число с принадлежит интервалу I, так как точки х 1 и x 2 принадлежат I. Если f"(x)>0 для х∈I то f’(с)>0, и поэтому F(x 1 )) — это следует из формулы (1), так как x 2 — x 1 >0. Этим доказано возрастание функции f на I. Если же f’ (x)<0 для х∈I то f"(с)<0, и потому f(x 1 )>f (х 2 ) — следует из формулы (1), так как x 2 —x 1 >0. Доказано убывание функции f на I.

Наглядный смысл признаков ясен из физических рассуждений (рассмотрим для определенности признак возрастания).

Пусть движущаяся по оси ординат точка в момент времени t имеет ординату y = f(t). Тогда скорость этой точки в момент времени t равна f"(t) (см. Мгновенная скорость ). Если f’ (t)>0 в каждый момент времени из промежутка t, то точка движется в положительном направлении оси ординат, т. е. если t 1 ). Это означает, что функция f возрастает на промежутке I.

Замечание 1.

Если функция f непрерывна в каком-либо из концов промежутка возрастания (убывания), то эту точку присоединяют к этому промежутку.

Замечание 2.

Для решения неравенств f" (х)>0 и f" (х)<0 удобно пользоваться обобщением метода интервалов (теоремой Дарбу) : точки, в которых производная равна 0 или не существует, разбивают область определения функции f на промежутки, в каждом из которых f" сохраняет постоянный знак. (Этот факт доказывается в курсах математического анализа.) Знак можно определить, вычислив значение f" в какой-нибудь точке промежутка.

Необходимые и достаточные условия существования экстремума функции в точке.

Необходимое условие экстремума

Функция g(x) в точке имеет экстремум(максимум или минимум), если функция определена в двухсторонней окрестности точки и для всех точек x некоторой области: , выполнено соответственно неравенство

(в случае максимума) или (в случае минимума).

Экстремум функции находиться из условия: , если производная существует, т.е. приравниваем первую производную функции к нулю.

Достаточное условие экстремума

1) Первое достаточное условие :

а) f(x) непрерывная функция и определена в некоторой окрестности точки такой, что первая производная в данной точке равна нулю или не существует.

б) f(x) имеет конечную производную в окрестности задания и непрерывности функции

в) производная сохраняет определенный знак справа от точки и слева от этой же точки, тогда точку можно охарактеризовать следующим образом

Это условие не очень удобное, так как нужно проверять множество условий и запоминать таблицу, однако если ничего не сказано о производных высших порядках, то это единственный способ найти экстремум функции.

2) Второе достаточное условие

Если функция g(x) обладает второй производной причем в некоторой точкепервая производная равна нулю, а вторая производная отлично от нуля. Тогда точкаэкстремум функции g(x), причем если , то точка является максимумом; если , то точка является минимумом.

Функция y = f(x) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f(x 1) < f (x 2) (f(x 1) > f(x 2)).

Если дифференцируемая функция y = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x) > 0

(f " (x) < 0).

Точка x о называется точкой локального максимума (минимума ) функции f(x), если существует окрестность точки x о , для всех точек которой верно неравенство f(x) ≤ f(x о) (f(x) ≥ f(x о)).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f(x), то либо f " (x о) = 0, либо f (x о) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную
f " (x) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о) = 0, >0 ( <0), то точка x о является точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Исследование условий и построение графиков.

Найти область определения функции

Найти точки пересечения графика с осями координат

Найти интервалы знака постоянства

Исследовать на четность, нечетность

Найти асимптоты графика функции

Найти интервалы монотонности функции

Найти экстремумы функции

Найти интервалы выпуклости и точки перегиба

Асимптоты графиков функций. Общая схема исследования и построения графиков функции. Примеры.

Вертикальная

Вертикальная асимптота - прямая вида при условии существования предела .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

Замечание: обратите внимание на знаки бесконечностей в этих равенствах.

[править]Горизонтальная

Горизонтальная асимптота - прямая вида при условии существования предела

.

[править]Наклонная

Наклонная асимптота - прямая вида при условии существования пределов

Пример наклонной асимптоты

1.

Замечание: функция может иметь не более двух наклонных(горизонтальных) асимптот!

Замечание: Если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует!

Связь между наклонной и горизонтальной асимптотами

Если при вычислении предела , то очевидно, что наклонная асимптота совпадает с горизонтальной. Какова же связь между этими двумя видами асимптот?

Дело в том, что горизонтальная асимптота является частным случаем наклонной при , и из выше указанных замечаний следует, что

1. Функция имеет или только одну наклонную асимптоту, или одну вертикальную асимптоту, или одну наклонную и одну вертикальную, или две наклонных, или две вертикальных, либо же вовсе не имеет асимптот.

2. Существование указанных в п. 1.) асимптот напрямую связано с существованием соответствующих пределов.

График функции с двумя горизонтальными асимптотами

]Нахождение асимптот

Порядок нахождения асимптот

1. Нахождение вертикальных асимптот.

2. Нахождение двух пределов

3. Нахождение двух пределов :

если в п. 2.), то , и предел ищется по формуле горизонтальной асимптоты, .


Очень важную информацию о поведении функции предоставляют промежутки возрастания и убывания. Их нахождение является частью процесса исследования функции и построения графика . К тому же точкам экстремума, в которых происходит смена с возрастания на убывание или с убывания на возрастание, уделяется особое внимание при нахождении наибольшего и наименьшего значения функции на некотором интервале.

В этой статье дадим необходимые определения, сформулируем достаточный признак возрастания и убывания функции на интервале и достаточные условия существования экстремума, применим всю эту теорию к решению примеров и задач.

Навигация по странице.

Возрастание и убывание функции на интервале.

Определение возрастающей функции.

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Определение убывающей функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.


ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b) , то есть при x=a и x=b , то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X .

К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале мы можем утверждать о возрастании на отрезке .

Точки экстремума, экстремумы функции.

Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.


На первом рисунке наибольшее значение функции на отрезке достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b , которая не является точкой максимума.

Достаточные условия возрастания и убывания функции.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

  • если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;
  • если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример.

Найти промежутки возрастания и убывания функции .

Решение.

На первом шаге нужно найти область определения функции . В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .

Переходим к нахождению производной функции:

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x=0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.

Таким образом, и .

В точке x=2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x=0 функция не определена, поэтому эту точку не включаем в искомые интервалы.

Приводим график функции для сопоставления с ним полученных результатов.

Ответ:

Функция возрастает при , убывает на интервале (0;2] .

Достаточные условия экстремума функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех признаков экстремума, конечно, если функция удовлетворяет их условиям. Самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y=f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна.

Другими словами:

Алгоритм нахождения точек экстремума по первому признаку экстремума функции.

  • Находим область определения функции.
  • Находим производную функции на области определения.
  • Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (все перечисленные точки называют точками возможного экстремума , проходя через эти точки, производная как раз может изменять свой знак).
  • Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).
  • Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак - они и являются точками экстремума.

Слишком много слов, рассмотрим лучше несколько примеров нахождения точек экстремума и экстремумов функции с помощью первого достаточного условия экстремума функции.

Пример.

Найти экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел, кроме x=2 .

Находим производную:

Нулями числителя являются точки x=-1 и x=5 , знаменатель обращается в ноль при x=2 . Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x=-2, x=0, x=3 и x=6 .

Следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.

В точке x=-1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x=-1 – точка максимума, ей соответствуем максимум функции .

В точке x=5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x=-1 – точка минимума, ей соответствуем минимум функции .

Графическая иллюстрация.

Ответ:

ОБРАТИТЕ ВНИМАНИЕ: первый достаточный признак экстремума не требует дифференцируемости функции в самой точке .

Пример.

Найдите точки экстремума и экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел. Саму функцию можно записать в виде:

Найдем производную функции:

В точке x=0 производная не существует, так как значения односторонних пределов при стремлении аргумента к нулю не совпадают:

В это же время, исходная функция является непрерывной в точке x=0 (смотрите раздел исследование функции на непрерывность):

Найдем значения аргумента, при котором производная обращается в ноль:

Отметим все полученные точки на числовой прямой и определим знак производной на каждом из интервалов. Для этого вычислим значения производной в произвольных точках каждого интервала, к примеру, при x=-6, x=-4, x=-1, x=1, x=4, x=6 .

То есть,

Таким образом, по первому признаку экстремума, точками минимума являются , точками максимума являются .

Вычисляем соответствующие минимумы функции

Вычисляем соответствующие максимумы функции

Графическая иллюстрация.

Ответ:

.

Второй признак экстремума функции.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .

Теорема 12. {Первый достаточный признак экстремума) Пусть х 0 - критическая точка непрерывной функции f(х). Если f" (х) при переходе через точку x 0 меняет знак с «+» на «-», то x 0 - точка локального максимума. Если f "(х) при переходе через точку х 0 меняет знак с «-» на «+», то х 0 - точка локального минимума. Если f "(х) при переходе через точку x 0 не меняет знак, то х 0 не является точкой локального экстремума.

Доказательство. Пусть x 0 - точка возможного экстремума функции, причем

f "(x)>0 для xx Э U (x 0 ,Дельта);

f "(x) х 0 , A x Э U (x 0 ,Дельта). Тогда

при f "(x)>0 для xx Э U (x 0 ,Дельта); => f(x 0 )>f(x),

При f "(x) х 0 , A x Э U (x 0 ,Дельта). => f(x 0 )
следовательно A x Э U (x 0 ,Дельта): f (x 0 )> f (x ), т. е. точка х 0 является точка локального максимума.

Аналогично доказывается и существование точки локального минимума. Если f `(x ) сохраняет знак в окрестности точки х 0 , то в этой окрестности функция монотонна, т. е. точка х 0 не является точкой локального экстремума.

Аннотация
Данная работа преследует несколько целей. Первая из которых заключается в изложении нового подхода к Платоновым телам (ПТ) Второй, не менее важной, целью являет освещение роли Платоновых тел в контексте развития математики и науки в целом.

Платоновы тела также рассматриваются и с более общих позиций – их симметрия, связь с «золотым сечением», их влияния на развитие математики и всего теоретического естествознания. Обсуждаются результаты их использования в науке прошлых веков («Божественная пропорция» Пачоли, «Космический кубок» Кеплера, «икосаэдрическая идея» Клейна). Приводятся примеры современных научных открытий, основанных на ПТ (квазикристаллы, фуллерены, новый подход к созданию теории элементарных частиц).

Уделяется внимание и роли Платоновых тел в создании «Начал» Евклида. Согласно «гипотезе Прокла» развитие математики, начиная с Евклида, осуществлялось в двух направлениях: «Классическая математика» (позаимствовала в «Началах» аксиоматический подход, теорию чисел и теорию иррациональностей) и «Математика гармонии» (основана на ПТ и «золотом сечении»).

На основании проделанной работы делается вывод: по своему влиянию на развитие математики и науки в целом Платоновы тела вместе с «золотым сечением» можно поставить в один ряд не только с теоремой Пифагора (Кеплер), но и с натуральными и иррациональными числами.
Содержание:


  1. Платоновы тела

  2. Симметрия Платоновых тел

  3. Связь Платоновых тел с «золотым сечением»

  4. Гипотеза Прокла: с какой целью Евклид написал свои «Начала»?

  5. Новый взгляд на развитие математики, вытекающий из гипотезы Прокла

  6. «Космический кубок» Иоганна Кеплера

  7. Платоновы тела и «золотое сечение» в «Божественной пропорции» Луки Пачоли

  8. Икосаэдрическая идея Феликса Клейна

  9. Квазикристаллы Дана Шехтмана

  10. Фуллерены (Нобелевская Премия по химии - 1996)

  11. Новые подходы в теории элементарных частиц

  12. Экспериментальное доказательство проявления «золотого сечения» в квантовом мире

  13. Сюрпризы для теоретического естествознания

  14. Заключение: Платоновы тела как уникальные геометрические объекты науки и природы

  15. Литература

Пока алгебра и геометрия двигались каждая своим путем,

их прогресс был медленным, а приложения ограниченными.

Но когда эти науки объединили свои усилия, они

позаимствовали друг у друга новые жизненные силы

и с тех пор быстрыми шагами направились к совершенству

(Жозеф Луи Лагранж)

1. Платоновы тела

Правильные многогранники известны с древнейших времён. Но почему правильные многогранники называют Платоновыми телами?

Платон (428-348 до н.э.) в своих трудах много внимания уделил взглядам пифагорейцев на правильные тела, поскольку и сам считал, что вся Вселенная имеет форму додекаэдра, а материя состоит из атомов четырех типов, которые имеют форму тетраэдров, кубов, октаэдров и икосаэдров. Он первым воспел красоту правильных выпуклых многогранников, обладающих удивительной симметрией в трёхмерном пространстве. Грани этих многогранников – это правильные многоугольники с одинаковым числом сторон; в каждой вершине многогранников сходится одинаковое число рёбер. Примечательно, что все пять Платоновых тел в разные времена использовались в качестве игральных костей.

^ Теэтет Афинский (417 - 369 до н. э. ), современник Платона, дал математическое описание правильных многогранников и первое известное доказательство того, что их ровно пять.

После них эстафету принял Евклид (365-300 до н.э.). В заключительной книге знаменитых «Начал» Евклид дал не только полный, подробный анализ Платоновых тел, но и простейшее геометрическое доказательство существования не более пяти правильных тел.

Теории многогранников посвящено много книг. Одной из наиболее известных является книга английского математика М. Венниджера «Модели многогранников». В русском переводе эта книга опубликована издательством «Мир» в 1974 г. Эпиграфом к книге выбрано высказывание Бертрана Рассела: « Математика владеет не только истиной, но и высокой красотой красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства».

Эта мысль Бертрана Рассела, прежде всего, может быть отнесена к правильным многогранникам, с которых и начинается книга М. Венниджера. Эти многогранники принято называть Платоновыми телами, названными так в честь древнегреческого философа Платона, который использовал правильные многогранники в своей космологии. Начнем наше рассмотрение с правильных многогранников, гранями которых являются равносторонние треугольники.

Первый из них – это тетраэдр (Рис.1-а). В тетраэдре три равносторонних треугольника встречаются в одной вершине; при этом их основания образуют новый равносторонний треугольник. Тетраэдр имеет наименьшее число граней среди Платоновых тел и является трехмерным аналогом плоского правильного треугольника, который имеет наименьшее число сторон среди правильных многоугольников.




(а)


(б)






(г) (д)

Рисунок 1. Платоновы тела: (а) тетраэдр («Огонь»), (б) гексаэдр или куб («Земля»), (в) октаэдр («Воздух»), (г) икосаэдр («Вода»), (д) додекаэдр («Вселенский разум»)

Следующее тело, которое образуется равносторонними треугольниками, называется октаэдром (Рис.1-б). В октаэдре в одной вершине встречаются четыре треугольника; в результате получается пирамида с четырехугольным основанием. Если соединить две такие пирамиды основаниями, то получится симметричное тело с восемью треугольными гранями – октаэдр.

Теперь можно попробовать соединить в одной точке пять равносторонних треугольников. В результате получится фигура с 20 треугольными гранями – икосаэдр (Рис.1-г). Следующая правильная форма многоугольника – квадрат. Если соединить три квадрата в одной точке и затем добавить еще три, мы получим совершенную форму с шестью гранями, называемую гексаэдром или кубом (Рис. 1-в).

Наконец, существует еще одна возможность построения правильного многогранника, основанная на использовании следующего правильного многоугольника –

пентагона. Если собрать 12 пентагонов таким образом, чтобы в каждой точке встречалось три пентагона, то получим еще одно Платоново тело, называемое додекаэдром (Рис.1-д).

Следующим правильным многоугольником является шестиугольник. Однако если соединить три шестиугольника в одной точке, то мы получим плоскость, то есть, из шестиугольников нельзя построить объемную фигуру. Любые другие правильные многоугольники выше шестиугольника не могут образовывать тел вообще. Из этих рассуждений вытекает, что существует только пять правильных многогранников, гранями которых могут быть только равносторонние треугольники, квадраты и пентагоны.

2. Симметрия Платоновых тел

С давних времен Платоновы тела привлекали внимание исследователей своими исключительными симметрическими свойствами. Обычно для характеристики симметрии некоторого объекта приводится полная совокупность элементов симметрии. Например, группа симметрий снежинки имеет вид L 6 6Р. Это означает, что снежинка имеет одну ось симметрии шестого порядка L 6 , то есть, может 6 раз «самосовмещаться» при повороте вокруг оси, и 6 плоскостей симметрии. Группа симметрий цветка ромашки, имеющего 24 лепестка, имеет вид L 24 24Р, то есть, цветок имеет одну ось 24-го порядка и 24 плоскости симметрии. В таблице 1 приведены группы симметрий всех «Платоновых Тел».

Таблица 1. Группы симметрий Платоновых тел


Многогранник

Форма граней

Симметрия

Тетраэдр

Равносторонние треугольники

4L 3 3L 2 6Р

Куб

Квадраты

3L 4 4L 3 6L 2 9Р С

Октаэдр

Равносторонние треугольники

3L 4 4L 3 6L 2 9Р С

Додекаэдр

Равносторонние пятиугольники

6L 5 10L 3 15L 2 15Р С

Икосаэдр

Равносторонние треугольники

6L 5 10L 3 15L 2 15Р С

Анализ симметрий «Платоновых Тел», приведенных в Табл. 1, показывает, что группы симметрий куба и октаэдра, а также додекаэдра и икосаэдра совпадают. Это связано с тем, что додекаэдр дуален икосаэдру, а куб дуален октаэдру. Анализ этой таблицы показывает, что додекаэдр и икосаэдр выделяются своими симметрическими свойствами среди других Платоновых тел. Группа симметрий 6L 5 10L 3 15L 2 15Р С означает, что додекаэдр и икосаэдр обладают 6 линиями симметрии 5-го порядка L 5 , 10 линиями симметрии 3-го порядка L 3 , 15 линиями симметрии 2-го порядка L 2 , 15 плоскостями симметрии Р и центром симметрии С.

^ 3. Связь Платоновых тел с « золотым сечением».

Анализ Платоновых тел на Рис. 1 показывает, что два Платоновых тела - додекаэдр и двойственный ему икосаэдр непосредственно связаны с «золотым сечением». Действительно, гранями додекаэдра (Рис. 1-д) являются пентагоны, т.е., правильные пятиугольники, основанные на золотом сечении. Если внимательно посмотреть на икосаэдр (Рис. 1-г), то можно увидеть, что в каждой вершине икосаэдра сходится пять треугольников, внешние стороны которых образуют пентагон. Уже этих фактов достаточно, чтобы убедиться в том, что «золотое сечение» играет существенную роль в конструкции этих двух Платоновых тел.

Но существуют более глубокие математические подтверждения фундаментальной роли, которую играет золотое сечение в икосаэдре и додекаэдре. Известно, что эти тела имеют три специфические сферы. Первая (внутренняя) сфера вписана в тело и касается его граней. Обозначим радиус этой внутренней сферы через R i . Вторая или средняя сфера касается ее ребер. Обозначим радиус этой сферы через R m . Наконец, третья (внешняя) сфера описана вокруг тела и проходит через его вершины. Обозначим ее радиус через R c . В геометрии доказано, что значения радиусов указанных сфер для додекаэдра и икосаэдра,

имеющего ребро единичной длины, выражается через золотую пропорцию:
(Табл.2).

Таблица 2. Золотая пропорция в сферах додекаэдра и икосаэдра

Заметим, что отношение радиусов одинаково, как для икосаэдра, так и

для додекаэдра. Таким образом, если додекаэдр и икосаэдр имеют одинаковые вписанные сферы, то их описанные сферы также равны между собой. Доказательство этого математического результата дано в Началах Евклида.

В геометрии известны и другие соотношения для додекаэдра и икосаэдра, подтверждающие их связь с золотой пропорцией. Таким образом, существует огромное количество соотношений, полученных еще античными математиками, подтверждающих замечательный факт, что именно золотое сечение является главной пропорцией додекаэдра и икосаэдра, и этот факт является особенно интересным с точки зрения так называемой « додекаэдро- икосаэдрической доктрины» .

Первый достаточный признак экстремума формулируется на основе изменения знака первой производной при переходе через критическую точку. О втором признаке экстремума речь пойдёт ниже в § 6.4.

Теорема (первый признак экстремума) : Если х 0 – критическая точка функции у= f (x ) и в некоторой окрестности точки х 0 , переходя через неё слева направо, производная меняет знак на противоположный, то х 0 является точкой экстремума. Причём, если знак производной меняется с «+» на «-», то х 0 – точка максимума, а f (x 0 ) – максимум функции, а если производная меняет знак с «-» на «+», то х 0 – точка минимума, а f (x 0 ) – минимум функции.

Рассмотренный экстремум носит локальный (местный) характер и касается некоторой малой окрестности критической точки.

Точки экстремума и точки разрыва делят область определения функции на интервалы монотонности.

Пример 6.3. В примере 6.1. мы нашли критические точки х 1 =0 и х 2 =2.

Выясним, действительно ли в этих точках функция у=2х 3 -6х 2 +1 имеет экстремум. Подставим в её производную
значениях , взятые слева и справа от точки х 1 =0 в достаточно близкой окрестности, например, х=-1 и х=1 . получим . Так как производная меняет знак с «+» на «-», тох 1 =0 – точка максимума, а максимум функции
. Теперь возьмем два значения х=1 их=3 из окрестности другой критической точки х 2 =2 . Уже показано, что
, а
. Так как производная меняет знак с «-» на «+», тох 2 =2 – точка минимума. А минимум функции
.

Чтобы найти наибольшее и наименьшее значение функции непрерывной на отрезке
нужно вычислить её значение во всех критических точках и на концах отрезка, а затем выбрать из них наибольшее и наименьшее
.

6.3. Признаки выпуклости и вогнутости графика функции. Точки перегиба

График дифференцируемой функции называется выпуклым на интервале, если он расположен ниже любой своей касательной на том интервале; вогнутым (выпуклым вниз) , если он расположен выше любой касательной на интервале .

6.3.1. Необходимые и достаточные признаки выпуклости и вогнутости графика

а) Необходимые признаки

Если график функции у= f (x ) выпуклый на интервале (a , b ) , то вторая производная
на этом интервале; если график
вогнутый на (a , b ) , то
на
(a , b ) .

Пусть график функцииу= f (x ) выпуклый (a , b ) (рис.6.3а). Если касательная скользит вдоль выпуклой кривой слева направо, то её угол наклона убывает (
), вместе с тем убывает и угловой коэффициент касательной, а значит, убывает первая производная
на(a , b ) . Но тогда производная первой производной как производная убывающей функции должна быть отрицательной, то есть
на(a , b ) .

Если график функции вогнутый на (a , b ) , то, рассуждая аналогично, видим, что при скольжении касательной вдоль кривой (рис. 6.3б) угол наклона касательной возрастает (
), возрастает вместе с ним и угловой коэффициент, а значит и производная. И тогда производная от производной как возрастающей функции должна быть положительной, то есть
на(a , b ) .

б) Достаточные признаки

Если для функции у= f (x ) во всех точках некоторого интервала будет
, то график функции
вогнутый на этом интервале, а если
, то
выпуклый .

«Правило дождя» : Чтобы запомнить какой знак второй производной связывать с выпуклой, а какой с вогнутой дугой графика, рекомендуем запомнить: «плюс вода» в вогнутой луночке, «минус вода» - в выпуклой луночке (рис. 6.4).

Точка графика непрерывной функции, в которой изменяется выпуклость на вогнутость или наоборот, называется точкой перегиба .

Теорема (достаточный признак существования точки перегиба).

Если в точке функция
дважды дифференцируема и вторая производная в этой точке равна нулю или не существует, и если при переходе через точкувторая производная
меняет знак, то точкаесть точка перегиба. Координаты точки перегиба
.

Точки, в которых вторая производная обращается в нуль или не существует, называются критическими точками второго рода.

Пример 6.4. Найти точки перегиба и определить интервалы выпуклости и вогнутости кривой
(кривая Гаусса).

Решение. Находим первую и вторую производные:
,. Вторая производная существует при любых. Приравниваем ее нулю и решим полученное уравнение
, где
, тогда
, откуда
,
- критические точки второго рода. Проверим смену знака второй производной при переходе через критическую точку
. Если
, например,
, то
, а если
, например,
, то
, то есть, вторая производная меняет знак. Следовательно,
- абсцисса точки перегиба, ее координаты
. Ввиду четности функции
, точка
, симметричная точке
, тоже будет точкой перегиба.