Кратные единицы длины в метрах. Кратные и дольные единицы. Основные, дополнительные и производные единицы системы си

Международная система единиц (Systeme International d"Unitees), система единиц физических величин, принятая 11-й Генеральной конференцией по мерам и весам (1960). Сокращенное обозначение системы - SI (в русской транскрипции - СИ). Международная система единиц разработана с целью замены сложной совокупности систем единиц и отдельных внесистемных единиц, сложившейся на основе метрической системы мер , и упрощения пользования единицами. Достоинствами Международной системы единиц являются ее универсальность (охватывает все отрасли науки и техники) и когерентность, т. е. согласованность производных единиц, которые образуются по уравнениям, не содержащим коэффициенты пропорциональности. Благодаря этому при расчетах, если выражать значения всех величин в единицах Международной системы единиц, в формулы не требуется вводить коэффициенты, зависящие от выбора единиц.

Ниже в таблице приведены наименования и обозначения (международные и русские) основных, дополнительных и некоторых производных единиц Международной системы единиц Русские обозначения даны в соответствии с действующими ГОСТами; приведены также обозначения, предусматриваемые проектом нового ГОСТа "Единицы физических величин". Определение основных и дополнительных единиц и количеств, соотношения между ними даны в статьях об этих единицах.

Основные и производные единицы Международной системы единиц

Величина Наименование единицы Обозначение
международное русское
Основные единицы
Длина метр m м
Масса килограмм kg кг
Время секунда s с
Сила электрического тока ампер А А
Термодинамическая температура кельвин К К
Сила света кандела cd кд
Количество вещества киломоль kmol кмоль
Дополнительные единицы
Плоский угол радиан rad рад
Телесный угол стерадиан sr ср
Производные единицы
Площадь квадратный метр m 2 м 2
Объем, вместимость кубический метр m 3 м 3
Частота герц Hz Гц
Скорость метр в секунду m/s м/с
Ускорение метр на секунду в квадрате m/s 2 м/с 2
Угловая скорость радиан в секунду rad/s рад/с
Угловое ускорение радиан на секунду в квадрате rad/s 2 рад/с 2
Плотность килограмм на кубический метр kg/m 3 кг/м 3
Сила ньютон N Н
Давление, механическое напряжение Паскаль Pa Па (Н/м 2)
Кинематическая вязкость квадратный метр на секунду m 2 /s м 2 /с
Динамическая вязкость паскаль-секунда Pa·s Па·с
Работа, энергия, количество теплоты джоуль J Дж
Мощность ватт W Вт
Количество электричества кулон С Кл
Электрическое напряжение, электродвижущая сила вольт V В
Напряженность электрического поля вольт на метр V/m В/м
Электрическое сопротивление ом w Ом
Электрическая проводимость сименс S См
Электрическая емкость фарада F Ф
Магнитный поток вебер Wb Вб
Индуктивность генри H Гн
Магнитная индукция тесла Т Тл
Напряженность магнитного поля ампер на метр A/m А/м
Магнитодвижущая сила ампер A А
Энтропия джоуль на кельвин J/K Дж/К
Теплоемкость удельная джоуль на килограмм-кельвин J/(kg·K) Дж/(кг·К)
Теплопроводность ватт на метр-кельвин W/(m·K) Вт/(м·К)
Интенсивность излучения ватт на стерадиан W/sr Вт/ср
Волновое число единица на метр m -1 м -1
Световой поток люмен lm лм
Яркость кандела на квадратный метр cd/m 2 кд/м 2
Освещенность люкс lx лк

Первые три основные единицы (метр, килограмм, секунда) позволяют образовывать когерентные производные единицы для всех величин, имеющих механич. природу, остальные добавлены для образования производных единиц величин, не сводимых к механическим: ампер - для электрических и магнитных величин, кельвин - для тепловых, кандела - для световых и моль - для величин в области физич. химии и молекулярной физики. Дополнит, единицы радиан и стерадиан служат для образования производных единиц величин, зависящих от плоского или телесного углов. Для образования наименований десятичных кратных и дольных единиц служат спец. приставки СИ: деци (для образования единиц, равных 10 -1 по отношению к исходной), санти (10 -2), милли (10 -3), микро (10 -6), нано (10 -9), пико (10 -12), фемто (10 -15), атто (10 -18), дека (10 1), гекто (10 2), кило (10 3), мега (10 6), гига (10 9), тера (10 12); см. Кратные единицы, Дольные единицы .

1.1. Соедините линиями названия природных явлений и соответствующие им виды физических явлений.

1.2. Отметьте галочкой свойства, которыми обладают и камень, и резиновый жгут.

1.3. Заполните пропуски в тексте так, чтобы получились названия наук, изучающих различные явления на стыке физики и астрономии, биологии, геологии.

1.4. Запишите в стандартном виде следующие числа по приведенному выше образцу.

2.1. Обведите в рамочку те свойства, которыми физическое тело может не обладать.

2.2. На рисунке изображены тела, состоящие из одного и того же вещества. Запишите название этого вещества.

2.3. Выберите из предложенных слов два слова, обозначающие вещества, из которых сделаны соответствующие части простого карандаша, и запишите их в пустые окошки.

2.4. С помощью стрелочек «рассортируйте» слова по корзинам в соответствии с их названиями, отражающими разные физические понятия.

2.5. Запишите числа по приведенному образцу.

3.1. На уроке физики учитель поставил ученикам на столы одинаковые на вид магнитные стрелки, размещенные на остриях игл. Все стрелки повернулись вокруг своей оси и замерли, но при этом одни из них оказались повернутыми на север синим концом, а другие – красным. Ученики удивились, но в ходе беседы некоторые из них высказали свои гипотезы, почему так могло произойти. Отметьте, какую выдвинутую учениками гипотезу можно опровергнуть, а какую – нет, зачеркнув ненужное слово в правой колонке таблицы.

3.2. Выберите правильное продолжение фразы « В физике явление считается реально протекающим, если…»

3.3. Допишите предложение.

3.4. Выберите правильное продолжение фразы.

3.5. Еще в древности люди наблюдали, что:

4.1. Закончите фразу.

4.2. Вставьте в текст недостающие слова и буквы.
В Международной системе единиц (СИ):

4.3. а) Выразите кратные единицы длины в метрах и наоборот.

б) Выразите метр в дольных единицах и наоборот.

в) Выразите секунду в дольных единицах и наоборот.

г) Выразите в основных единицах СИ значения длины.

д) Выразите в основных единицах СИ значения интервалов времени.

е) Выразите в основных единицах СИ значения следующих величин.

4.4. Измерьте линейкой ширину l страницы учебника. Выразите результат в сантиметрах, миллиметрах и метрах.

4.5. На стержень намотали провод так, как показано на рисунке. Ширина намотки оказалась равной l=9 мм. Каков диаметр d провода? Ответ выразите в указанных единицах.

4.6. Запишите значения длины и площади в указанных единицах по приведенному образцу.

4.7. Определите площадь треугольника S1 и трапеции S2 в указанных единицах.

4.8. Запишите значения объема в основных единицах СИ по приведенному образцу.

4.9. В ванну налили сначала горячей воды объемом 0,2 м3, затем добавили холодной воды объемом 2 л. Каков объем воды в ванне?

4.10. Допишите предложение. «Цена деления шкалы термометра составляет _____».

5.1. Воспользуйтесь рисунком и заполните пропуски в тексте.

5.2. Запишите значения объема воды в сосудах с учетом погрешности измерения.

5.3. Запишите значения длины стола, измеренной разными линейками, с учетом погрешности измерений.

5.4. Запишите показания часов, изображенных на рисунке.

5.5. Ученики измерили длину своих столов разными приборами и результаты записали в таблицу.

6.1. Подчеркните названия устройств, в которых используется электродвигатель.

6.2. Домашний эксперимент.
1. Измерьте диаметр d и длину окружности l у пяти предметов цилиндрической формы с помощью нити и линейки (см. рис.). Названия предметов и результаты измерений запишите в таблицу. Используйте предметы разного размера. Для примера в первой колонке таблицы уже поставлены значения, полученные для сосуда диаметром d = 11 см и длиной окружности l = 35 см.

2. Используя таблицу, постройте график зависимости длины окружности l предмета от его диаметра d . Для этого на координатной плоскости нужно построить шесть точек согласно данным таблицы и соединить их прямой линией. Для примера на плоскости уже построена точка с координатами (d, l) для сосуда. Аналогично на этой же плоскости постройте точки для других тел.

3. Используя полученный график, определите, чему равен диаметр d цилиндрической части пластиковой бутылки, если длина ее окружности l = 19см.
d = 6 см


6.3. Домашний эксперимент.
1. Измерьте размеры спичечного коробка с помощью линейки с миллиметровыми делениями и запишите эти значения с учетом погрешности измерения.

Предыдущая запись означает, что истинные значения длины, ширины и высоты коробка лежат в пределах:

2. Рассчитайте, в каких пределах лежит истинное значение объема коробка.

Различают кратные и дольные единицы физической величины.

Кратная единица – единица физической величины, в целое число раз большая системной или внесистемной единицы.

Дольная единица – единица физической величины, в целое число раз меньшая системной или внесистемной единицы. См. приложение.

Наиболее прогрессивным способом образования кратных и дольных единиц является принятая в метрической системе мер десятичная кратность между большими и меньшими единицами. В соответствии с резолюцией XI Генеральной конференции по мерам и весам десятичные кратные и дольные единицы от единиц СИ образуются путем присоединения приставок.

Например, единица длины километр равна 10 3 м, т.е. кратна метру, а единица длины миллиметр равна 10 -3 м, т.е. является дольной. Множители и приставки для образования кратных и дольных единиц СИ приведены в таблице 1.2.

Внесистемные единицы – единицы физических величин, которые не входят в принятую систему единиц. Они подразделяются:

На допускаемые к применению наравне с единицами СИ;

На допускаемые к применению в специальных областях;

На временно допускаемые;

На устаревшие (не допускаемые).

1.5. Системы физических величин и их единиц

Физические величины принято делить на основные и производные.

Кельвин – 1/273,16 часть термодинамической температуры тройной точки воды;

Моль – количество вещества системы, содержащей столько же структурных элементов, сколько атомов содержится в нуклиде углерода-12 массой 0,012 кг;

Кандела – сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540*10 12 Гц.

Производные единицы Международной системы единиц образуются с помощью которые называют производными от них. Например, в формуле Эйнштейна E = mc 2 (m – масса, с – скорость света) масса – основная единица, которая может быть измерена взвешиванием; энергия (Е) – производная единица. Основным величинам соответствуют основные единицы измерений, а производным – производные единицы измерений.

Таким образом, система единиц физических величин (система единиц) - совокупность основных и производных единиц физических величин, образованная в соответствии с принципами, положенными в основу данной системы физических величин.

Первой системой единиц считается метрическая система.

1.5.1. Основные, дополнительные и производные единицы системы си

Основные единицы Международной системы единиц были выбраны в 1954 г. Х Генеральной конференцией по мерам и весам. При этом исходили из того, чтобы: 1) охватить системой все области науки и техники; 2) создать основу образования производных единиц для различных физических величин; 3) принять удобные для практики размеры основных единиц, уже получившие широкое распространение; 4) выбрать единицы таких величин, воспроизведение которых с помощью эталонов возможно с наибольшей точностью.

Международная система единиц включает в себя две дополнительные единицы – для измерения плоского и телесного углов.

Основные и дополнительные единицы СИ приведены в приложении.

Метр – длина пути, которую проходит свет в вакууме за 1/299792458 долю секунды;

Килограмм – масса, равная массе международного прототипа килограмма (платиновая цилиндрическая гиря, высота и диаметр которой равны по 39 мм);

Секунда – продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133 при отсутствии возмущения со стороны внешних полей;

Ампер – сила не изменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, создал бы между этими проводниками силу, равную 2*10 -7 Н на каждый метр длины;

???????????????????????????????

простейших уравнений между величинами, в которых числовые коэффициенты равны единице.

Например, для линейной скорости в качестве определяющего уравнения можно воспользоваться выражением для скорости равномерного прямолинейного движения v= l/t. Тогда при длине пройденного пути l (в метрах) и времени t (в секундах), скорость выражается в метрах в секунду (м/с). Поэтому единица скорости СИ – метр в секунду – это скорость прямолинейно и равномерно движущейся точки, при которой она за время 1 с перемещается на расстояние 1 м.

Кратной единицей называют единицу, в целое число раз большую системной или внесистемной единицы. Например, кратная единица длины - километр в 1000 раз больше исходной единицы метра кратная единица времени - минута в 60 раз больше секунды кратная единица вместимости - гектолитр в 100 раз больше внесистемной единицы литра

Дольной единицей называют единицу, в целое число раз меньшую системной или внесистемной единицы. Например, дольная единица длины - нанометр в 109 раз меньше метра дольная единица плоского угла - минута в 60 раз меньше градуса .

Наиболее удобны для применения десятичные кратные и дольные единицы, т. е. единицы, образуемые умножением или делением на число 10 или степень десяти с целым показателем степени. Государственным стандартом «Единицы физических величин» предусмотрено применение главным образом десятичных кратных и дольных единиц, указанных в табл. 2.

Наименования десятичных кратных и дольных единиц образуются присоединением приставок к наименованиям исходных единиц. При этом соблюдаются следующие правила:

1) присоединение двух и более приставок подряд не допускается. Например, дольная единица электрической емкости образуется с одной приставкой «пико» но не с двумя приставками «микро», т. е. применяется дольная единица «пикофарада», а не «микромикрофарада»;

2) при образовании наименования десятичной кратной или дольной единицы от основной единицы СИ - килограмма,

наименование которой уже содержит приставку, новую приставку присоединяют к простому наименованию, т. е. к наименованию «грамм». Например, кратную единицу называют «мегаграмм», а не «килокилограмм»;

3) нельзя присваивать дольным и кратным единицам собственные наименования. В соответствии с этим правилом следует отказаться от таких, например, наименований, как микрон или миллимикрон Вместо наименований «микрон» и «миллимикрон» следует применять наименования соответственно «микрометр» и «нанометр»;

4) если наименование исходной единицы состоит из одного слова (метр, ампер, ньютон и т. п.), то приставку пишут слитно с наименованием единицы (миллиметр, микроампер, килоньютон);

5) при сложном наименовании производной единицы приставку присоединяют к наименованию первой единицы, входящей в произведение или в числитель дроби. Например, кратную единицу момента силы называют «кило-ньютон-метр», но не «ньютон-километр»; кратную единицу удельного акустического сопротивления называют «килопаскаль-секунда на метр», но не «паскаль-кило-секунда на метр»;

6) при сложном наименовании единицы, образованном как сочетание единиц с кратной или дольной единицей длины, площади или объема, допускается в необходимых случаях применять приставки во втором множителе числителя или в знаменателе, например тонна-километр, ватт на квадратный сантиметр, вольт на сантиметр, ампер на квадратный миллиметр и т. д.;

7) для образования наименований кратных и дольных единиц от единицы, возведенной в степень, отличающуюся от первой, приставку присоединяют к наименованию единицы в первой степени. Например, для образования наименования кратной или дольной единицы от единицы площади - квадратного метра, представляющего собой вторую степень единицы длины - метра, приставку присоединяют к наименованию этой последней единицы: квадратный километр, квадратный сантиметр и т. д.;

8) приставки гекто, дека, деци, санти допускается применять только в наименованиях кратных и дольных единиц, уже получивших широкое применение (например, гектар, декалитр, дециметр, сантиметр и др.).

При образовании кратных и дольних единиц следует руководствоваться правилами:

а) обозначения приставок пишутся слитно с обозначениями единиц, к которым они присоединяются, например мг и миллиграмм), Мм (мегаметр), пФ (пикофарада) и т. д.;

б) обозначения кратных и дольных единиц от единицы в степени, отличающейся от первой, образуют возведением в соответствующую степень обозначения кратной или дольной от этой единицы в первой степени, причем показатель степени относится ко всему обозначению (вместе с приставкой), например:

При выражении величины в десятичных кратных и дольных единицах следует приставки выбирать таким образом, чтобы числовые значения величин находились в пределах от 0,1 до 1000. Например, для выражения длины, равной следует выбрать приставку «микро», но не «мил-ли» и не «нано». С приставкой «микро» получим т. е. число, находящееся в пределах от 0,1 до 1000. С приставкой «милли» получим т.е. число меньше приставкой «нано» получим т. е. число больше 1000.

Из числа недесятичных кратных и дольных единиц допущены к применению только единицы времени - минута, час, сутки и единицы плоского угла - градус, минута, секунда (см. табл. 13, а также § 26).

Кратные и дольные единицы

Внесистемные единицы измерения

Международная система единиц и сами единицы складывались веками, при этом возникали определœенные традиции и привычки. Так, на всœех морских судах скорость движения измеряют в узлах (1 узел равен 1 морской миле в час), для измерения вместимости нефти в США применяется баррель (1 баррель = 158,988×10 -3 м3), издавна возникла единица давления – атмосфера.

Существует много единиц, не входящих в Международную систему и другие системы единиц, но, тем не менее, они широко используются в науке, технике, быту. Такие единицы называют внесистемными . Соответственно системными называют единицы, входящие в одну из принятых систем.

В соответствии с ГОСТ 8.417 внесистемные единицы подразделяют на четыре вида по отношению к системным:

1) допускаемые к применению наравне с единицами СИ, к примеру: единица масса – тонна; плоского угла – градус, минута͵ секунда; объёма – литр; времени – минута͵ час, сутки и др.;

2) допускаемые к применению в специальных областях, к примеру: астрономическая единица, парсек, световой год – единицы длины в астрономии; диоптрия – единица оптической силы в оптике; электрон-вольт – единица энергии в физике; киловатт-час – единица энергии для счетчиков; гектар – единица площади в сельском и лесном хозяйстве и др.;

3) временно допускаемые к применению наравне с единицами СИ, к примеру: морская миля, узел – в морской навигации; карат – единица массы в ювелирном делœе; бар – единица давления в физике и др.
Размещено на реф.рф
Эти единицы постепенно должны изыматься из употребления в соответствии с международными соглашениями;

4) изъятые из употребления (ᴛ.ᴇ. при новых выработках применение этих единиц не рекомендуется), к примеру: миллиметр ртутного столба, килограмм-сила на квадратный сантиметр – единицы давления; ангстрем, микрон – единицы длины; ар – единица площади; центнер – единица массы; лошадиная сила – единица мощности; калория – единица количества теплоты и др.

Различают кратные и дольные единиц величин.

Кратная единица - ϶ᴛᴏ единица физической величины, в целое число раз превышающая системную или внесистемную единицу. К примеру, единица длины километр равна 10 3 м, ᴛ.ᴇ. кратна метру.

Дольная единица – единица физической величины, значение которой в целое число раз меньше системной или внесистемной единицы. К примеру, единица длины миллиметр равна 10 -3 м, ᴛ.ᴇ. является дольной.

Для удобства применения единиц физических величин СИ приняты приставки для образования наименований десятичных кратных единиц и дольных единиц, табл. 1.3.

Таблица 1.3.

Множители и приставки для образования десятичных кратных и дольных единиц и их наименования

Множитель Приставка Обозначение приставки
русское международное
10 24 иотта Y И
10 21 зетта Z З
10 18 экса Э Е
10 15 пета П Р
10 12 тера Т Т
10 9 гига Г G
10 6 мега М М
10 3 кило к k
10 2 гекто г h
10 1 дека да da
10 -1 деци д d
10 -2 санти с c
10 -3 милли м m
10 -6 микро мк m
10 -9 нано н n
10 -12 пико п p
10 -15 фемто ф f
10 -18 атто а a
10 -21 зепто z з
10 -24 иокто y и

ʼʼСлучайные погрешности измеренийʼʼ

Случайная погрешность - это погрешность, изменяющаяся случайным образом при повторном определœении одной и той же физической величины с помощью одной и той же измерительной аппаратуры при неизменных внешних условиях.

Случайные погрешности могут возникнуть из-за погрешности округления при отсчете показаний, нестабильности переходного сопротивления в контактах коммутирующих устройств, нестабильности напряжения источника питания, влияния электромагнитных полей и других влияющих величин. Основная их особенность - непредсказуемость.

Случайную погрешность нельзя исключить в каждом из результатов измерений. Но с помощью многократных наблюдений, а также используя методы теории вероятности и математической статистики, можно учесть их влияние на оценку истинного значения измеряемой величины.

Результаты каждого i-го наблюдения непредсказуемы из-за наличия случайной погрешности. По этой причине описание результата наблюдения и случайной погрешности может осуществляться только на базе теории вероятностей и математической статистики.

При анализе результатов измерений выясняется, что есть закономерности статистического характера , которые выявляются при массовых проявлениях погрешности:

Как бы ни был велик ряд погрешностей измерений, эти погрешности колеблются в определœенных, достаточно узких, пределах;

Случайные погрешности встречаются и со знаком "плюс" и со знаком "минус" примерно одинаково часто;

Среднее арифметическое случайных погрешностей измерений одной и той же величины, произведенных в одинаковых условиях, стремится к нулю при неограниченном увеличении числа измерений;

Чем больше абсолютное значение погрешности, тем реже она встречается. - распечатка

Для получения оценок характеристик случайных величин с наибольшей достоверностью они должны удовлетворять требованиям состоятельности, несмещенности и эффективности.

Состоятельность обеспечивается, в случае если при бесконечном увеличении количества наблюдений оценка случайной величины стремится к истинному значению этой величины.

Несмещенность обеспечивается, в случае если математическое ожидание оценки равно истинному значению случайной величины

Эффективность означает, что дисперсия оценки минимальна.

Кратные и дольные единицы - понятие и виды. Классификация и особенности категории "Кратные и дольные единицы" 2017, 2018.