Почему протекают химические реакции? Термодинамическая вероятность различных направлений сложных реакций в процессах нефтепереработки Варианты задач для самостоятельного решения

Пользуясь растворами солей марганца, железа, меди и цинка и раствором сульфида натрия, осадите в четырех пробирках указанные сульфиды, осадки промойте дистиллированной водой методом декантации , а затем добавьте к каждому из осадков 2‑3 мл разбавленного раствора серной кислоты. Что происходит? Сравните данные опыта с результатами расчета.

Опыт 3. Выбор направления протекания реакции

Между ионами Э 3+ и S 2– в водном растворе возможны следующие взаимодействия:

Обменное взаимодействие;

Взаимно усиливающийся гидролиз;

Окислительно‑восстановительная реакция, если степень окисления (+3) у элемента не слишком устойчива и может понижаться до (+2):

2Э 3+ + 3S 2– → Э 2 S 3 ,

2Э 3+ + 3S 2– + 6Н 2 О → 2Э(ОН) 3 + 3Н 2 S,

2Э 3+ + 3S 2– → 2ЭS + S.

Пользуясь данными таблицы 2, выполните необходимые расчеты и выясните, какой из этих вариантов протекания реакций наиболее вероятен с термодинамической точки зрения при взаимодействии раствора сульфида натрия с солями трехзарядных катионов железа, алюминия, хрома и висмута.

Таблица 2

Вещество ∆ f G о, кДж/моль Вещество ∆ f G о, кДж/моль
Fe 3+ (р-р) – 10,53 FeS – 100,8
Al 3+ (р-р) – 490,5 Bi 2 S 3 – 152,9
Cr 3+ (р-р) – 223,2 Al 2 S 3 – 492,5
Bi 3+ (р-р) + 91,9 Fe(OH) 3 – 699,6
S 2 – (р-р) + 85,40 Cr(OH) 3 – 849,0
H 2 S – 33,50 Bi(OH) 3 – 580,3
H 2 O (ж.) – 237,23 Al(OH) 3 – 1157,0
H 2 O (г.) – 228,61

По каким внешним признакам в каждом конкретном случае можно определить, какое именно взаимодействие осуществилось?

В три пробирки налейте по 1‑2 мл растворов указанных солей и добавьте по 1 мл раствора сульфида натрия. Что наблюдается в каждом случае?

Совпадает ли прогноз с результатами опыта?

Тема: ХИМИЧЕСКАЯ КИНЕТИКА. КАТАЛИЗ. РАВНОВЕСИЕ

Лабораторная работа № 7

Химическая кинетика



Литература: 1. С. 104-112; 3. С. 65-68; 4. С. 61-64.

Цель работы: изучение влияния концентрации реагирующих веществ и температуры на скорость химической реакции.

Вопросы и упражнения для самоподготовки.

1. Предмет химической кинетики. Дать определение скорости химической реакции. Перечислить факторы, влияющие на скорость химической реакции.

2. Привести математическое выражение скорости химической реакции. Объяснить, почему в математическом выражении скорости стоит знак минус. Как зависит скорость реакции от температуры?

3. Сформулировать закон действующих масс. Каков физический смысл константы скорости, и какие факторы влияют на ее величину?

Влияние температуры на скорость химической реакции.

4. Энергия активации. Активированный комплекс. Энтропия активации.

5. Кинетическая классификация реакций. Молекулярность и порядок реакции.

6. Катализаторы и катализ.

7. Гомогенный катализ. Теория промежуточных соединений.

8. Обратимые и необратимые процессы. Условия наступления химического равновесия. Константа химического равновесия и факторы, на нее влияющие.

9. Принцип Ле Шателье. Смещение химического равновесия.

1. Как изменится скорость реакции 2NO + O 2 = 2NO 2 , если уменьшить объем реакционного сосуда в 3 раза?

2. Найти значение константы скорости реакции А + В = АВ, если при концентрациях вещества А и В, равных соответственно 0,5 и 0,1 моль/л, скорость реакции равна 0,005 мол/л·с.

3. Определить, на сколько градусов следует повысить температуру, чтобы скорость реакции возросла в 8 раз, если температурный коэффициент скорости реакции равен 2.



Оборудование. Пробирки мерные – 8 шт. Пипетка Пастера (5 мл) – 2 шт. Стакан химический (100 мл). Баня водяная. Термометр лабораторный (100 0 С). Секундомер (или метроном). Плитка электрическая.

Реактивы: Тиосульфат натрия 0,5 % раствор , серная кислота 0,5 % раствор, дистиллированная вода.

Основные понятия химической термодинамики

Химические процессы могут протекать с изменением химического состава вещества (химические реакции) и без его изменения (фазовые переходы). Совокупность веществ, находящихся во взаимодействии и выделенных из окружающего пространства (мысленно) называется системой . Например: атом водорода (система из ядра и электрона), водный раствор различных солей и т.д.

В зависимости от характера взаимодействия системы с окружающей средой различают: открытые или незамкнутые (происходит обмен теплом, энергией и веществом с окружающей средой), закрытые или замкнутые (происходит обмен теплом и энергией с окружающей средой, но нет обмена веществом) и изолированные (отсутствие массо- и теплопереноса между системой и окружающей средой) (рис. 1).

Рис. 1. Примеры закрытой (а), открытой (б) и изолированной систем (в).

Состояние системы определяется совокупностью ее свойств и характеризуется термодинамическими параметрами температурой, давлением и объемом (T, p, V). Любое изменение одного или нескольких параметров системы называется термодинамическим процессом. Так, повышение температуры приводит к изменению внутренней энергии системы (U).

ОПРЕДЕЛЕНИЕ

Внутренняя энергия – суммарных запас молекул, атомов, электронов и ядер, составляющих систему, складывающийся из кинетической энергии этих частиц и энергии взаимодействия между ними.

Нельзя рассчитать или измерить абсолютное значение U. Возможно определить изменение внутренней энергии (ΔU) в результате какого-либо процесса. ΔU любой системы при переходе из одного состояния в другое не зависит от пути перехода, а определяется начальным и конечным положениями системы. Это означает, что внутренняя энергия системы — функция состояния.

ΔU = U 2 – U 1 ,

Где 1 и 2 – символы начального и конечного состояния системы.

Первое начало термодинамики: сообщенное системе тепло Q расходуется на приращение внутренней энергии и на совершение работы (А) против внешних сил:

Следует отметить, что А и Q не являются функциями состояния, т.е. не зависят от пути протекания процесса.

В термодинамике нередко вводят величины, которые тождественны сумме нескольких термодинамических параметров. Такая замена существенно облегчает расчеты. Так, функцию состояния, равную U + pV, называют энтальпией (Н):

При постоянном давлении (изобарный процесс) и в отсутствии других работ, кроме работы расширения, теплота равна изменению энтальпии:

Q p = ΔU + pΔV = ΔH

Если процесс идет при постоянном объеме (изохорный) и в отсутствие других работ, выделившаяся или поглотившаяся теплота соответствует изменению внутренней энергии:

Основы термохимии

Раздел химической термодинамики, изучающий теплоты химических реакций и их зависимость от различных физико-химических параметров, называют термохимией. В термохимии пользуются термохимическими уравнениями реакций, в которых указывают агрегатное состояние вещества, а тепловой эффект реакции рассматривается как один из продуктов. Например:

2H 2(g) + O 2(g) = H 2 O (g) + 242 кДж,

Что означает, что при образовании 1 моль воды в газообразном состоянии выделяется 242 кДж тепла. При этом изменение энтальпии ΔH = − 242 кДж.

Противоположные знаки Q и ΔH свидетельствуют о том, что в первом случае – это характеристика процессов в окружающей среде, а во втором – в системе. При экзотермическом процессе Q > 0, ΔH < 0, а при эндотермическом – наоборот.

Тепловые эффекты можно не только измерять, но и рассчитывать с помощью закона Гесса: тепловой эффект химической реакции, протекающей при постоянных p и V не зависит от числа промежуточных стадий, а определяется лишь начальным и конечным состоянием системы.

Следствия закона Гесса

Из закона Гесса есть 5 следствий:

1) Тепловой эффект образования 1 моль сложного вещества из простых веществ, при стандартный условиях, называется теплотой образования этого вещества – ΔH 0 f . Так, например, ΔH 0 f (CO 2) из С (s) и O 2(g) будет равен −393,51 кДж.

2) Стандартные теплоты образования простых веществ равны нулю.

3) Стандартный тепловой эффект химической реакции (ΔH 0) равен разности между суммой теплот образования продуктов реакции (с учетом стехиометрических коэффициентов) и суммой теплот образования исходных веществ (с учетом стехиометрических коэффициентов):

ΔH 0 = Σ ΔH 0 f (продукты) − Σ ΔH 0 f (реагенты)

Например, для реакции:

2H 2 S (g) + 3O 2(g) = 2SO 2(g) + 2H 2 O (aq)

ΔH 0 = Σ (2 × ΔH 0 f (SO 2) + 2 × ΔH 0 f (H 2 O)) – Σ (2 ΔH 0 f (H 2 S) +0)

4) Тепловой эффект химической реакции равен разности между суммой теплот сгорания исходных веществ и суммой теплот сгорания продуктов реакции с учетом стехиометрических коэффициентов

5) С термохимическими уравнениями можно производить все алгебраические действия, например:

A= B + C + 400 кДж

B + D = A − 200 кДж

Сложив эти уравнения получим

A + B + D = B + C + A + 200 кДж

D = C + 200 кДж

ΔH 0 = − 200 кДж

Энтропия. Направление химических процессов. Энергия Гиббса

ОПРЕДЕЛЕНИЕ

Энтропия (S) – свойство системы, изменение которого при обратимом процессе численно равно отношению теплоты к температуре протекания процесса:

Например, при испарении воды в условиях кипения (Т =373 К, р=1 атм) изменение энтропии равно ΔS = ΔH исп /373 = 44000/373 = 118 кДж/(моль × К).

На основании о стандартной энтропии веществ (S 0) можно рассчитать изменение энтропии различный процессов:

Δ r S 0 = Σ n i S 0 − Σ n j S 0 ,

где i – продукты реакции, j – исходные вещества.

Энтропия простых веществ не равна нулю.

Рассчитав Δ r S 0 и Δ r H 0 можно сделать вывод об обратимости реакции. Так, если Δ r S 0 и Δ r H 0 больше нуля или Δ r S 0 и Δ r H 0 меньше нуля, то реакция носит обратимый характер.

Существует функция, которая связывает изменение энтальпии и энтропии и отвечает на вопрос о самопроизвольности протекания реакции – энергия Гиббса (G).

ΔG = ΔH − Т × ΔS

Δ r G 0 = Δ r H 0 − Т × Δ r S 0

О направлении протекания химической реакции судят по величине Δ r G 0 . Если Δ r G 0 <0, то реакция идет в прямом направлении, а если Δ r G 0 > 0 – в обратном. С наибольшей вероятностью из 2х реакций будет протекать та, у которой меньше значение Δ r G 0 .

Таблица 1. Условия самопроизвольности протекания химических реакций

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 1

Задание Рассчитайте изменение энергии Гиббса (ΔG o 298) для процесса:

Na 2 O(т) + H 2 O(ж) → 2NaOH(т)

Возможно ли самопроизвольное протекание реакции при стандартных условиях и 298К?

Необходимые справочные данные: ΔG o f (NaOH,т) = –381,1 кДж/моль, ΔG o f (Na 2 O) = –378 кДж/моль, Δ G o f (H 2 O,ж) = –237 кДж/моль.

Решение При стандартных условиях и T=298К ΔG o 298 можно рассчитать как разность суммарной энергии Гиббса (ΔG o f) образования продуктов реакции и суммарной энергии Гиббса образования исходных веществ:

ΔG o 298 = 2ΔG o f (NaOH,т) – [ΔG o f (Na 2 O,т) + Δ G o f (H 2 O,ж)]

ΔG o 298 = 2(–381,1) –[–378 + (–237)] = –147,2 кДж.

Значение ΔG o 298 отрицательно, поэтому самопроизвольное протекание реакции возможно.

Ответ ΔG o 298 = –147,2 кДж, самопроизвольное протекание реакции возможно.

Одним из важнейших вопросов химии является вопрос о возможности протекания химической реакции. Количественным критерием принципиальной осуществимости химической реакции является, в частности, характеристическая функция состояния системы, называемая энергией Гиббса (G). Прежде чем перейти к рассмотрению этого критерия, остановимся на ряде определений.

Самопроизвольные процессы. Самопроизвольными называют процессы, происходящие без подвода энергии от внешнего источника. Многие химические процессы являются самопроизвольными, например растворение сахара в воде, окисление металлов на воздухе (коррозия) и др.

Обратимые и необратимые процессы. Многие химические реакции протекают в одном направлении до полного исчерпания реагирующих веществ. Такие реакции называются химически необратимыми . В качестве примера можно привести взаимодействие натрия и воды.

Другие реакции протекают вначале в прямом направлении, а затем в прямом и обратном благодаря взаимодействию продуктов реакции. В результате образуется смесь, содержащая одновременно исходные вещества и продукты реакции. Такие реакции называют химически обратимыми. В результате химически обратимого процесса наступает истинное (устойчивое) химическое равновесие , которое характеризуется следующими признаками:

1) в отсутствие внешних воздействий состояние системы остается неизменным неограниченно долго;

2) любое изменение внешних условий приводит к изменению состояния системы;

3) состояние равновесия не зависит от того, с какой стороны оно достигнуто.

В качестве примера системы, находящейся в состоянии истинного равновесия, можно привести эквимолекулярную смесь

СО (г) + Н 2 О (г) СО 2(г) + Н 2 (г) .

Любое изменение температуры или других условий вызывает смещение равновесия, т.е. изменение состава системы.

Кроме истинных равновесий очень часто встречаются кажущиеся (ложные, заторможенные) равновесия, когда состояние системы сохраняется во времени очень долго, но небольшое воздействие на систему может привести к сильному изменению ее состояния. Примером может быть смесь водорода и кислорода, которая при комнатной температуре в отсутствие внешних воздействий может оставаться неизменной неограниченно долго. Однако достаточно ввести в эту смесь платинированный асбест (катализатор), как начнется энергичная реакция

Н 2(г) + О 2(г) = Н 2 О­ (ж) ,

ведущая к полному исчерпанию исходных веществ.

Если ввести тот же катализатор при тех же условиях в жидкую воду, то получить исходную смесь невозможно.

Энтропия. Состояние любой системы может быть охарактеризовано значениями непосредственно измеряемых параметров (р, Т и др.). Это характеристика макросостояния системы. Состояние системы может быть описано также характеристиками каждой частицы системы (атома, молекулы): координатой, частотой колебания, частотой вращения и т.д. Это характеристика микросостояния системы. Системы состоят из очень большого числа частиц, поэтому одному макросостоянию будет отвечать огромное число различных микросостояний. Это число называется термодинамической вероятностью состояния и обозначается как W .

Термодинамическая вероятность связана с другим свойством вещества – энтропией (S, Дж/(моль. К)) – формулой Больцмана

где R − универсальная газовая постоянная, а N A – постоянная Авогадро.

Физический смысл энтропии может быть пояснен следующим мысленным экспериментом. Пусть идеальный кристалл какого-либо вещества, например хлорида натрия, охлажден до абсолютного нуля температуры. В этих условиях ионы натрия и хлора, составляющие кристалл, становятся практически неподвижными, и данное макроскопическое состояние характеризуется одним единственным микросостоянием, т.е. W=1, и в соответствии с (3.13) S=0. При повышении температуры ионы начнут колебаться около положений равновесия в кристаллической решетке, число микросостояний, соответствующих одному макросостоянию, возрастает, и, следовательно, S>0.

Таким образом, энтропия является мерой неупорядоченности состояния системы. Энтропия системы увеличивается во всех процессах, сопровождающихся уменьшением упорядоченности (нагревание, растворение, испарение, реакции разложения и т.п.). Процессы, идущие с увеличением упорядоченности (охлаждение, кристаллизация, сжатие и т.п.), приводят к уменьшению энтропии.

Энтропия является функцией состояния, но в отличие от большинства других термодинамических функций возможно экспериментальное определение абсолютного значения энтропии вещества. Эта возможность основана на постулате М. Планка, согласно которому при абсолютном нуле энтропия идеального кристалла равна нулю (третий закон термодинамики).

Температурная зависимость энтропии вещества представлена качественно на рис. 3.1.

На рис. 3.1 видно, что при температуре, равной 0 К, энтропия вещества равна нулю. При повышении температуры энтропия плавно увеличивается, а в точках фазовых переходов имеет место скачкообразное увеличение энтропии, определяемое соотношением

(3.14)

где Δ ф.п S, Δ ф.п Н и Т ф.п − изменения энтропии, энтальпии и температура фазового перехода соответственно.

Энтропию вещества B в стандартном состоянии обозначают как . Для многих веществ абсолютные значения стандартных энтропий определены и приводятся в справочных изданиях.

Энтропия, так же как внутренняя энергия и энтальпия, является функцией состояния, поэтому изменение энтропии системы в процессе не зависит от его пути и определяется только начальным и конечным состояниями системы. Изменение энтропии в ходе химической реакции (3.10) может быть найдено как разность суммы энтропий продуктов реакции и суммы энтропий исходных веществ:

Понятие энтропии используется в одной из формулировок второго закона термодинамики : в изолированных системах могут самопроизвольно протекать только процессы, идущие с увеличением энтропии (ΔS>0). Под изолированными системами понимаются системы, не обменивающиеся с окружающей средой ни веществом, ни энергией. Системы, в которых протекают химические процессы, к изолированным системам не относятся, т.к. они обмениваются с окружающей средой энергией (тепловой эффект реакции) и в таких системах могут протекать процессы и с уменьшением энтропии.

SO 2(г) + 2H 2 S (г) = 3S (т) + 2Н 2 О (ж) , если стандартные энтропии оксида серы (IV), сероводорода, серы и воды составляют 248,1; 205,64; 31,88 и 69,96 Дж/(моль К) соответственно.

Решение. На основании уравнения (3.15) можно записать:

Энтропия в данной реакции уменьшается, что связано с образованием твердого и жидкого продуктов из газообразных веществ.

Пример 3.8. Не производя вычислений, определить знак изменения энтропии в следующих реакциях:

1) NH 4 NO 3(к) = N 2 O (г) + 2Н 2 О (г) ,

2) 2Н 2(г) + О 2(г) = 2Н 2 О (г) ,

3) 2Н 2(г) + О 2(г) = 2Н 2 О (ж) .

Решение. В реакции (1) 1 моль NH 4 NO 3 в кристаллическом состоянии образует 3 моль газов, следовательно, D r S 1 >0.

В реакциях (2) и (3) уменьшается как общее число молей, так и число молей газообразных веществ. Следовательно, D r S 2 <0 и D r S 3 <0. При этом уменьшение энтропии в реакции (3) больше, чем в реакции (2) , так как S о (H 2 O (ж)) < S о (H 2 O (г)).

Энергия Гиббса (изобарно-изотермический потенциал). Во многих случаях самопроизвольные процессы в природе протекают при наличии разности потенциалов, например, разность электрических потенциалов обусловливает перенос заряда, а разность гравитационных потенциалов – падение тела. Эти процессы заканчиваются при достижении минимума потенциала. Движущей силой химических процессов, протекающих при постоянных давлении и температуре, является изобарно-изотермический потенциал, называемый энергией Гиббса и обозначаемый G . Изменение энергии Гиббса в химическом процессе определяется соотношением

ΔG = ΔH –TΔS, (3.16)

где ΔG – изменение энергии Гиббса химического процесса; ΔH – изменение энтальпии химического процесса; ΔS – изменение энтропии химического процесса; Т – температура, К.

Уравнение (3.16) может быть представлено в следующем виде:

ΔH = ΔG + TΔS. (3.17)

Смысл уравнения (3.17) в том, что часть теплового эффекта реакции расходуется на совершение работы (ΔG), а часть рассеивается в окружающую среду (TΔS).

Энергия Гиббса является критерием принципиальной возможности самопроизвольного протекания реакции. Если в ходе реакции энергия Гиббса уменьшается, то процесс может протекать в данных условиях самопроизвольно:

ΔG < 0. (3.18)

Процесс в данных условиях неосуществим, если

ΔG > 0. (3.19)

Выражения (3.18) и (3.19) одновременно означают, что обратная реакция не может (3.18) или может (3.19) протекать самопроизвольно.

Реакция является обратимой, т.е. может протекать и в прямом, и в обратном направлениях, если

Уравнение (3.20) является термодинамическим условием химического равновесия.

Соотношения (3.18) –(3.20) применимы также к фазовым равновесиям, т.е. к случаям, когда в равновесии находятся две фазы (агрегатных состояния) одного и того же вещества, например лед и жидкая вода.

Энтальпийный и энтропийный факторы. Из уравнений (3.16) и (3.18) следует, что процессы могут протекать самопроизвольно (ΔG<0), если они сопровождаются уменьшением энтальпии (ΔH<0) и увеличением энтропии системы (ΔS>0). Если же энтальпия системы увеличивается (ΔH>0), а энтропия уменьшается (ΔS<0), то такой процесс протекать не может (ΔG>0). При иных знаках ΔS и ΔН принципиальная возможность протекания процесса определяется соотношением энтальпийного (ΔH) и энтропийного (ТΔS) факторов.

Если ΔН>0 и ΔS>0, т.е. энтальпийная составляющая противодействует, а энтропийная благоприятствует протеканию процесса, то реакция может протекать самопроизвольно за счет энтропийной составляющей, при условии, что |ΔH|<|TΔS|.

Если энтальпийная составляющая благоприятствует, а энтропийная противодействует протеканию процесса, то реакция может протекать самопроизвольно за счет энтальпийной составлящей, при условии, что |ΔH|>|TΔS|.

Влияние температуры на направление реакции. Температура влияет на энтальпийную и энтропийную составляющие энергии Гиббса, что может сопровождаться изменением знака энергии Гиббса этих реакций, а следовательно, и направления протекания реакций. Для ориентировочной оценки температуры, при которой происходит смена знака энергии Гиббса, можно пренебречь зависимостью ΔН и ΔS от температуры. Тогда из уравнения (3.16) следует, что изменение знака энергии Гиббса произойдет при температуре

Очевидно, что смена знака энергии Гиббса с изменением температуры возможна только в двух случаях: 1) ΔН>0 и ΔS>0 и 2) ΔН<0 и ΔS<0.

Стандартная энергия Гиббса образования – это изменение энергии Гиббса реакции образования 1 моль соединения из простых веществ, устойчивых при стандартных условиях. Энергия Гиббса образования простых веществ принимается равной нулю. Стандартные энергии Гиббса образования веществ можно найти в соответствующих справочниках.

Энергия Гиббса химической реакции. Энергия Гиббса является функцией состояния, т.е. ее изменение в процессе не зависит от пути его протекания, а определяется исходным и конечным состояниями системы. Следовательно, энергию Гиббса химической реакции (3.10) можно рассчитать по формуле

Отметим, что выводы о принципиальной возможности протекания реакции по величине Δ r G применимы только к тем условиям, для которых вычислено изменение энергии Гиббса реакции. Если условия отличаются от стандартных, то для нахождения Δ r G может быть использовано уравнение изотермы Вант-Гоффа , которое для реакции (3.10) между газами записывается как

(3.23)

а между растворенными веществами –

(3.24)

где – парциальные давления соответствующих веществ; с А, с В, с D , c E – концентрации соответствующих растворенных веществ; а, b, d, е – соответствующие стехиометрические коэффициенты.

Если реагирующие вещества находятся в стандартном состоянии, то уравнения (3.23) и (3.24) превращаются в уравнение

Пример 3.9. Установить возможность протекания реакции NH 3(г) + HCl (г) = NH 4 Cl (к) в стандартных условиях при температуре 298,15 К, используя данные по стандартным энтальпиям образования и энтропиям.

Решение. На основании первого следствия закона Гесса найдём стандартную энтальпию реакции:

; реакция экзотермическая, следовательно, энтальпийная составляющая благоприятствует протеканию реакции.

Изменение энтропии реакции рассчитаем по уравнению

Реакция сопровождается уменьшением энтропии, значит, энтропийная составляющая противодействует протеканию реакции.

Найдём изменение энергии Гиббса процесса по уравнению (3.16):

Таким образом, данная реакция может протекать самопроизвольно при стандартных условиях.

Пример 3.10. Используя данные по стандартным энтальпиям образования и энтропиям, определить, при какой температуре наступит равновесие в системе N 2(г) + 3Н 2(г) = 2NH 3(г) .

Решение. Условием равновесия системы является ΔG=0. Для этого, используя соотношение (3.21), найдем температуру, при которой ΔG=0. Вычислим стандартные энтальпию и энтропию реакции:

Энтальпийная составляющая благоприятствует, а энтропийная противодействует протеканию реакции, значит, при некоторой температуре возможна смена знака энергии Гиббса, т.е изменение направления протекания реакции.

Условие равновесия запишется следующим образом:

ΔG = ΔH –TΔS,

или, подставляя численные значения, получим

0 = - 92,38 – Т(-198,3) 10 -3 .

Следовательно, реакция будет находиться в состоянии равновесия при температуре

К.

Ниже этой температуры реакция будет протекать в прямом направлении, а выше – в обратном.

Пример 3.11. При некоторой температуре Т эндотермическая реакция А® В практически идет до конца. Определить: а) знак D r S реакции; б) знак DG реакции В ® А при температуре Т; в) возможность протекания реакции В ® А при низких температурах.

Решение. а) Самопроизвольное протекание реакции А ® В указывает, что DG<0. Поскольку DН>0, то из уравнения
DG = DH - TDS следует, что DS>0; для обратной реакции В ® А DS<0.

б) Для реакции А ® В DG<0. Следовательно, для обратной реакции при той же температуре DG>0.

в) Реакция А ® В эндотермическая (DH<0), следовательно, обратная реакция В ® А экзотермическая. При низких температурах абсолютная величина члена TDS мала, так что знак DG определяется знаком DН. Следовательно, при достаточно низких температурах протекание реакции В ® А возможно.

Пример 3.12. Рассчитать величину энергии Гиббса и определить, возможна ли реакция CO + Cl 2 ÛCOCl 2 при температуре 700 К, если константа равновесия реакции при этой температуре равна 10,83 атм -1 и парциальные давления всех компонентов одинаковы и равны единице.

Решение. Взаимосвязь D r G 0 и К р реакции А + В Û С + D дается уравнением изотермы (3.22)

При стандартных условиях, когда парциальное давление каждого реагирующего вещества равно 1 атм, это соотношение примет вид

Следовательно, реакция при Т=700 К может протекать в прямом направлении самопроизвольно.

Вопросы и задачи для самостоятельной подготовки

1. Приведите численные значения давления и температуры в международной системе единиц, а также в атмосферах, миллиметрах ртутного столба и градусах Цельсия, соответствующие стандартным и нормальным условиям.

2. Какому условию удовлетворяют функции состояния? Что определяет изменение значения функции состояния в процессе?

3. Постоянством каких параметров характеризуются изобарно-изотермический и изохорно-изотермический процессы?

4. Сформулируйте первое начало термодинамики.

5. При каких условиях тепловой эффект процесса будет: а) равен изменению энтальпии этого процесса; б) равен изменению внутренней энергии процесса?

6. Химическая реакция протекает в герметичном реакторе. Изменением какой функции состояния будет определяться тепловой эффект реакции?

7. В ходе химической реакции температура системы повышается. Является этот процесс экзотермическим или эндотермическим? Какой знак (+) или (-) имеет изменение энтальпии этого процесса?

8. Сформулируйте закон Гесса.

9. Дайте определение понятия «стандартная энтальпия образования вещества».

10. Чему равны стандартные энтальпии образования молекулярного хлора и устойчивой при температуре 298 К модификации железа α-Fe?

11. Стандартная энтальпия образования белого фосфора равна нулю, а красного– (-18,41) кДж/моль. Какая из аллотропных модификаций более устойчива при температуре 25 о С?

12. Сформулируйте 1-е следствие закона Гесса.

13. Дайте определение понятия «стандартная энтальпия сгорания вещества».

14. Как связаны между собой стандартная энтальпия образования углекислого газа и стандартная энтальпия сгорания устойчивой при Т=298 К модификации углерода – графита?

15. Приведите 3 примера самопроизвольно протекающих химических процессов.

16. Перечислите признаки химического (истинного) равновесия.

17. Приведите примеры процессов, сопровождающихся: а) увеличением энтропии; б)уменьшением энтропии.

18. Какой знак должно иметь изменение энтропии самопроизвольно протекающей реакции, если Δ r Н=0?

19. Какой знак должно иметь изменение энтропии реакции термического разложения карбоната кальция? Почему? Напишите уравнение реакции.

20. Какие термодинамические свойства участников реакции необходимо знать для решения вопроса о возможности протекания реакции?

21. Экзотермическая реакция между газами сопровождается увеличением объёма. Что можно сказать о возможности протекания такой реакции?

22. В каком из следующих случаев возможна смена направления протекания реакция при изменении температуры: а)DH<0, DS<0; б) DH>0, DS>0; в) DН<0, DS>0; г) DH>0, DS<0?


23. Найдите стандартную энтальпию реакции окисления газообразного оксида серы(IV) кислородом до газообразного оксида серы(VI). Стандартные энтальпии образования SO 2 – (-297 кДж/моль) и SO 3 – (-395 кДж/моль).

Ответ: -196 кДж.

24. Укажите знак изменения энтропии в следующих реакциях:

а)СО (Г) +Н 2(Г) =С (Т) +Н 2 О (Г) ;

б) СО 2(Г) +С (Т) =2СО (Г) ;

в)FeO (Т) +СО (Г) =Fe (Т) +CO 2(Г) ;

г)Н 2 О (Ж) =Н 2 О (Г) ;

Ответ: а)(-); б)(+); в)(~0); г) (+);д)(-).

25. Найдите стандартную энтропию реакции окисления газообразного оксида серы(IV) кислородом до газообразного оксида серы(VI). Стандартные энтропии образования SO 2 – (248 Дж/(моль К), SO 3 – (256 Дж/(моль К)), О 2­ – (205 Дж/(моль К).

Ответ: -189 Дж/К.

26. Найдите энтальпию реакции синтеза бензола из ацетилена, если энтальпия сгорания бензола составляет (-3302 кДж/моль), а ацетилена – (-1300 кДж/моль).

Ответ: - 598 кДж.

27. Найдите стандартную энергию Гиббса реакции разложения гидрокарбоната натрия. Возможно ли самопроизвольное протекание реакции при этих условиях?

Ответ: 30,88 кДж.

28. Найдите стандартную энергию Гиббса реакции 2Fe (Т) +3Н 2 О (Г) =Fe 2 O 3(Т) +3Н 2(Г) (реакции коррозии углеродистой стали водяным паром). Возможно ли самопроизвольное протекание реакции при этих условиях?

Ответ: -54,45кДж.

29. При какой температуре наступит химическое равновесие в системе 2NO (г) + О 2(г) Û 2NО 2 (г) ?

Ответ: 777 К.

30. Найдите тепловой эффект процесса испарения 1 г воды (удельная теплота испарения) при температуре 298 К, если стандартная энтальпия образования Н 2 О (ж) составляет (-285,84 кДж/моль),а газообразной– (-241,84 кДж/моль).

Ответ: 2,44 кДж/г.

3.4.Задания для текущих и промежуточных контролей

Раздел I

1. Процесс образования диоксида углерода при сжигании графита в кислороде может протекать двумя путями:

I. 2C (гр) +О 2(г) = 2СО (г) ; 2CO (г) + О 2 = 2СО 2(г) , D r Н° = -566 кДж.

II. C (гр) + О 2(г) = СО 2(г) , D r Н° = -393 кДж.

Найдите D f H°(CO).

Ответ: -110 кДж/моль.

2. Рассчитайте энтальпию образования и энтальпию сгорания монооксида углерода (СО), исходя из приведенных ниже реакций:

I. 2С (гр) + О 2(г) = 2СО (г) , D r Н° = -220 кДж.

II. 2СО (г) + О 2(г) = 2СО 2(г) , D r Н° = -566 кДж.

Ответ: -110 кДж/моль; -283 кДж/моль.

3. Найдите стандартную энтальпию образования сульфита натрия из термохимического уравнения

4Na 2 SO 3(кр) = 3Na 2 SO 3(кр) + Na 2 S (кр) – 181,1 кДж,

если кДж/моль и кДж/моль.

Ответ: -1090 кДж/моль.

4. Найдите стандартную энтальпию сгорания метана, исходя из реакции СН 4(г) + 2О 2(г) = СО 2(г) + 2Н 2 О (г) , D r Н°= -802 кДж.

Ответ: -802 кДж/моль.

5. Предскажите, положительным или отрицательным будет

изменение энтропии системы в реакциях:

а) Н 2 О (ж) ® Н 2 О (г) (при температуре 25 °С);

б) СаСО 3(т) ® СаО (т) + СО 2(г) ;

в) N 2(г) + 3Н 2(г) = 2NH 3(г) ;

г) N 2(г) + О 2(г) = 2NO (г) ;

д) Ag + (р-р) + Cl - (р-р) = AgCl (т) .

Дайте объяснения, не производя расчетов.

Ответ: а) +; б) +; в) -; г) ~0; д) -.

6. Предскажите знак DS системы в каждом из следующих

процессов:

а) испарение 1 моль CCl 4(ж) ;

б) Br 2(г) → Br 2(ж) ;

в) осаждение AgCl(т) при смешении NaCl(водн.) и AgNO 3 (водн.).

Дайте объяснения.

Ответ: а) +; б) -; в)-.

7. Пользуясь табличными значениями абсолютных значений энтропий веществ при стандартных условиях (S°), сравните значения абсолютных энтропий веществ при температуре 298 К в каждой из перечисленных ниже пар:

а) О 2(г) и О 3(г) ;

б) С(алмаз) и С(графит);

в) NaCl (т) и MgCl 2(т) .

Объясните причину различия S° в каждом случае.

8. Вычислите D r S° для реакций

а) N 2(г) + 3Н 2(г) = 2NH 3(г) ; б) 2SO 2(г) + О 2(г) = 2SO 3(г) ,

используя табличные значения абсолютных энтропий веществ при стандартных условиях.

Ответ: а) -197,74 Дж/К; б) -188,06 Дж/К.

9. Пользуясь табличными значениями абсолютных эн-

тропий (S°), вычислите D r S° для следующих процессов:

а) СО (г) + 2Н 2(г) = СН 3 ОН (г) ;

б) 2НСl (г) + Br 2(ж) = 2HBr (г) + Cl 2(г) ;

в) 2NO 2(г) = N 2 O 4(г) .

Согласуется ли в каждом случае знак величины D r S° с тем, который следует ожидать на основе качественных представлений? Ответы объясните.

Ответ: а) -218,83 Дж/К; б) 94,15 Дж/К; в) -175,77 Дж/К.

10. Стандартная энтальпия образования СО (г) составляет -110,5 кДж/моль. При сгорании 2 моль СО (г) выделилось 566 кДж теплоты. Вычислите

Ответ: -393,5 кДж/моль.

11. Определите количество теплоты, выделяющееся при гашении 100 кг извести водой: CaO (к) + H 2 O (ж) = Ca(OH) 2(к) , если стандартные теплоты образования CaO (к) , H 2 O (ж) , Ca(OH) 2(к) равны соответственно -635,14; -285,84; -986,2 кДж/моль.

Ответ: -1165357,2 кДж.

12. Определите энтальпию разложения пероксида водорода (Н 2 О 2) на воду и кислород, используя нижеприведенные данные:

SnCl 2(р) + 2НCl (p) + H 2 O 2(p) = SnCl 4(p) + 2H 2 O (ж) , D r Н°=-393,3 кДж;

SnCl 2(р) + 2HCl (p) + 1/2O 2(г) = SnCl 4(p) + H 2 O (ж) , D r Н°=-296,6 кДж.

Ответ: - 96,7 кДж.

13. Вычислите количество теплоты, которое выделяется при производстве 10 6 кг аммиака в сутки, если

Ответ: -2,7 . 10 9 кДж.

14. Определите , исходя из следующих данных:

Р 4(кр) + 6Cl 2(г) = 4РСl 3(ж) , D r Н° = -1272,0 кДж;

PCl 3(ж) + Cl 2(г) = PCl 5(кр) , D r Н° = -137,2 кДж.

Ответ: -455,2 кДж/моль.

15. Вычислите изменение энтальпии реакции при стандартных условиях: Н 2(г) + 1/3О 3(г) = Н 2 О (г) , исходя из следующих данных:

2О 3 (г)=3О 2 (г), D r Н°=-288,9 кДж,

кДж/моль.

Ответ: -289,95 кДж.

16. Рассчитайте стандартную энтальпию реакции образования PbO, используя следующие данные:

1) 2Pb (кр) +О 2(г) =2PbO 2(кр) – 553,2 кДж;

2) 2PbO 2(кр) = 2PbO (кр)) +О 2(г) + 117,48 кДж.

Ответ: -217,86 кДж/моль.

17. Рассчитайте стандартную энтальпию реакции образования CuCl, используя следующие данные:

1) CuCl 2(кр) +Cu (кр) =2 CuCl (кр) – 63,5 кДж;

2) Cu (кр) + Cl 2(г) = CuCl 2(кр) – 205,9 кДж.

Ответ: 134,7 кДж/моль.

18. Вычислите Δ f H° метилового спирта в жидком состоянии, зная следующие данные:

Н 2(г) + 1/2О 2(г) = Н 2 О (ж) , D r Н° = -285,8 кДж;

С (гр) + О 2(г) = СО 2(г) , D r Н° = -393,7 кДж;

СН 3 ОН (ж) + 3/2О 2(г) = СО 2(г) + 2Н 2 О (ж) , D r Н° = -715,0 кДж.

Ответ: -250,3 кДж/моль.

19. Стандартные энтальпии сгорания бензола и ацетилена равны соответственно -3270 и -1302 кДж/моль. Определите D r H° превращения ацетилена в бензол: 3С 2 Н 2(г) = С 6 Н 6(г) .

Ответ: -636 кДж.

20. Определите стандартную энтальпию образования оксида железа (III), если при окислении 20 г железа выделилось 146,8 кДж теплоты.

Ответ: -822 кДж/моль.

21. Вычислите количество теплоты, которое выделяется при получении 22,4 л аммиака (н.у.), если

N 2(г) + 3Н 2(г) = 2NH 3(г) , D r Н° = -92 кДж.

Ответ: -46 кДж.

22. Определите Δ f H° этилена, используя следующие дан

С 2 Н 4(г) + 3О 2(г) = 2СО 2(г) + 2Н 2 О (г) -1323 кДж;

С (гр) + О 2(г) = СО 2(г) -393,7 кДж;

Н 2(г) +1/2О 2(г) =Н 2 О (г) -241,8 кДж.

Ответ: 52 кДж/моль.

23.Рассчитайте энтальпию реакции F (г) +Li (г) =F - (г) + Li + (г) ,

если F (г) + е = F - (г) -322 кДж/моль;

Li (г) = Li + (г) + е +520 кДж/моль.

Ответ: 198 кДж.

24. Рассчитайте стандартную энтальпию реакции образования Hg 2 Br 2 , используя следующие данные:

1) HgBr 2(кр) + Hg (ж) = Hg 2 Br 2 (кр) – 37,32 кДж;

2) HgBr 2 (кр) = Hg (ж) + Br 2(ж) +169,45 кДж.

Ответ: -206,77 кДж/моль.

25. Рассчитайте стандартную энтальпию реакции образования гидрокарбоната натрия, используя следующие данные:

2NaНСO 3(кр) = Na 2 СO 3(кр) + СО 2(г) +Н 2 О (г) + 130,3 кДж,

если кДж/моль;

С (гр) +О 2(г) =СО 2(г) – 393,7 кДж; Н 2(г) +1/2О 2(г) =Н 2 О (г) -241,8 кДж.

Ответ: -947,4 кДж/моль.

26. Рассчитайте стандартную энтальпию реакции образования СaСO 3(кр) , используя следующие данные:

Ca(OH) 2(к) + СО 2(г) = СaСO 3(кр) +173,9 кДж;

С (гр) +О 2(г) =СО 2(г) – 393,7 кДж;

кДж/моль.

Ответ: -1206 кДж/моль.

27. Определите стандартную энтальпию образования оксида железа (III), если при реакции

2Fe + Al 2 O 3 = Fe 2 O 3 + 2Al

на каждые 80 г Fe 2 O 3 поглощается 426,5 кДж теплоты, кДж/моль.

Ответ: -823 кДж/моль.

28. Какое количество теплоты необходимо затратить для получения 11,2 кг железа, если в соответствии с термохимическим уравнением FeO (т) + Н 2(г) = Fe (т) + Н 2 О (г) + 23 кДж.

Ответ: 4600 кДж.

29. Найдите теплоту сгорания алмаза, если стандартная теплота сгорания графита составляет -393,51 кДж/моль, а тепло-

та фазового перехода С(графит) ® С(алмаз) составляет

1,88 кДж/моль.

Ответ: -395,39 кДж/моль.

30. Какое количество теплоты выделяется при превращении 1 кг красного фосфора в черный фосфор, если известно,

что стандартные энтальпии образования красного и чёрного фосфора составляют -18,41 и -43,20 кДж/моль соответственно.

Ответ: -800 кДж.

Раздел II

Вычислите стандартное изменения энергии Гиббса химической реакции при температуре 25 °С по значениям стандартных энтальпий образования и абсолютных энтропий химических соединений и установите возможность самопроизвольного протекания реакции:

1. 4NH 3г + 5O 2г = 4NO г + 6H 2 O г.

Ответ: -955,24 кДж; реакция возможна.

2. SO 2г + 2H 2 S г = 3S к + 2H 2 O ж.

Ответ: -107,25 кДж; реакция возможна.

3. 2H 2 S г + 3O 2г = 2H 2 O г + 2SO 2г.

Ответ: -990,48 кДж; реакция возможна.

4. 2NO г + O 3г + H 2 O ж = 2HNO 3ж.

Ответ: - 260,94 кДж; реакция возможна.

5. 3Fe 2 O 3к + CO г = 2Fe 3 O 4к + CO 2г.

Ответ: - 64,51 кДж; реакция возможна.

6. 2СН 3 ОН ж + 3О 2г = 4Н 2 О г + 2СО 2г.

Ответ: - 1370,46 кДж; реакция возможна.

7. СН 4г + 3СО 2г = 4СО г + 2Н 2 О г.

Ответ: 228,13 кДж; реакция невозможна.

8. Fe 2 O 3к + 3CO г = 2Fe к + 3CO 2г.

Ответ: -31,3 кДж; реакция возможна.

9. С 2 Н 4г + 3О 2г = 2СО 2г + 2Н 2 О г.

Ответ: -1313,9 кДж; реакция возможна.

10. 4NH 3г + 3O 2г = 6H 2 O г + 2N 2г.

Ответ: -1305,69 кДж; реакция возможна.

11. 4NO 2г + O 2г + 2H 2 O ж = 4HNO 3ж.

Ответ: -55,08 кДж; реакция возможна.

12. 2HNO 3ж + NO г = 3NO 2г + H 2 O ж.

Ответ: -7,71 кДж; реакция возможна.

13. 2С 2 Н 2г + 5О 2г = 4СО 2г + 2Н 2 О г.

Ответ: -2452,81 кДж; реакция возможна.

14. Fe 3 O 4к + 4H 2г = 3Fe к + 4H 2 O г.

Ответ: 99,7 кДж; реакция невозможна.

15. 2Fe 2 O 3к + 3C к = 4Fe к + 3СО 2г.

Ответ: 297,7 кДж; реакция невозможна.

16. Fe 3 O 4к + 4CO г = 3Fe к + 4CO 2г.

Ответ: -14,88 кДж; реакция возможна.

17. 2H 2 S г + O 2г = 2H 2 O ж + 2S к.

Ответ: -407,4 кДж; реакция возможна.

18. Fe 2 O 3к + 3H 2г = 2Fe к + 3H 2 O г.

Ответ: 54,47 кДж; реакция невозможна.

Вычислите стандартное изменение энергии Гиббса химической реакции при температуре 25 °С по значениям стандартных энтальпий образования и абсолютных энтропий химических соединений и определите, при какой температуре наступит равновесие в системе.

19. 4HCl г + O 2г ↔ 2Cl 2г + 2H 2 O ж.

Ответ: -93,1 кДж; ~552 К.

20. Cl 2г + 2HI г ↔ I 2к + 2HCl г.

Ответ: -194,0 кДж; ~1632 К.

21. SO 2г + 2CO г ↔ 2CO 2г + S к.

Ответ: -214,24 кДж; ~1462 К.

22. СН 4г + 2Н 2 О г ↔ СО 2г + 4Н 2г.

Ответ: 113,8 кДж; ~959 К.

23. СО г + 3Н 2г ↔ СН 4г + Н 2 О г.

Ответ: -142,36 кДж; ~ 963 К.

Вычислите изменение энергии Гиббса химической реакции при температуре 350 °С по значениям стандартных энтальпий образования и абсолютных энтропий химических соединений. Температурной зависимостью D f H° и S° пренебречь. Установите возможность самопроизвольного протекания реакций:

24. 2РН 3г + 4О 2г = Р 2 О 5к + 3Н 2 О г.

Ответ: 1910,47 кДж; реакция возможна.

25. Cl 2 г + SO 2 г + 2H 2 O ж = H 2 SO 4 ж + 2HCl г.

Ответ: -80,0 кДж; реакция возможна.

26. Р 2 О 5к + 5С к = 2Р к + 5СО г.

Ответ: 860,0 кДж; реакция невозможна.

27. 2CO г + SO 2г = S к + 2CO 2г.

Ответ: -154,4 кДж; реакция возможна.

28. СО 2г + 4Н 2г = СН 4г + 2Н 2 О г.

Ответ: -57,9 кДж; реакция возможна.

29. NO г + O 3г = O 2г + NO 2г.

Ответ: -196,83 кДж; реакция возможна.

30. СН 4г + 2О 2г = СО 2г + 2Н 2 О г.

Ответ: -798,8 кДж; реакция возможна.

Читайте также:
  1. I. Классификация реакций по изменениям углеродного скелета
  2. Бихевиористское направление в психологии. Значение бихевиоризма для развития современной психологии.
  3. Болезнь - это динамический комплекс взаимосвязанных патогенных и адаптивных (саногенных) реакций и процессов, развивающихся в организме.
  4. Важным направлением взаимодействия является передача отдельных госполномочий ОМСУ.
  5. Валентность. Валентные возможности атомов химических элементов.
  6. Воздействие на человека химических соединений неживого происхождения.
  7. Вопрос 1. Ядерная реакция. Условием протекания цепной ядерной реакции деления

I закон термодинамики позволяет рассчитывать тепловые эффекты различных процессов, но не дает информацию о направлении протекания процесса.

Для протекающих в природе процессов известны две движущие силы:

1. Стремление системы перейти в состояние с наименьшим запасом энергии;

2. Стремление системы к достижению наиболее вероятного состояния, которое характеризуется максимальным количеством независимых частиц.

Первый фактор характеризуется изменением энтальпии. Рассматриваемый случай должен сопровождаться выделением теплоты, следовательно, DH < 0.

Второй фактор определяется температурой и изменением энтропии .

Энтропия (S) - термодинамическая функция состояния системы, которая отражает вероятность реализации того или иного состояния системы в процессе теплообмена.

Как и энергия, энтропия не относится к числу экспериментально определяемых величин. В обратимом процессе, протекающем в изотермических условиях, изменение энтропии можно рассчитать по формуле:

Это означает, что при необратимом протекании процесса энтропия возрастает благодаря переходу в теплоту части работы.

Таким образом, в обратимых процессах система совершает максимально возможную работу. При необратимом процессе система всегда совершает меньшую работу.

Переход потерянной работы в теплоту является особенностью теплоты как макроскопически неупорядоченной формы передачи энергии. Отсюда возникает трактовка энтропии как меры беспорядка в системе:

При увеличении беспорядка в системе энтропия возрастает и, наоборот, при упорядочивании системы энтропия уменьшается.

Так, в процессе испарения воды энтропия увеличивается, в процессе кристаллизации воды - уменьшается. В реакциях разложения энтропия увеличивается, в реакциях соединения - уменьшается.

Физический смысл энтропии установила статистическая термодинамика. Согласно уравнению Больцмана:

От соотношения величин, стоящих в левой и правой части последнего выражения, зависит направление самопроизвольного протекания процесса.

Если процесс проходит в изобарно-изотермических условиях, то общая движущая сила процесса называется свободной энергией Гиббса или изобарно-изотермическим потенциалом (DG) :

. (15)

Величина DG позволяет определить направление самопроизвольного протекания процесса:

Если DG < 0, то процесс самопроизвольно протекает в прямом направлении;

Если DG > 0, то процесс самопроизвольно протекает в обратном направлении;

Если DG = 0, то состояние является равновесным.



В живых организмах, представляющих собой открытые системы, главным источником энергии для многих биологических реакций - от биосинтеза белка и ионного транспорта до сокращения мышц и электрической активности нервных клеток - является АТФ (аденозин-5¢-трифосфат).

Энергия выделяется при гидролизе АТФ:

АТФ + H 2 O ⇄ АДФ + H 3 PO 4

где АДФ - аденозин-5¢-дифосфат.

DG 0 данной реакции составляет -30 кДж, следовательно процесс протекает самопроизвольно в прямом направлении.

Анализ соотношения энтальпийного и энтропийного факторов в уравнении для расчета изобарно-изотермического потенциала позволяет сделать следующие заключения:

1. При низких температурах преобладает энтальпийный фактор, и самопроизвольно протекают экзотермические процессы;

2. При высоких температурах преобладает энтропийный фактор, и самопроизвольно протекают процессы, сопровождающиеся увеличением энтропии.

На основании изложенного материала можно сформулировать II закон термодинамики:

В изобарно-изотермических условиях в изолированной системе самопроизвольно протекают те процессы, которые сопровождаются увеличением энтропии.

Действительно, в изолированной системе теплообмен невозможен, следовательно, DH = 0 и DG » -T×DS. Отсюда видно, что если величина DS положительна, то величина DG отрицательна и, следовательно, процесс самопроизвольно протекает в прямом направлении.

Другая формулировка II закона термодинамики:

Невозможен некомпенсированный переход теплоты от менее нагретых тел к более нагретым.

В химических процессах изменения энтропии и энергии Гиббса определяют в соответствии с законом Гесса:

, (16)
. (17)

Реакции, для которых DG < 0 называют экзэргоническими .

Реакции, для которых DG > 0 называют эндэргоническими .

Величину DG химической реакции можно также определить из соотношения:

DG = DH - T×DS.

В табл. 1 показана возможность (или невозможность) самопроизвольного протекания реакции при различных сочетаниях знаков DH и DS.

I закон термодинамики позволяет рассчитывать тепловые эффекты различных процессов, но не дает информацию о направлении протекания процесса.

Для протекающих в природе процессов известны две движущие силы:

1. Стремление системы перейти в состояние с наименьшим запасом энергии;

2. Стремление системы к достижению наиболее вероятного состояния, которое характеризуется максимальным количеством независимых частиц.

Первый фактор характеризуется изменением энтальпии. Рассматриваемый случай должен сопровождаться выделением теплоты, следовательно, DH < 0.

Второй фактор определяется температурой и изменением энтропии .

Энтропия (S) - термодинамическая функция состояния системы, которая отражает вероятность реализации того или иного состояния системы в процессе теплообмена.

Как и энергия, энтропия не относится к числу экспериментально определяемых величин. В обратимом процессе, протекающем в изотермических условиях, изменение энтропии можно рассчитать по формуле:

Это означает, что при необратимом протекании процесса энтропия возрастает благодаря переходу в теплоту части работы.

Таким образом, в обратимых процессах система совершает максимально возможную работу. При необратимом процессе система всегда совершает меньшую работу.

Переход потерянной работы в теплоту является особенностью теплоты как макроскопически неупорядоченной формы передачи энергии. Отсюда возникает трактовка энтропии как меры беспорядка в системе:

При увеличении беспорядка в системе энтропия возрастает и, наоборот, при упорядочиваниии системы энтропия уменьшается.

Так, в процессе испарения воды энтропия увеличивается, в процессе кристаллизации воды - уменьшается. В реакциях разложения энтропия увеличивается, в реакциях соединения - уменьшается.

Физический смысл энтропии установила статистическая термодинамика. Согласно уравнению Больцмана:

От соотношения величин, стоящих в левой и правой части последнего выражения, зависит направление самопроизвольного протекания процесса.

Если процесс проходит в изобарно-изотермических условиях, то общая движущая сила процесса называется свободной энергией Гиббса или изобарно-изотермическим потенциалом (DG) :

. (15)

Величина DG позволяет определить направление самопроизвольного протекания процесса:

Если DG < 0, то процесс самопроизвольно протекает в прямом направлении;

Если DG > 0, то процесс самопроизвольно протекает в обратном направлении;

Если DG = 0, то состояние является равновесным.

В живых организмах, представляющих собой открытые системы, главным источником энергии для многих биологических реакций - от биосинтеза белка и ионного транспорта до сокращения мышц и электрической активности нервных клеток - является АТФ (аденозин-5¢-трифосфат).

Энергия выделяется при гидролизе АТФ:

АТФ + H 2 O ⇄ АДФ + H 3 PO 4

где АДФ - аденозин-5¢-дифосфат.

DG 0 данной реакции составляет -30 кДж, следовательно процесс протекает самопроизвольно в прямом направлении.

Анализ соотношения энтальпийного и энтропийного факторов в уравнении для расчета изобарно-изотермического потенциала позволяет сделать следующие заключения:

1. При низких температурах преобладает энтальпийный фактор, и самопроизвольно протекают экзотермические процессы;

2. При высоких температурах преобладает энтропийный фактор, и самопроизвольно протекают процессы, сопровождающиеся увеличением энтропии.

На основании изложенного материала можно сформулировать II закон термодинамики:

В изобарно-изотермических условиях в изолированной системе самопроизвольно протекают те процессы, которые сопровождаются увеличением энтропии.

Действительно, в изолированной системе теплообмен невозможен, следовательно, DH = 0 и DG » -T×DS. Отсюда видно, что если величина DS положительна, то величина DG отрицательна и, следовательно, процесс самопроизвольно протекает в прямом направлении.

Другая формулировка II закона термодинамики:

Невозможен некомпенсированный переход теплоты от менее нагретых тел к более нагретым.

В химических процессах изменения энтропии и энергии Гиббса определяют в соответствии с законом Гесса:

, (16)
. (17)

Реакции, для которых DG < 0 называют экзэргоническими .

Реакции, для которых DG > 0 называют эндэргоническими .

Величину DG химической реакции можно также определить из соотношения:

DG = DH - T×DS.

В табл. 1 показана возможность (или невозможность) самопроизвольного протекания реакции при различных сочетаниях знаков DH и DS.


Эталоны решения задач

1. Некоторая реакция протекает с уменьшением энтропии. Определить, при каком условии возможно самопроизвольное протекание данной реакции.

Условием самопроизвольного протекания реакции является уменьшение свободной энергии Гиббса, т.е. DG < 0. Изменение DG можно рассчитать по формуле:

Так как в ходе реакции энтропия уменьшается (DS < 0), то энтропийный фактор препятствует самопроизвольному протеканию данной реакции. Таким образом, самопроизвольное протекание данной реакции может обеспечить только энтальпийный фактор. Для этого необходимо выполнение следующих условий:

1) DH < 0 (реакция экзотермическая);

2) (процесс должен протекать при низких температурах).

2. Эндотермическая реакция разложения протекает самопроизвольно. Оценить изменение энтальпии, энтропии и величины свободной энергии Гиббса.

1) Так как реакция эндотермическая, то DH > 0.

2) В реакциях разложения энтропия возрастает, следовательно DS > 0.

3) Самопроизвольное протекание реакции свидетельствует о том, что DG < 0.

3. Вычислить стандартную энтальпию хемосинтеза, протекающего в бактериях Thiobacillus denitrificans:

6KNO 3(тв.) + 5S (тв.) + 2CaCO 3(тв.) = 3K 2 SO 4(тв.) + 2CaSO 4(тв.) + 2CO 2(газ) + 3N 2(газ)

по значениям стандартных энтальпий образования веществ:

Запишем выражение первого следствия из закона Гесса с учетом того, что стандартные энтальпии образования серы и азота равны нулю:

= (3× K 2 SO 4 + 2× CaSO 4 + 2× CO 2) -

- (6× KNO 3 + 2× CaCO 3).

Подставим значения стандартных энтальпий образования веществ:

3×(-1438) + 2×(-1432) + 2×(-393,5) - (6×(-493) + 2×(-1207)).

2593 кДж.

Так как < 0, то реакция экзотермическая.

4. Вычислить стандартную энтальпию реакции:

2C 2 H 5 OH (жидк.) = C 2 H 5 OC 2 H 5(жидк.) + H 2 O (жидк.)

по значениям стандартных энтальпий сгорания веществ:

C 2 H 5 OH = -1368 кДж/моль;

C 2 H 5 OC 2 H 5 = -2727 кДж/моль.

Запишем выражение второго следствия из закона Гесса с учетом того, что стандартная энтальпия сгорания воды (высший оксид) равна нулю:

2× C 2 H 5 OH - C 2 H 5 OC 2 H 5 .

Подставим значения стандартных энтальпий сгорания веществ, участвующих в реакции:

2×(-1368) - (-2727).

Следствия из закона Гесса позволяют вычислять не только стандартные энтальпии реакций, но и величины стандартных энтальпий образования и сгорания веществ по косвенным данным.

5. Определить стандартную энтальпию образования оксида углерода (II) по следующим данным:

Из уравнения (1) видно, что стандартное изменение энтальпии данной реакции соответствует стандартной энтальпии образования CO 2 .

Запишем выражение первого следствия из закона Гесса для реакции (2):

CO = CO 2 - .

Подставим значения и получим:

CO = -293,5 - (-283) = -110,5 кДж/моль.

Эту задачу можно решить и другим способом.

Вычитая из первого уравнения второе, получим:

6. Вычислить стандартную энтропию реакции:

CH 4(газ) + Cl 2(газ) = CH 3 Cl (газ) + HCl (газ) ,

по значениям стандартных энтропий веществ:

Стандартную энтропию реакции вычислим по формуле:

= ( CH 3 Cl + HCl) - ( CH 4 + Cl 2).

234 + 187 - (186 + 223) = 12 Дж/(моль×K).

7. Вычислить стандартную энергию Гиббса реакции:

C 2 H 5 OH (жидк.) + H 2 O 2(жидк.) = CH 3 COH (газ) + 2H 2 O (жидк.)

по следующим данным:

Определить, возможно ли самопроизвольное протекание данной реакции при стандартных условиях.

Стандартную энергию Гиббса реакции вычислим по формуле:

= ( CH 3 COH + 2× H 2 O) - ( C 2 H 5 OH + H 2 O 2).

Подставляя табличные значения, получим:

129 + 2×(-237) - ((-175) + (-121) = -307 кДж/моль.

Так как < 0, то самопроизвольное протекание данной реакции возможно.

С 6 H 12 O 6(тв.) + 6O 2(газ) = 6CO 2(газ) + 6H 2 O (жидк.) .

по известным данным:

Значения стандартных энтальпии и энтропии реакции рассчитаем при помощи первого следствия из закона Гесса:

6 CO 2 + 6 H 2 O - С 6 H 12 O 6 - 6 O 2 =

6×(-393,5) + 6×(-286) - (-1274,5) - 6×0 = -2803 кДж;

6 СО 2 + 6 H 2 O - С 6 H 12 O 6 - 6 O 2 =

6×214 + 6×70 - 212 - 6×205 = 262 Дж/К = 0,262 кДж/К.

Стандартную энергию Гиббса реакции найдем из соотношения:

T× = -2803 кДж - 298,15 K×0,262 кДж/К =

9. Вычислить стандартную энергию Гиббса реакции гидратации сывороточного альбумина при 25 0 С, для которой DH 0 = -6,08 кДж/моль, DS 0 = -5,85 Дж/(моль×К). Оценить вклад энтальпийного и энтропийного фактора.

Стандартную энергию Гиббса реакции рассчитаем по формуле:

DG 0 = DH 0 - T×DS 0 .

Подставив значения, получим:

DG 0 = -6,08 кДж/моль - 298 К×(-5,85×10 - 3) кДж/(моль×К) =

4,34 кДж/моль.

В данном случае энтропийный фактор препятствует протеканию реакции, а энтальпийный - благоприятствует. Самопроизвольное протекание реакции возможно при условии, если , т.е., при низких температурах.

10. Определить температуру, при которой самопроизвольно пойдет реакция денатурации трипсина, если = 283 кДж/моль, = 288 Дж/(моль×К).

Температуру, при которой равновероятны оба процесса найдем из соотношения:

В данном случае энтальпийный фактор препятствует протеканию реакции, а энтропийный - благоприятствует. Самопроизвольное протекание реакции возможно при условии, если:

Таким образом, условием самопроизвольного протекания процесса является T > 983 K.


Вопросы для самоконтроля

1. Что такое термодинамическая система? Какие типы термодинамических систем вы знаете?

2. Перечислите известные Вам термодинамические параметры. Какие из них относятся к измеряемым? Какие к неизмеряемым?

3. Что такое термодинамический процесс? Как называются процессы, протекающие при постоянстве одного из параметров?

4. Какие процессы называют экзотермическими? Какие эндотермическими?

5. Какие процессы называют обратимыми? Какие необратимыми?

6. Что понимают под термином «состояние системы»? Какие бывают состояния системы?

7. Какие системы изучает классическая термодинамика? Сформулируйте первый и второй постулаты термодинамики.

8. Какие переменные называют функциями состояния? Перечислите известные вам функции состояния.

9. Что такое внутренняя энергия? Можно ли измерить внутреннюю энергию?

10. Что такое энтальпия? Какова ее размерность?

11. Что такое энтропия? Какова ее размерность?

12. Что такое свободная энергия Гиббса? Как ее можно вычислить? Что можно определить при помощи этой функции?

13. Какие реакции называют экзэргоническими? Какие эндэргоническими?

14. Сформулируйте первый закон термодинамики. В чем заключается эквивалентность теплоты и работы?

15. Сформулируйте закон Гесса и следствия из него. Что такое стандартная энтальпия образования (сгорания) вещества?

16. Сформулируйте второй закон термодинамики. При каком условии процесс самопроизвольно протекает в изолированной системе?


Варианты задач для самостоятельного решения

Вариант № 1

4NH 3(газ) + 5O 2(газ) = 4NO (газ) + 6H 2 O (газ) ,

Определить, к какому типу (экзо- или эндотермическому) относится эта реакция.

С 2 H 6(газ) + H 2(газ) = 2CH 4(газ) ,

3. Вычислить стандартную энергию Гиббса реакции гидратации b-лактоглобулина при 25 0 С, для которой DH 0 = -6,75 кДж, DS 0 = -9,74 Дж/К. Оценить вклад энтальпийного и энтропийного фактора.

Вариант №2

1. Вычислить стандартную энтальпию реакции:

2NO 2(газ) + O 3(газ) = O 2(газ) + N 2 O 5(газ) ,

используя значения стандартных энтальпий образования веществ:

Определить, к какому типу (экзо- или эндотермическому) относится эта реакция.

2. Вычислить стандартную энтальпию реакции:

используя значения стандартных энтальпий сгорания веществ:

3. Вычислить стандартную энергию Гиббса реакции тепловой денатурации химотрипсиногена при 50 0 С, для которой DH 0 = 417 кДж, DS 0 = 1,32 Дж/К. Оценить вклад энтальпийного и энтропийного фактора.

Вариант №3

1. Вычислить стандартную энтальпию реакции гидрирования бензола до циклогексана двумя способами, т.е., используя значения стандартных энтальпий образования и сгорания веществ:

Cu (тв.) + ZnO (тв.) = CuO (тв.) + Zn (тв.)

3. При восстановлении 12,7 г оксида меди (II) углем (с образованием CO) поглощается 8,24 кДж теплоты. Определить стандартную энтальпию образования CuO, если CO = -111 кДж/моль.

Вариант №4

1. Вычислить стандартную энтальпию хемосинтеза, протекающего в автотрофных бактериях Baglatoa и Thiothpix, по стадиям и суммарно:

2H 2 S (газ) + O 2(газ) = 2H 2 O (жидк.) + 2S (тв.) ;

2S (тв.) + 3O 2(газ) + 2H 2 O (жидк.) = 2H 2 SO 4(жидк.) ,

2. Вычислить стандартную энтальпию реакции:

С 6 H 12 O 6(тв.) = 2C 2 H 5 OH (жидк.) + 2CO 2(газ) ,

используя значения стандартных энтальпий сгорания веществ:

4HCl (газ) + O 2(газ) = 2Cl 2(газ) + 2H 2 O (жидк.)

по известным данным:

Вариант №5

1. Вычислить стандартную энтальпию реакции:

2CH 3 Cl (газ) + 3O 2(газ) = 2CO 2(газ) + 2H 2 O (жидк.) + 2HCl (газ) ,

используя значения стандартных энтальпий образования веществ:

Определить, к какому типу (экзо- или эндотермическому) относится эта реакция.

2. Вычислить стандартную энтальпию реакции:

С 6 H 6(жидк.) + 3H 2(газ) = C 6 H 12(жидк.) ,

используя значения стандартных энтальпий сгорания веществ:

3. Вычислить стандартную энергию Гиббса реакции денатурации трипсина при 50 0 С, для которой DH 0 = 283 кДж, DS 0 = 288 Дж/К). Оценить возможность протекания процесса в прямом направлении.

Вариант №6

1. Вычислить стандартную энтальпию хемосинтеза, протекающего в автотрофных бактериях Thiobacillus Thioparus:

5Na 2 S 2 O 3 ×5H 2 O (тв.) + 7O 2(газ) = 5Na 2 SO 4(тв.) + 3H 2 SO 4(ж.) + 2S (тв.) + 22H 2 O (ж.) ,

Определить, к какому типу (экзо- или эндотермическому) относится эта реакция.

2. Вычислить стандартную энтальпию реакции:

С 6 H 5 NO 2(жидк.) + 3H 2(газ) = С 6 H 5 NH 2(жидк.) + 2H 2 O (жидк.) ,

используя значения стандартных энтальпий сгорания веществ:

3. Оценить роль энтальпийного и энтропийного факторов для реакции:

H 2 O 2(жидк.) + O 3(газ) = 2O 2(газ) + H 2 O (жидк.)

по известным данным:

Определить температуру, при которой реакция пойдет самопроизвольно.

Вариант №7

1. Вычислить стандартную энтальпию образования CH 3 OH по следующим данным:

CH 3 OH (жидк.) + 1,5O 2(газ) = CO 2(газ) + 2H 2 O (жидк.) DH 0 = -726,5 кДж;

С (графит) + O 2(газ) = CO 2(газ) DH 0 = -393,5 кДж;

H 2(газ) + 0,5O 2(газ) = H 2 O (жидк.) DH 0 = -286 кДж.

2. Оценить возможность самопроизвольного протекания реакции:

8Al (тв.) + 3Fe 3 O 4(тв.) = 9Fe (тв.) + Al 2 O 3(тв.)

при стандартных условиях, если:

3. Вычислить значение DH 0 для возможных реакций превращения глюкозы:

1) C 6 H 12 O 6(кр.) = 2C 2 H 5 OH (жидк.) + 2CO 2(газ) ;

2) C 6 H 12 O 6(кр.) + 6O 2(газ) = 6CO 2(газ) + 6H 2 O (жидк.) .

по известным данным:

В результате какой из этих реакций выделяется большее количество энергии?

Вариант №8

1. Вычислить стандартную энтальпию образования MgCO 3 по следующим данным:

MgO (тв.) + CO 2(газ) = MgCO 3(тв.) +118 кДж;

С 2 H 6(газ) + H 2(газ) = 2CH 4(газ)

по известным данным:

3. Какие из перечисленных оксидов: CaO, FeO, CuO, PbO, FeO, Cr 2 O 3 могут быть восстановлены алюминием до свободного металла при 298 К:

Вариант №9

1. Вычислить стандартную энтальпию образования Ca 3 (PO 4) 2 по следующим данным:

3CaO (тв.) + P 2 O 5(тв.) = Ca 3 (PO 4) 2(тв.) DH 0 = -739 кДж;

P 4(тв.) + 5O 2(газ) = 2P 2 O 5(тв.) DH 0 = -2984 кДж;

Ca (тв.) + 0,5O 2(газ) = CaO (тв.) DH 0 = -636 кДж.

2. Оценить возможность самопроизвольного протекания реакции:

Fe 2 O 3(тв.) + 3CO (газ) = 2Fe (тв.) + 3CO 2(газ)

при стандартных условиях, если:

3. Определить, какие из перечисленных оксидов: CuO, PbO 2 , ZnO, CaO, Al 2 O 3 могут быть восстановлены водородом до свободного металла при 298 К, если известно:

Вариант №10

1. Вычислить стандартную энтальпию образования этанола по следующим данным:

DH 0 сгор. C 2 H 5 OH = -1368 кДж/моль;

С (графит) + O 2(газ) = CO 2(газ) +393,5 кДж;

H 2(газ) + O 2(газ) = H 2 O (жидк.) +286 кДж.

2. Вычислить стандартную энтропию реакции:

С 2 H 2(газ) + 2H 2(газ) = C 2 H 6(газ) ,

по известным данным:

3. Вычислить количество энергии, которое выделится в организме человека, который съел 2 кусочка сахара по 5 г каждый, считая, что основной путь метаболизма сахарозы сводится к ее окислению:

C 12 H 22 O 11(тв.) + 12O 2(газ) = 12CO 2(газ) + 11H 2 O (жидк.) = -5651 кДж.

Вариант №11

1. Вычислить стандартную энтальпию образования С 2 H 4 по следующим данным:

С 2 H 4(газ) + 3O 2(газ) = 2CO 2(газ) + 2H 2 O (жидк.) +1323 кДж;

С (графит) + O 2(газ) = CO 2(газ) +393,5 кДж;

H 2(газ) + 0,5O 2(газ) = H 2 O (жидк.) +286 кДж.

2. Не производя вычислений, установить знак DS 0 следующих процессов:

1) 2NH 3(газ) = N 2(газ) + 3H 2(газ) ;

2) CO 2(кр.) = CO 2(газ) ;

3) 2NO (газ) + O 2(газ) = 2NO 2(газ) .

3. Определить, по какому уравнению реакции будет протекать разложение пероксида водорода при стандартных условиях:

1) H 2 O 2(газ) = H 2(газ) + O 2(газ) ;

2) H 2 O 2(газ) = H 2 O (жидк.) + 0,5O 2(газ) ,

Вариант №12

1. Вычислить стандартную энтальпию образования ZnSO 4 по следующим данным:

2ZnS + 3O 2 = 2ZnO + SO 2 DH 0 = -890 кДж;

2SO 2 + O 2 = 2SO 3 DH 0 = -196 кДж;

H 2 O (тв.) = H 2 O (жидк.) ,

H 2 O (жидк.) = H 2 O (газ) ,

H 2 O (тв.) = H 2 O (газ) .

по известным данным:

3. Вычислить количество энергии, которое выделится при сгорании 10 г бензола, по следующим данным:

Вариант №14

1. Вычислить стандартную энтальпию образования PCl 5 по следующим данным:

P 4(тв.) + 6Cl 2(газ) = 4PCl 3(газ) DH 0 = -1224 кДж;

PCl 3(газ) + Cl 2(газ) = PCl 5(газ) DH 0 = -93 кДж.

2. Вычислить стандартное изменение энергии Гиббса образования сероуглерода CS 2 по следующим данным:

CS 2(жидк.) + 3O 2(газ) = CO 2(газ) + 2SO 2(газ) DG 0 = -930 кДж;

CO 2 = -394 кДж/моль; SO 2 = -300 кДж/моль.

3. Оценить роль энтальпийного и энтропийного факторов для реакции:

CaCO 3(тв.) = CaO (тв.) + CO 2(газ)

по известным данным:

Определить температуру, при которой реакция пойдет самопроизвольно.

Вариант №15

1. Вычислить тепловой эффект реакции образования кристаллогидрата CuSO 4 ×5H 2 O, протекающей по уравнению:

CuSO 4(тв.) + 5H 2 O (жидк.) = CuSO 4 ×5H 2 O (тв.) ,