Различие в химических свойствах альдегидов и кетонов. Реакции альдегидов и кетонов. Альдегиды изомерны другому классу соединений - кетонам

РАБОЧИЕ ТЕТРАДИ

Продолжение. Начало см. в № 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32/2004

Урок 24. Химические свойства и применение альдегидов

Химические свойства. Рассмотрим поведение альдегидов в отношении стандартного набора реагентов: кислорода воздуха О 2 , окислителей [О], а также Н 2 , Н 2 О, спиртов, Na, НСl.

Альдегиды медленно окисляются кислородом воздуха в карбоновые кислоты:

Качественная реакция на альдегиды – реакция «серебряного зеркала». Реакция состоит во взаимодействии альдегида RСНО с водно-аммиачным раствором оксида серебра(I), представляющим растворимое комплексное соединение OH. Реакцию проводят при температуре, близкой к температуре кипения воды (80–100 °С). В результате на стенках стеклянного сосуда (пробирки, колбы) образуется осадок металлического серебра – «cеребряное зеркало»:

Восстановление гидроксида меди(II) в оксид меди(I) – другая характерная реакция альдегидов. Реакция протекает при кипячении смеси и состоит в окислении альдегида. Точнее сказать, происходит внедрение атома [О] окислителя Cu(OH) 2 по связи С–Н альдегидной группы. При этом изменяются степени окисления карбонильного углерода (от +1 до +3) и атома меди (от +2 до +1). При нагревании голубого осадка Cu(OH) 2 в смеси с альдегидом наблюдается исчезновение голубой окраски и образование красного осадка Cu 2 O:

Альдегиды присоединяют водород Н 2 по двойной связи С=О при нагревании в присутствии катализатора (Ni, Pt, Pd). Реакция сопровождается разрывом -связи в карбонильной группе С=О и присоединением по месту ее разрыва двух атомов Н молекулы водорода Н–Н. Таким образом из альдегидов получают спирты:

Альдегиды с электроноакцепторными заместителями в -положении к альдегидной группе присоединяют воду с образованием гидратов альдегидов (диолов-1,1):

Для того чтобы удерживать две электроотрицательные гидроксильные группы, атом углерода должен нести достаточный положительный заряд. Созданию дополнительного положительного заряда на карбонильном углероде способствуют три электроноакцепторных атома хлора при соседнем -углероде хлораля.

Реакция альдегидов со спиртами. Синтез полуацеталей и ацеталей. В благоприятных условиях (например: а) при нагревании с кислотой или в присутствии водоотнимающих средств; б) при внутримолекулярной конденсации с образованием пяти- и шестичленных циклов) альдегиды реагируют со спиртами. При этом к одной молекуле альдегида может присоединиться либо одна молекула спирта (продукт – полуацеталь), либо две молекулы спирта (продукт – ацеталь):

Альдегиды не присоединяют НСl по двойной связи С=О. Также альдегиды не реагируют с Na, т.е. альдегидный водород группы –СНО не обладает заметными кислотными свойствами.

Применение альдегидов основано на их высокой реакционной способности. Альдегиды используют в качестве исходных и промежуточных соединений в синтезе веществ с полезными свойствами других классов.
Формальдегид НСНО – бесцветный газ с резким запахом – используют для производства полимерных материалов . Вещества с подвижными атомами Н в молекуле (обычно при связях С–Н или N–H, но не О–Н) соединяются с формальдегидом СН 2 О по типу:

Если в молекуле исходного вещества два или несколько подвижных протонов (у фенола С 6 Н 5 ОН – три таких протона), то в реакции с формальдегидом получается полимер. Например, с фенолом – фенолформальдегидная смола:

Подобным образом мочевина с формальдегидом дает мочевиноформальдегидные смолы:

Формальдегид служит исходным веществом для производства красителей, фармацевтических препаратов, синтетического каучука, взрывчатых веществ и многих других органических соединений.

Формалин (40%-й водный раствор формальдегида) применяется в качестве антисептика (обеззараживающего средства). Свойство формалина свертывать белок используется в кожевенном производстве и для сохранения биопрепаратов.

Ацетальдегид СН 3 СНО – бесцветная жидкость (t кип = 21 °С) с резким запахом, хорошо растворимая в воде. Главное использование ацетальдегида – получение уксусной кислоты . Из него также получают синтетические смолы, лекарства и т.д.

УПРАЖНЕНИЯ

1. Опишите, с помощью каких химических реакций можно различить следующие пары веществ:
а) бензальдегид и бензиловый спирт; б) пропионовый альдегид и пропиловый спирт. Укажите, что будет наблюдаться в ходе каждой реакции.

2. Приведите уравнения реакций, подтверждающих наличие в молекуле
п-гидроксибензальдегида соответствующих функциональных группировок.

3. Напишите уравнения реакций бутаналя со следующими реагентами:
а)
Н 2 , t , кат. Pt; б) КМnО 4 , Н 3 О + , t ; в) OH в NH 3 /H 2 O; г) НОСН 2 СН 2 ОН, t, кат. НСl.

4. Составьте уравнения реакций для цепочки химических превращений:

5. В результате гидролиза ацеталя образуются альдегид RCHO и спирт R"ОН в мольном соотношении 1:2. Составьте уравнения реакций гидролиза следующих ацеталей:

6. При окислении предельного одноатомного спирта оксидом меди(II) образовалось 11,6 г органического соединения с выходом 50%. При взаимодействии полученного вещества с избытком аммиачного раствора оксида серебра выделилось 43,2 г осадка. Какой спирт был взят и какова его масса?

7. 5-Гидроксигексаналь в подкисленном водном растворе находится преимущественно в форме шестичленного циклического полуацеталя. Составьте уравнение соответствующей реакции:

Ответы на упражнения к теме 2

Урок 24

1. Различить два вещества можно с помощью реакций, характерных только для одного из этих веществ. Например, альдегиды окисляются в кислоты при действии слабых окислителей. Нагревание смеси бензальдегида и аммиачного раствора оксида серебра протекает с образованием на стенках колбы «серебряного зеркала»:

Бензальдегид восстанавливается при каталитическом гидрировании в бензиловый спирт:

Бензиловый спирт реагирует с натрием, в реакции выделяется водород:

2С 6 Н 5 СН 2 ОН + 2Na 2C 6 Н 5 CН 2 ONa + Н 2 .

При нагревании в присутствии катализатора меди бензиловый спирт окисляется кислородом воздуха в бензальдегид, что обнаруживается по характерному запаху горького миндаля:

Аналогичным образом можно различить пропионовый альдегид и пропиловый спирт.

2. В п -гидроксибензальдегиде три функциональные группы: 1) ароматическое кольцо; 2) фенольный гидроксил; 3) альдегидная группа. В специальных условиях – при защите альдегидной группы от окисления (обозначение – [–СНО]) – можно провести хлорирование п -гидроксибензальдегида в бензольное кольцо:

6. Уравнения указанных реакций:

Последовательно найдем количество вещества – серебра, альдегида RCHO и спирта RCH 2 OH:

(Ag) = 43,2/108 = 0,4 моль;

(RCHO) = 1/2(Ag) = 0,2 моль.

C учетом выхода 50% в реакции (1):

(RСН 2 ОН) = 2(RCHO) = 0,4 моль.

Молярная масса альдегида:

М (RCHO) = m / = 11,6/0,2 = 58 г/моль.

Это – пропионовый альдегид СН 3 СН 2 СНО.

Соответствующий ему спирт – пропанол-1 СН 3 СН 2 СН 2 ОН.

Масса спирта: m = M = 0,4 60 = 24 г.

Ответ. Был взят спирт пропанол-1 массой 24 г.

Альдегиды - органические вещества, которые содержат карбонильную группу >С=О, связанную хотя бы с одним атомом водорода. Альдегиды, а также схожие с ними по строению и свойствам кетоны, называют карбонильными, или оксосоединениями. Примеры альдегидов - муравьиный, уксусный, пропионовый альдегид.

Номенклатура

Тривиальные названия альдегидов образуют из тривиальных названий родственных карбоновых кислот. Примеры альдегидов с названиями представлены на рисунке. Первым представителем гомологического ряда альдегидов является муравьиный альдегид, или формальдегид, при окислении которого образуется муравьиная кислота. Второй представитель - уксусный альдегид, ацетальдегид, при окислении которого образуется уксусная кислота.

По номенклатуре ИЮПАК альдегидную группу обозначают суффиксом -аль, который добавляют к названию соответствующего углеводорода. Примеры альдегидов по номенклатуре ИЮПАК предложены на изображении ниже.

Если в соединении есть старшие группы, например, карбоксильные, то наличие альдегидной группы обозначают префиксом формил. Пример альдегида, который правильнее назвать :

  • НООС - СН (СНО) - СН 2 - СООН

Это 2-формилбутандиовая кислота.

Описание веществ

Альдегиды в отличие от спиртов не обладают подвижным атомом водорода, поэтому их молекулы не ассоциируются, что объясняет значительно более низкие температуры кипения. К примеру, альдегид формальдегид кипит уже при температуре -21 °С, а спирт метанол - при +65 °С.

Однако такой низкой температурой кипения обладает только формальдегид, следующий представитель - ацетальдегид закипает при +21°С. Поэтому при комнатной температуре из всех альдегидов только формальдегид - газ, ацетальдегид уже легколетучая жидкость. Увеличение количества атомов углерода закономерно повышает температуру кипения. Так, бензальдегид С 6 Н 5 СНО закипает только при +180 °С. Разветвление цепи вызывает понижение температуры кипения.

Низшие альдегиды, к примеру, формальдегид, хорошо растворимы в воде. 40%-ный раствор формальдегида называют формалином, его часто используют для консервации биологических препаратов. Высшие альдегиды хорошо растворимы в органических растворителях - спирте, эфире.

Характерные запахи альдегидов

Альдегиды обладают характерными запахами, причем низшие - резкими, неприятными. Всем известен неприятный запах формалина - водного раствора формальдегида. У высших альдегидов цветочные запахи, их применяют в парфюмерии.

Примером альдегидов - веществ с приятным запахом - является ванилин, обладающий ароматом ванили, и бензальдегид, придающий характерный аромат миндальным орехам. Оба вещества получают синтетически и широко используют в качестве ароматизаторов в кондитерской промышленности и парфюмерии.

Получение

Рассмотрим способы получения альдегидов.

  • Окисление спиртов.

Альдегиды получают при окислении первичных спиртов. Например, формальдегид, который используют в производстве полимерных материалов, лекарств, красителей, взрывчатых веществ. В промышленности формальдегид получают окислением кислородом метанола: 2СН 3 ОН + О 2 = 2СН 2 О + 2Н 2 О.

Реакцию проводят на раскаленной серебряной сетке, серебро является катализатором. Через сетку пропускают пары метанола, смешанные с воздухом. Реакция идет с выделением большого количества тепла, которого хватает для поддержания сетки в раскаленном состоянии.

  • Дегидрирование спиртов.

Альдегиды можно получать из спиртов и в отсутствии кислорода. В этом случае используют медный катализатор и высокие температуры (250 °С): R-CH 2 -OH = R-CHO + H 2 .

  • Восстановление хлорангидридов кислот.

Альдегиды можно получать восстановлением водородом хлорангидридов кислот. В качестве катализатора используют «отравленный» палладий - с пониженной активностью: RCClO + H 2 = RCHO + HCl.

  • Получение ацетальдегида.

Ацетальдегид в промышленности получают окислением этилена кислородом или воздухом в жидкой фазе. В качестве катализатора необходим хлорид палладия (PdCl 2 ): 2 СН 2 =СН 2 + О 2 = 2 СН 3 СНО.

Химические свойства

Для альдегидов характерны следующие типы реакций:

  • присоединения по карбонильной группе;
  • полимеризации;
  • конденсации;
  • восстановления и окисления.

Большинство реакций идет по механизму нуклеофильного присоединения по связи С=О.

Обычно рассматривают химические свойства альдегидов на примере уксусного альдегида.

В карбонильной группе С=О электронная плотность смещена к атому кислорода, поэтому на карбонильном атоме углерода формируется частичный положительный заряд, который обусловливает химическую активность альдегидов. Положительный заряд на атоме углерода группы С=О обеспечивает его активность в реакциях с нуклеофильными реагентами - водой, спиртом, магний органическими соединениями. Атом кислорода воды может атаковать карбонильный атом углерода, присоединяться к нему и вызывать разрыв связи С=О.

Реакции конденсации

Альдегиды вступают в реакции альдольной и кротоновой конденсации.

Ацетальдегид при действии слабого раствора щелочи на холоду превращается в альдоль. Продуктом реакции является жидкость, смешивающаяся с водой при пониженном давлении. Это вещество содержит как альдегидную, так и спиртовую группу (отсюда и название).

Качественные реакции

Для выявления альдегидов можно использовать две качественные реакции:

  • Реакция «серебряного зеркала». Реакция идет с реактивом Толленса - аммиачным раствором оксида серебра. При смешивании раствора аммиака и раствора нитрата серебра образуется сначала раствор гидроксида серебра, а при добавлении избытка аммиака - раствор гидроксида диамминсеребра (I), который и является окислителем. При взаимодействии с альдегидом выделяется элементное серебро в виде черного осадка. Если реакцию проводить при медленном нагревании, не тряся пробирку, серебро покроет стенки пробирки, создавая эффект «зеркала».

  • Реакция «медного зеркала». Другим реактивом, открывающим альдегидную группу, является гидроксид меди (II). При взаимодействии с альдегидом он восстанавливается до оксида меди (I). Цвет меняется с синего сначала на оранжевый, затем на желтый. Если реакцию проводить при медленном нагревании, оксид будет образовывать тонкий оранжево-красный налет на стенках пробирки - «медное зеркало»: СН 3 СНО + 2 Cu(OH) 2 + NaOH = CH 3 COONa + Cu 2 O↓ + 3H 2 O.

Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола

Предельные одноатомные и многоатомные спирты

Спиртами (или алканолами) называются органические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп $—ОН$), соединенных с углеводородным радикалом.

По числу гидроксильных групп (атомности) спирты делятся на:

— одноатомные, например:

${CH_3-OH}↙{метанол(метиловый спирт)}$ ${CH_3-CH_2-OH}↙{этанол(этиловый спирт)}$

двухатомные (гликоли) , например:

${OH-CH_2-CH_2-OH}↙{этандиол-1,2(этиленгликоль)}$

${HO-CH_2-CH_2-CH_2-OH}↙{пропандиол-1,3}$

трехатомные , например:

По характеру углеводородного радикала выделяют следующие спирты:

предельные , содержащие в молекуле лишь предельные углеводородные радикалы, например:

непредельные , содержащие в молекуле кратные (двойные и тройные) связи между атомами углерода, например:

${CH_2=CH-CH_2-OH}↙{пропен-2-ол-1 (аллиловый спирт)}$

ароматические , т.е. спирты, содержащие в молекуле бензольное кольцо и гидроксильную группу, связанные друг с другом не непосредственно, а через атомы углерода, например:

Органические вещества, содержащие в молекуле гидроксильные группы, связанные непосредственно с атомом углерода бензольного кольца, существенно отличаются по химическим свойствам от спиртов и поэтому выделяются в самостоятельный класс органических соединений — фенолы. Например:

Существуют и полиатомные (многоатомные) спирты, содержащие более трех гидроксильных групп в молекуле. Например, простейший шестиатомный спирт гексаол (сорбит):

Номенклатура и изомерия

При образовании названий спиртов к названию углеводорода, соответствующего спирту, добавляют родовой суффикс -ол. Цифрами после суффикса указывают положение гидроксильной группы в главной цепи, а префиксами ди-, три-, тетра- и т. д. — их число:

В нумерации атомов углерода в главной цепи положение гидроксильной группы приоритетно перед положением кратных связей:

Начиная с третьего члена гомологического ряда, у спиртов появляется изомерия положения функциональной группы (пропанол-1 и пропанол-2), а с четвертого — изомерия углеродного скелета (бутанол-1, 2-метилпропанол-1). Для них характерна и межклассовая изомерия — спирты изомерны простым эфирам:

${CH_3-CH_2-OH}↙{этанол}$ ${CH_3-O-CH_3}↙{диметиловый эфир}$

спиртов

Физические свойства.

Спирты могут образовывать водородные связи как между молекулами спирта, так и между молекулами спирта и воды.

Водородные связи возникают при взаимодействии частично положительно заряженного атома водорода одной молекулы спирта и частично отрицательно заряженного атома кислорода другой молекулы. Именно благодаря водородным связям между молекулами спирты имеют аномально высокие для своей молекулярной массы температуры кипения. Так, пропан с относительной молекулярной массой $44$ при обычных условиях является газом, а простейший из спиртов — метанол, имея относительную молекулярную массу $32$, в обычных условиях — жидкость.

Низшие и средние члены ряда предельных одноатомных спиртов, содержащие от $1$ до $11$ атомов углерода, — жидкости. Высшие спирты (начиная с $С_{12}Н_{25}ОН$) при комнатной температуре — твердые вещества. Низшие спирты имеют характерный алкогольный запах и жгучий вкус, они хорошо растворимы в воде. По мере увеличения углеводородного радикала растворимость спиртов в воде понижается, а октанол уже не смешивается с водой.

Химические свойства.

Свойства органических веществ определяются их составом и строением. Спирты подтверждают общее правило. Их молекулы включают в себя углеводородные и гидроксильные радикалы, поэтому химические свойства спиртов определяются взаимодействием и влиянием друг на друга этих групп. Характерные для данного класса соединений свойства обусловлены наличием гидроксильной группы.

1. Взаимодействие спиртов со щелочными и щелочноземельными металлами. Для выявления влияния углеводородного радикала на гидроксильную группу необходимо сравнить свойства вещества, содержащего гидроксильную группу и углеводородный радикал, с одной стороны, и вещества, содержащего гидроксильную группу и не содержащего углеводородный радикал, — с другой. Такими веществами могут быть, например, этанол (или другой спирт) и вода. Водород гидроксильной группы молекул спиртов и молекул воды способен восстанавливаться щелочными и щелочноземельными металлами (замещаться на них):

$2Na+2H_2O=2NaOH+H_2$,

$2Na+2C_2H_5OH=2C_2H_5ONa+H_2$,

$2Na+2ROH=2RONa+H_2$.

2. Взаимодействие спиртов с галогеноводородами. Замещение гидроксильной группы на галоген приводит к образованию галогеналканов. Например:

$C_2H_5OH+HBr⇄C_2H_5Br+H_2O$.

Данная реакция обратима.

3. Межмолекулярная дегидратация спиртов — отщепление молекулы воды от двух молекул спирта при нагревании в присутствии водоотнимающих средств:

В результате межмолекулярной дегидратации спиртов образуются простые эфиры. Так, при нагревании этилового спирта с серной кислотой до температуры от $100$ до $140°С$ образуется диэтиловый (серный) эфир:

4. Взаимодействие спиртов с органическими и неорганическими кислотами с образованием сложных эфиров (реакция этерификации ):

Реакция этерификации катализируется сильными неорганическими кислотами.

Например, при взаимодействии этилового спирта и уксусной кислоты образуется уксусноэтиловый эфир — этилацетат :

5. Внутримолекулярная дегидратация спиртов происходит при нагревании спиртов в присутствии водоотнимающих средств до более высокой температуры, чем температура межмолекулярной дегидратации. В результате образуются алкены. Эта реакция обусловлена наличием атома водорода и гидроксильной группы при соседних атомах углерода. В качестве примера можно привести реакцию получения этена (этилена) при нагревании этанола выше $140°С$ в присутствии концентрированной серной кислоты:

6. Окисление спиртов обычно проводят сильными окислителями, например, дихроматом калия или перманганатом калия в кислой среде. При этом действие окислителя направляется на тот атом углерода, который уже связан с гидроксильной группой. В зависимости от природы спирта и условий проведения реакции могут образовываться различные продукты. Так, первичные спирты окисляются сначала в альдегиды , а затем в карбоновые кислоты:

При окислении вторичных спиртов образуются кетоны:

Третичные спирты достаточно устойчивы к окислению. Однако в жестких условиях (сильный окислитель, высокая температура) возможно окисление третичных спиртов, которое происходит с разрывом углерод-углеродных связей, ближайших к гидроксильной группе.

7. Дегидрирование спиртов. При пропускании паров спирта при $200-300°С$ над металлическим катализатором, например медью, серебром или платиной, первичные спирты превращаются в альдегиды, а вторичные — в кетоны:

Присутствием в молекуле спирта одновременно нескольких гидроксильных групп обусловлены специфические свойства многоатомных спиртов , которые способны образовывать растворимые в воде ярко-синие комплексные соединения при взаимодействии со свежеполученным осадком гидроксида меди (II). Для этиленгликоля можно записать:

Одноатомные спирты не способны вступать в эту реакцию. Поэтому она является качественной реакцией на многоатомные спирты.

Фенол

Строение фенолов

Гидроксильная группа в молекулах органических соединений может быть связана с ароматическим ядром непосредственно, а может быть отделена от него одним или несколькими атомами углерода. Можно ожидать, что в зависимости от этого свойства, вещества будут существенно отличаться друг от друга из-за взаимного влияния групп атомов. И действительно, органические соединения, содержащие ароматический радикал фенил $С_6Н_5$—, непосредственно связанный с гидроксильной группой, проявляют особые свойства, отличные от свойств спиртов. Такие соединения называются фенолами.

Фенолы — органические вещества, молекулы которых содержат радикал фенил, связанный с одной или несколькими гидроксогруппами.

Так же как и спирты, фенолы классифицируют по атомности, т.е. по количеству гидроксильных групп.

Одноатомные фенолы содержат в молекуле одну гидроксильную группу:

Многоатомные фенолы содержат в молекулах более одной гидроксильной группы:

Существуют и другие многоатомные фенолы, содержащие три и более гидроксильные группы в бензольном кольце.

Познакомимся подробнее со строением и свойствами простейшего представителя этого класса — фенолом $С_6Н_5ОН$. Название этого вещества и легло в основу названия всего класса — фенолы.

Физические и химические свойства.

Физические свойства.

Фенол — твердое, бесцветное, кристаллическое вещество, $t°_{пл.}=43°С, t°_{кип.}=181°С$, с резким характерным запахом. Ядовит. Фенол при комнатной температуре незначительно растворяется в воде. Водный раствор фенола называют карболовой кислотой. При попадании на кожу он вызывает ожоги, поэтому с фенолом необходимо обращаться осторожно!

Химические свойства.

Кислотные свойства. Как уже было сказано, атом водорода гидроксильной группы обладает кислотным характером. Кислотные свойства у фенола выражены сильнее, чем у воды и спиртов. В отличие от спиртов и воды, фенол реагирует не только с щелочными металлами, но и со щелочами с образованием фенолятов :

Однако кислотные свойства у фенолов выражены слабее, чем у неорганических и карбоновых кислот. Так, например, кислотные свойства фенола примерно в $3000$ раз слабее, чем у угольной кислоты. Поэтому, пропуская через водный раствор фенолята натрия углекислый газ, можно выделить свободный фенол:

Добавление к водному раствору фенолята натрия соляной или серной кислоты также приводит к образованию фенола:

Качественная реакция на фенол.

Фенол реагирует с хлоридом железа (III) с образованием интенсивно окрашенного в фиолетовый цвет комплексного соединения.

Эта реакция позволяет обнаруживать его даже в очень ограниченных количествах. Другие фенолы, содержащие одну или несколько гидроксильных групп в бензольном кольце, также дают яркое окрашивание сине-фиолетовых оттенков в реакции с хлоридом железа (III).

Реакции бензольного кольца.

Наличие гидроксильного заместителя значительно облегчает протекание реакций электрофильного замещения в бензольном кольце.

1. Бромирование фенола. В отличие от бензола, для бромирования фенола не требуется добавления катализатора (бромида железа (III)).

Кроме того, взаимодействие с фенолом протекает селективно (избирательно): атомы брома направляются в орто- и параположения, замещая находящиеся там атомы водорода. Селективность замещения объясняется рассмотренными выше особенностями электронного строения молекулы фенола.

Так, при взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенола:

Эта реакция, так же, как и реакция с хлоридом железа (III), служит для качественного обнаружения фенола.

2. Нитрование фенола также происходит легче, чем нитрование бензола. Реакция с разбавленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и пара- изомеров нитрофенола:

При использовании концентрированной азотной кислоты образуется взрывчатое вещество2,4,6-тринитрофенол (пикриновая кислота):

3. Гидрирование ароматического ядра фенола в присутствии катализатора происходит легко:

4. Поликонденсация фенола с альдегидами , в частности с формальдегидом, происходит с образованием продуктов реакции — фенолформальдегидных смол и твердых полимеров.

Взаимодействие фенола с формальдегидом можно описать схемой:

Вы, наверное, заметили, что в молекуле димера сохраняются «подвижные» атомы водорода, а значит, возможно дальнейшее продолжение реакции при достаточном количестве реагентов:

Реакция поликонденсации, т.е. реакция получения полимера, протекающая с выделением побочного низкомолекулярного продукта (воды), может продолжаться и далее (до полного израсходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:

Образование линейных молекул происходит при обычной температуре. Проведение же этой реакции при нагревании приводит к тому, что образующийся продукт имеет разветвленное строение, он твердый и нерастворим в воде. В результате нагревания фенолформальдегидной смолы линейного строения с избытком альдегида получаются твердые пластические массы с уникальными свойствами. Полимеры на основе фенолформальдегидных смол применяют для изготовления лаков и красок, пластмассовых изделий, устойчивых к нагреванию, охлаждению, действию воды, щелочей и кислот, обладающих высокими диэлектрическими свойствами. Из полимеров на основе фенолформальдегидных смол изготавливают наиболее ответственные и важные детали электроприборов, корпуса силовых агрегатов и детали машин, полимерную основу печатных плат для радиоприборов. Клеи на основе фенолформальдегидных смол способны надежно соединять детали самой различной природы, сохраняя высочайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения к стеклянной колбе. Теперь вам понятно, почему фенол и продукты на его основе находят широкое применение.

Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров

Альдегиды и кетоны

Альдегиды — органические вещества, молекулы которых содержат карбонильную группу , соединенную с атомом водорода и углеводородным радикалом.

Общая формула альдегидов имеет вид:

В простейшем альдегиде — формальдегиде — роль углеводородного радикала играет второй атом водорода:

Карбонильную группу, связанную с атомом водорода, называют альдегидной:

Органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами, называют кетонами.

Очевидно, общая формула кетонов имеет вид:

Карбонильную группу кетонов называют кетогруппой.

В простейшем кетоне — ацетоне — карбонильная группа связана с двумя метильными радикалами:

Номенклатура и изомерия

В зависимости от строения углеводородного радикала, связанного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды:

В соответствии с номенклатурой ИЮПАК названия предельных альдегидов образуются от названия алкана с тем же числом атомов углерода в молекуле с помощью суффикса -аль. Например:

Нумерацию атомов углерода главной цепи начинают с атома углерода альдегидной группы. По этому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее положение нет необходимости.

Наряду с систематической номенклатурой используют и тривиальные названия широко применяемых альдегидов. Эти названия, как правило, образованы от названий карбоновых кислот, соответствующих альдегидам.

Для названия кетонов по систематической номенклатуре кетогруппу обозначают суффиксом -он и цифрой, которая указывает номер атома углерода карбонильной группы (нумерацию следует начинать от ближайшего к кетогруппе конца цепи). Например:

Для альдегидов характерен только один вид структурной изомерии — изомерия углеродного скелета, которая возможна с бутаналя, а для кетонов — также и изомерия положения карбонильной группы. Кроме этого, для них характерна и межклассовая изомерия (пропаналь и пропанон).

Тривиальные названия и температуры кипения некоторых альдегидов.

Физические и химические свойства

Физические свойства.

В молекуле альдегида или кетона вследствие большей электроотрицательности атома кислорода по сравнению с углеродным атомом связь $С=О$ сильно поляризована за счет смещения электронной плотности $π$-связи к кислороду:

Альдегиды и кетоны — полярные вещества с избыточной электронной плотностью на атоме кислорода. Низшие члены ряда альдегидов и кетонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температуры кипения ниже, чем у соответствующих спиртов. Это связано с тем, что в молекулах альдегидов и кетонов, в отличие от спиртов, нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей. Низшие альдегиды имеют резкий запах; у альдегидов, содержащих от четырех до шести атомов углерода в цепи, неприятный запах; высшие альдегиды и кетоны обладают цветочными запахами и применяются в парфюмерии.

Химические свойства

Наличие альдегидной группы в молекуле определяет характерные свойства альдегидов.

Реакции восстановления.

Присоединение водорода к молекулам альдегидов происходит по двойной связи в карбонильной группе:

Продуктом гидрирования альдегидов являются первичные спирты, кетонов — вторичные спирты.

Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона — пропанол-2:

Гидрирование альдегидов — реакция восстановления, при которой понижается степень окисления атома углерода, входящего в карбонильную группу.

Реакции окисления.

Альдегиды способны не только восстанавливаться, но и окисляться. При окислении альдегиды образуют карбоновые кислоты. Схематично этот процесс можно представить так:

Из пропионового альдегида (пропаналя), например, образуется пропионовая кислота:

Альдегиды окисляются даже кислородом воздуха и такими слабыми окислителями, как аммиачный раствор оксида серебра. В упрощенном виде этот процесс можно выразить уравнением реакции:

Например:

Более точно этот процесс отражают уравнения:

Если поверхность сосуда, в котором проводится реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее ровной тонкой пленкой. Поэтому эту реакцию называют реакцией «серебряного зеркала» . Ее широко используют для изготовления зеркал, серебрения украшений и елочных игрушек.

Окислителем альдегидов может выступать и свежеосажденный гидроксид меди (II). Окисляя альдегид, $Cu^{2+}$ восстанавливается до $Cu^+$. Образующийся в ходе реакции гидроксид меди (I) $CuOH$ сразу разлагается на оксид меди (I) красного цвета и воду:

Эта реакция, так же, как и реакция «серебряного зеркала», используется для обнаружения альдегидов.

Кетоны не окисляются ни кислородом воздуха, ни таким слабым окислителем, как аммиачный раствор оксида серебра.

Отдельные представители альдегидов и их значение

Формальдегид (метаналь, муравьиный альдегид $HCHO$) — бесцветный газ с резким запахом и температурой кипения $-21С°$, хорошо растворим в воде. Формальдегид ядовит! Раствор формальдегида в воде ($40%$) называют формалином и применяют для дезинфекции. В сельском хозяйстве формалин используют для протравливания семян, в кожевенной промышленности — для обработки кож. Формальдегид используют для получения уротропина — лекарственного вещества. Иногда спрессованный в виде брикетов уротропин применяют в качестве горючего (сухой спирт). Большое количество формальдегида расходуется при получении фенолформальдегидных смол и некоторых других веществ.

Уксусный альдегид (этаналь, ацетальдегид $CH_3CHO$) — жидкость с резким неприятным запахом и температурой кипения $21°С$, хорошо растворим в воде. Из уксусного альдегида в промышленных масштабах получают уксусную кислоту и ряд других веществ, он используется для производства различных пластмасс и ацетатного волокна. Уксусный альдегид ядовит!

Карбоновые кислоты

Вещества, содержащие в молекуле одну или несколько карбоксильных групп, называются карбоновыми кислотами.

Группа атомов называется карбоксильной группой , или карбоксилом.

Органические кислоты, содержащие в молекуле одну карбоксильную группу, являются одноосновными.

Общая формула этих кислот $RCOOH$, например:

Карбоновые кислоты, содержащие две карбоксильные группы, называются двухосновными. К ним относятся, например, щавелевая и янтарная кислоты:

Существуют и многоосновные карбоновые кислоты, содержащие более двух карбоксильных групп. К ним относится, например, трехосновная лимонная кислота:

В зависимости от природы углеводородного радикала карбоновые кислоты делятся на предельные, непредельные, ароматические.

Предельными, или насыщенными, карбоновыми кислотами являются, например, пропановая (пропионовая) кислота:

или уже знакомая нам янтарная кислота.

Очевидно, что предельные карбоновые кислоты не содержат $π$-связей в углеводородном радикале. В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, непредельным углеводородным радикалом, например, в молекулах акриловой (пропеновой) $СН_2=СН—СООН$ или олеиновой $СН_3—(СН_2)_7—СН=СН—(СН_2)_7—СООН$ и других кислот.

Как видно из формулы бензойной кислоты, она является ароматической, так как содержит в молекуле ароматическое (бензольное) кольцо:

Номенклатура и изомерия

Общие принципы образования названий карбоновых кислот, как и других органических соединений, уже рассматривались. Остановимся подробнее на номенклатуре одно- и двухосновных карбоновых кислот. Название карбоновой кислоты образуется от названия соответствующего алкана (алкана с тем же числом атомов углерода в молекуле) с добавлением суффикса -ов- , окончания -ая и слова кислота. Нумерация атомов углерода начинается с карбоксильной группы. Например:

Количество карбоксильных групп указывается в названии префиксами ди-, три-, тетра- :

Многие кислоты имеют и исторически сложившиеся, или тривиальные, названия.

Названия карбоновых кислот.

Химическая формула Систематическое название кислоты Тривиальное название кислоты
$Н—СООН$ Метановая Муравьиная
$СН_3—СООН$ Этановая Уксусная
$СН_3—СН_2—СООН$ Пропановая Пропионовая
$СН_3—СН_2—СН_2—СООН$ Бутановая Масляная
$СН_3—СН_2—СН_2—СН_2—СООН$ Пентановая Валериановая
$СН_3—(СН_2)_4—СООН$ Гексановая Капроновая
$СН_3—(СН_2)_5—СООН$ Гептановая Энантовая
$НООС—СООН$ Этандиовая Щавелевая
$НООС—СН_2—СООН$ Пропандиовая Малоновая
$НООС—СН_2—СН_2—СООН$ Бутандиовая Янтарная

После знакомства с многообразным и интересным миром органических кислот рассмотрим более подробно предельные одноосновные карбоновые кислоты.

Понятно, что состав этих кислот выражается общей формулой $С_nН_{2n}О_2$, или $С_nН_{2n+1}СООН$, или $RCOOH$.

Физические и химические свойства

Физические свойства.

Низшие кислоты, т.е. кислоты с относительно небольшой молекулярной массой, содержащие в молекуле до четырех атомов углерода, — жидкости с характерным резким запахом (вспомните запах уксусной кислоты). Кислоты, содержащие от $4$ до $9$ атомов углерода, — вязкие маслянистые жидкости с неприятным запахом; содержащие более $9$ атомов углерода в молекуле — твердые вещества, не растворяющиеся в воде. Температуры кипения предельных одноосновных карбоновых кислот увеличиваются с ростом числа атомов углерода в молекуле и, следовательно, с ростом относительной молекулярной массы. Так, например, температура кипения муравьиной кислоты равна $100.8°С$, уксусной — $118°С$, пропионовой — $141°С$.

Простейшая карбоновая кислота — муравьиная $НСООН$, имея небольшую относительную молекулярную массу $(M_r(HCOOH)=46)$, при обычных условиях является жидкостью с температурой кипения $100.8°С$. В то же время бутан $(M_r(C_4H_{10})=58)$ в тех же условиях газообразен и имеет температуру кипения $-0,5°С$. Это несоответствие температур кипения и относительных молекулярных масс объясняется образованием димеров карбоновых кислот, в которых две молекулы кислоты связаны двумя водородными связями:

Возникновение водородных связей становится понятным при рассмотрении строения молекул карбоновых кислот.

Молекулы предельных одноосновных карбоновых кислот содержат полярную группу атомов — карбоксил и практически неполярный углеводородный радикал. Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи:

Муравьиная и уксусная кислоты растворимы в воде неограниченно. Очевидно, что с увеличением числа атомов в углеводородном радикале растворимость карбоновых кислот снижается.

Химические свойства.

Общие свойства, характерные для класса кислот (как органических, так и неорганических), обусловлены наличием в молекулах гидроксильной группы, содержащей сильную полярную связь между атомами водорода и кислорода. Рассмотрим эти свойства на примере растворимых в воде органических кислот.

1. Диссоциация с образованием катионов водорода и анионов кислотного остатка:

$CH_3-COOH⇄CH_3-COO^{-}+H^+$

Более точно этот процесс описывает уравнение, учитывающее участие в нем молекул воды:

$CH_3-COOH+H_2O⇄CH_3COO^{-}+H_3O^+$

Равновесие диссоциации карбоновых кислот смещено влево; подавляющее большинство их — слабые электролиты. Тем не менее, кислый вкус, например, уксусной и муравьиной кислот объясняется диссоциацией на катионы водорода и анионы кислотных остатков.

Очевидно, что присутствием в молекулах карбоновых кислот «кислого» водорода, т.е. водорода карбоксильной группы, обусловлены и другие характерные свойства.

2. Взаимодействие с металлами , стоящими в электрохимическом ряду напряжений до водорода: $nR-COOH+M→(RCOO)_{n}M+{n}/{2}H_2$

Так, железо восстанавливает водород из уксусной кислоты:

$2CH_3-COOH+Fe→(CH_3COO)_{2}Fe+H_2$

3. Взаимодействие с основными оксидами с образованием соли и воды:

$2R-COOH+CaO→(R-COO)_{2}Ca+H_2O$

4. Взаимодействие с гидроксидами металлов с образованием соли и воды (реакция нейтрализации):

$R—COOH+NaOH→R—COONa+H_2O$,

$2R—COOH+Ca(OH)_2→(R—COO)_{2}Ca+2H_2O$.

5. Взаимодействие с солями более слабых кислот с образованием последних. Так, уксусная кислота вытесняет стеариновую из стеарата натрия и угольную из карбоната калия:

$CH_3COOH+C_{17}H_{35}COONa→CH_3COONa+C_{17}H_{35}COOH↓$,

$2CH_3COOH+K_2CO_3→2CH_3COOK+H_2O+CO_2$.

6. Взаимодействие карбоновых кислот со спиртами с образованием сложных эфиров — реакция этерификации (одна из наиболее важных реакций, характерных для карбоновых кислот):

Взаимодействие карбоновых кислот со спиртами катализируется катионами водорода.

Реакция этерификации обратима. Равновесие смещается в сторону образования сложного эфира в присутствии водоотнимающих средств и при удалении эфира из реакционной смеси.

В реакции, обратной этерификации, которая называется гидролизом сложного эфира (взаимодействие сложного эфира с водой), образуются кислота и спирт:

Очевидно, что реагировать с карбоновыми кислотами, т.е. вступать в реакцию этерификации, могут и многоатомные спирты, например глицерин:

Все карбоновые кислоты (кроме муравьиной) наряду с карбоксильной группой содержат в молекулах углеводородный остаток. Безусловно, это не может не сказаться на свойствах кислот, которые определяются характером углеводородного остатка.

7. Реакции присоединения по кратной связи — в них вступают непредельные карбоновые кислоты. Например, реакция присоединения водорода — гидрирование . Для кислоты, содержащей в радикале одну $π$-связь, можно записать уравнение в общем виде:

$C_{n}H_{2n-1}COOH+H_2{→}↖{катализатор}C_{n}H_{2n+1}COOH.$

Так, при гидрировании олеиновой кислоты образуется предельная стеариновая кислота:

${C_{17}H_{33}COOH+H_2}↙{\text"олеиновая кислота"}{→}↖{катализатор}{C_{17}H_{35}COOH}↙{\text"стеариновая кислота"}$

Непредельные карбоновые кислоты, как и другие ненасыщенные соединения, присоединяют галогены по двойной связи. Так, например, акриловая кислота обесцвечивает бромную воду:

${CH_2=CH—COOH+Br_2}↙{\text"акриловая(пропеновая)кислота"}→{CH_2Br—CHBr—COOH}↙{\text"2,3-дибромпропановая кислота"}.$

8. Реакции замещения (с галогенами) — в них способны вступать предельные карбоновые кислоты. Например, при взаимодействии уксусной кислоты с хлором могут быть получены различные хлорпроизводные кислоты:

$CH_3COOH+Cl_2{→}↖{Р(красный)}{CH_2Cl-COOH+HCl}↙{\text"хлоруксусная кислота"}$,

$CH_2Cl-COOH+Cl_2{→}↖{Р(красный)}{CHCl_2-COOH+HCl}↙{\text"дихлоруксусная кислота"}$,

$CHCl_2-COOH+Cl_2{→}↖{Р(красный)}{CCl_3-COOH+HCl}↙{\text"трихлоруксусная кислота"}$

Отдельные представители карбоновых кислот и их значение

Муравьиная (метановая) кислота ХЦООХ — жидкость с резким запахом и температурой кипения $100.8°С$, хорошо растворима в воде. Муравьиная кислота ядовита, при попадании на кожу вызывает ожоги! Жалящая жидкость, выделяемая муравьями, содержит эту кислоту. Муравьиная кислота обладает дезинфицирующим свойством и поэтому находит свое применение в пищевой, кожевенной и фармацевтической промышленности, медицине. Она используется при крашении тканей и бумаги.

Уксусная (этановая) кислота $CH_3COOH$ — бесцветная жидкость с характерным резким запахом, смешивается с водой в любых cоотношениях. Водные растворы уксусной кислоты поступают в продажу под названием уксуса ($3-5%$-ный раствор) и уксусной эссенции ($70-80%$-ный раствор) и широко используются в пищевой промышленности. Уксусная кислота — хороший растворитель многих органических веществ и поэтому используется при крашении, в кожевенном производстве, в лакокрасочной промышленности. Кроме этого, уксусная кислота является сырьем для получения многих важных в техническом отношении органических соединений: например, на ее основе получают вещества, используемые для борьбы с сорняками, — гербициды.

Уксусная кислота является основным компонентом винного уксуса, характерный запах которого обусловлен именно ею. Она — продукт окисления этанола и образуется из него при хранении вина на воздухе.

Важнейшими представителями высших предельных одноосновных кислот являются пальмитиновая $C_{15}H_{31}COOH$ и стеариновая $C_{17}H_{35}COOH$ кислоты. В отличие от низших кислот, эти вещества твердые, плохо растворимы в воде.

Однако их соли — стеараты и пальмитаты — хорошо растворимы и обладают моющим действием, поэтому их еще называют мылами. Понятно, что эти вещества производят в больших масштабах. Из непредельных высших карбоновых кислот наибольшее значение имеет олеиновая кислота $C_{17}H_{33}COOH$, или $CH_3 — (CH_2)_7 — CH=CH —(CH_2)_7COOH$. Это маслоподобная жидкость без вкуса и запаха. Широкое применение в технике находят ее соли.

Простейшим представителем двухосновных карбоновых кислот является щавелевая (этандиовая) кислота $HOOC—COOH$, соли которой встречаются во многих растениях, например в щавеле и кислице. Щавелевая кислота — это бесцветное кристаллическое вещество, хорошо растворяется в воде. Она применяется при полировке металлов, в деревообрабатывающей и кожевенной промышленности.

Сложные эфиры

При взаимодействии карбоновых кислот со спиртами (реакция этерификации) образуются сложные эфиры:

Эта реакция обратима. Продукты реакции могут взаимодействовать друг с другом с образованием исходных веществ — спирта и кислоты. Таким образом, реакция сложных эфиров с водой — гидролиз сложного эфира — обратна реакции этерификации. Химическое равновесие, устанавливающееся при равенстве скоростей прямой (этерификация) и обратной (гидролиз) реакций, может быть смещено в сторону образования эфира присутствием водоотнимающих средств.

Жиры — производные соединения, которые представляют собой сложные эфиры глицерина и высших карбоновых кислот.

Все жиры, как и другие сложные эфиры, подвергаются гидролизу:

При проведении гидролиза жира в щелочной среде $(NaOH)$ и в присутствии кальцинированной соды $Na_2CO_3$ он протекает необратимо и приводит к образованию не карбоновых кислот, а их солей, которые называются мылами. Поэтому гидролиз жиров в щелочной среде называются омылением.

Содержание статьи

АЛЬДЕГИДЫ И КЕТОНЫ – органические соединения, содержащие фрагмент >C=O (углерод, связанный двойной связью с кислородом, его называют карбонильным). У альдегидов карбонильный углерод соединен с атомом Н и органической группой R (общая формула RHC=O), а в кетонах – с двумя органическими группами (общая формула R 2 С=О).

Номенклатура альдегидов и кетонов. Группу –(Н)С=О называют альдегидной, для связывания с органическими группами у нее есть всего одна свободная валентность, это позволяет ей находится только на конце углеводородной цепи (но не в середине). При составлении названия альдегида указывается название соответствующего углеводорода, к которому добавляется суффикс «аль», например, метаналь Н 2 С=О, этаналь Н 3 СС(Н)=О, пропаналь Н 3 ССН 2 С(Н)=О. В более сложных случаях углеродную цепь группы R нумеруют, начиная с карбонильного углерода, затем с помощью числовых индексов указывают положение функциональных групп и различных заместителей.

Рис. 1. НОМЕНКЛАТУРА АЛЬДЕГИДОВ . Замещающие и функциональные группы, а также соответствующие им цифровые индексы выделены различающимися цветами.

Для некоторых альдегидов часто используют тривиальные (упрощенные) названия, сложившиеся исторически, например, формальдегид Н 2 С=О, ацетальдегид Н 3 СС(Н)=О, кротоновый альдегид СН 3 СН=CHC(H)=O.

В отличие от альдегидной, кетонная группа >C=O может находиться также в середине углеводородной цепи, поэтому в простых случаях указывают названия органических групп (упоминая их в порядке увеличения) и добавляют слово «кетон»: диметилкетон CH 3 –CO–CH 3 , метилэтилкетон CH 3 CH 2 –CO–CH 3 . В более сложных случаях положение кетонной группы в углеводородной цепи указывают цифровым индексом, добавляя суффикс «он ». Нумерацию углеводородной цепи начинают с того конца, который находится ближе к кетонной группе (рис. 2).

Рис. 2. НОМЕНКЛАТУРА КЕТОНОВ . Замещающие и функциональные группы и соответствующие им цифровые индексы выделены различными цветами.

Для простейшего кетона CH 3 –CO–CH 3 принято тривиальное название – ацетон.

Химические свойства альдегидов и кетонов

определяются особенностями карбонильной группы >C=O, обладающей полярностью – электронная плотность между атомами С и О распределена неравномерно, сдвинута к более электроотрицательному атому О. В результате карбонильная группа приобретает повышенную реакционную способность, что проявляется в разнообразных реакциях присоединения по двойной связи. Во всех случаях кетоны менее реакционноспособны, чем альдегиды, в частности, из-за пространственных затруднений, создаваемых двумя органическими группами R, наиболее легко участвует в реакциях формальдегид Н 2 С=О.

1. Присоединение по двойной связи С=О.

При взаимодействии со спиртами альдегиды образуют полуацетали – соединения, содержащие одновременно алкокси- и гидрокси-группу у одного атома углерода: >C(OH)OR. Полуацетали могут далее реагировать с еще одной молекулой спирта, образуя полные ацетали – соединения, где у одного атома углерода находятся одновременно две RО-группы: >C(OR) 2 . Реакцию катализируют кислоты и основания (рис. 3А). В случае кетонов присоединение спиртов к двойной связи в С=О затруднено.

Сходным образом альдегиды и кетоны реагируют с синильной кислотой HCN, образуя гидроксинитрилы – соединения, содержащие у одного атома углерода ОН- и CN-группу: >C(OH)Cє N (рис. 3Б). Реакция примечательна тем, что позволяет увеличивать углеродную цепь (возникает новая связь С-С).

Точно так же (раскрывая двойную связь С=О) аммиак и амины реагируют с альдегидами и кетонами, продукты присоединения неустойчивы и конденсируются с выделением воды и образованием двойной связи C=N. В случае аммиака получаются имины (рис. 3В), а из аминов образуются так называемые основания Шиффа – соединения, содержащие фрагмент >C=NR (рис. 3Г). Продукт взаимодействия формальдегида с аммиаком несколько иной – это результат циклизации трех промежуточных молекул, в результате получается каркасное соединение гексаметилентетрамин, используемое в медицине как препарат уротропин (рис. 3Д).

2. Реакции конденсации. Для альдегидов и кетонов возможна конденсация, проходящая между двумя молекулами одного и того же соединения. При такой конденсации альдегидов двойная связь одной из молекул раскрывается, образуется соединение, содержащее одновременно альдегидную и ОН-группу, называемое альдолем (альдегидоспирт). Протекающую конденсацию называют, соответственно, альдольной, эту реакцию катализируют основания (рис. 4А). Полученный альдоль может далее конденсироваться с образованием двойной связи С=С и выделением конденсационной воды. В итоге получается ненасыщенный альдегид (рис. 4А, кротоновой альдегид). Такую конденсацию называют кротоновой по названию первого соединения в ряду ненасыщенных альдегидов. Кетоны также способны участвовать в альдольной конденсации (рис. 4Б), а вторая стадия – кротоновая конденсация, для них затруднена. В альдольной конденсации могут совместно участвовать молекулы различных альдегидов, а также одновременно альдегид и кетон, во всех случаях происходит удлинение углеродной цепи. Получившийся на последней стадии (рис. 4А) кротоновый альдегид, обладая всеми свойствами альдегидов, может далее участвовать в альдольной и кротоновой конденсации при взаимодействии с очередной порцией ацетальдегида, из которого он и был получен (рис. 4В). Таким способом можно удлинять углеводородную цепь, получая соединения, в которых чередуются простые и двойные связи: –СН=СН–СН=СН–.

Конденсация альдегидов и кетонов с фенолами идет с удалением карбонильного атома О (в виде воды), а метиленовая группа СН 2 или замещенная метиленовая группа (СНR либо СR 2) встраивается между двумя молекулами фенола. Наиболее широко эту реакцию применяют для получения фенолоформальдегидных смол (рис. 5.).

Рис. 5. КОНДЕНСАЦИЯ ФЕНОЛА С ФОРМАЛЬДЕГИДОМ

3. Полимеризация карбонильных соединений протекает с раскрытием двойной связи С=О и свойственна, в основном, альдегидам. При упаривании в вакууме водных растворов формальдегида образуется смесь циклических соединений (в основном, триоксиметилен) и линейных продуктов с незначительной длиной цепи n = 8–12 (параформ). Полимеризацией циклического продукта получают полиформальдегид (рис. 6) – полимер с высокой прочностью и хорошими электроизоляционными свойствами, используемый как конструкционный материал в машино- и приборостроении.

Рис. 6. ПРОДУКТЫ ПОЛИМЕРИЗАЦИИ ФОРМАЛЬДЕГИДА

4. Восстановление и окисление. Альдегиды и кетоны представляют собой как бы промежуточные соединения между спиртами и карбоновыми кислотами : восстановление приводит к спиртам, а окисление –- к карбоновым кислотам. При действии Н 2 (в присутствии катализатора Pt или Ni) либо других восстанавливающих реагентов, например, LiAlH 4 , альдегиды восстанавливаются, образуя первичные спирты, а кетоны – вторичные спирты (рис. 7, схемы А и Б).

Окисление альдегидов до карбоновых кислот проходит достаточно легко в присутствии О 2 или при действии слабых окислителей, таких как аммиачный раствор гидроксида серебра (рис. 7В). Эта эффектная реакция сопровождается образованием серебряного зеркала на внутренней поверхности реакционного прибора (чаще, обычной пробирки), ее используют для качественного обнаружения альдегидной группы. В отличие от альдегидов, кетоны более устойчивы к окислению, при их нагревании в присутствии сильных окислителей, например, КМnО 4 , образуются смеси карбоновых кислот, имеющих укороченную (в сравнении с исходным кетоном) углеводородную цепь.

Рис. 7. ВОССТАНОВЛЕНИЕ И ОКИСЛЕНИЕ АЛЬДЕГИДОВ И КЕТОНОВ

Дополнительным подтверждением того, что альдегиды занимают промежуточное положение между спиртами и кислотами, служит реакция, в результате которой из двух молекул альдегида получаются спирт и карбоновая кислота (рис. 8А), т.е. одна молекула альдегида окисляется, а другая восстанавливается. В некоторых случаях два полученных соединения – спирт и карбоновая кислота – далее реагируют между собой, образуя сложный эфир (рис.8Б).

Рис. 8. ПРОТЕКАЮЩЕЕ ОДНОВРЕМЕННО ОКИСЛЕНИЕ И ВОССТАНОВЛЕНИЕ АЛЬДЕГИДОВ

Получение альдегидов и кетонов.

Наиболее универсальный способ – окисление спиртов, при этом из первичных спиртов образуются альдегиды, а из вторичных – кетоны (рис. 9А и Б). Это реакции, обратные реакциям на рис. 7А и Б. Реакция поворачивает «вспять», если изменен действующий реагент (окислитель вместо восстановителя) и катализатор, при окислении спиртов эффективен медный катализатор.

В промышленности ацетальдегид получают окислением этилена (рис. 9В), на промежуточной стадии образуется спирт, у которого ОН-группа «примыкает» к двойной связи (виниловый спирт), такие спирты неустойчивы и сразу изомеризуются в карбонильные соединения. Другой способ – каталитическая гидратация ацетилена (рис. 9Г), промежуточное соединение – виниловый спирт. Если вместо ацетилена взять метилацетилен, то получится ацетон (рис. 9Д). Промышленный способ получения ацетона – окислением кумола. Ароматические кетоны, например, ацетофенон, получают каталитическим присоединением ацетильной группы к ароматическому ядру (рис. 9Е).

Применение альдегидов и кетонов.

Формальдегид Н 2 С=О (его водный раствор называют формалином) используют как дубитель кожи и консервант биологических препаратов.

Ацетон (СН 3) 2 С=О – широко применяемый экстрагент и растворитель лаков и эмалей.

Ароматический кетон бензофенон (С 6 Н 5) 2 С=О с запахом герани, используется в парфюмерных композициях и для ароматизации мыла.

Некоторые из альдегидов были сначала найдены в составе эфирных масел растений, а позже искусственно синтезированы.

Алифатический альдегид СН 3 (СН 2) 7 С(Н)=О (тривиальное название – пеларгоновый альдегид) содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизатор.

Ароматический альдегид ванилин (рис. 10) содержится в плодах тропического растения ванили, сейчас чаще используется синтетический ванилин – широко известная ароматизирующая добавка в кондитерские изделия (рис. 10).

Рис. 10. ВАНИЛИН

Бензальдегид С 6 Н 5 С(Н)=О с запахом горького миндаля содержится в миндальном масле и в эфирном масле эвкалипта. Синтетический бензальдегид используется в пищевых ароматических эссенциях и в парфюмерных композициях.

Бензофенон (С 6 Н 5) 2 С=О и его производные способны поглощать УФ-лучи, что определило их применение в кремах и лосьонах от загара, кроме того, некоторые производные бензофенона обладают противомикробной активностью и применяются в качестве консервантов. Бензофенон обладает приятным запахом герани, и потому его используют в парфюмерных композициях и для ароматизации мыла.

Способность альдегидов и кетоновучаствовать в различных превращениях определила их основное применение в качестве исходных соединений для синтеза разнообразных органических веществ: спиртов, карбоновых кислот и их ангидридов, лекарственных препаратов (уротропин), полимерных продуктов (фенолоформальдегидные смолы, полиформальдегид), в производстве всевозможных душистых веществ (на основе бензальдегида) и красителей.

Михаил Левицкий

Лекция № 11

АЛЬДЕГИДЫ И КЕТОНЫ

План

1. Методы получения.

2. Химические свойства.

2.1. Реакции нуклеофильного
присоединения.

2.2. Реакции по a -углеродному атому.

2.3.


Лекция № 11

АЛЬДЕГИДЫ И КЕТОНЫ

План

1. Методы получения.

2. Химические свойства.

2.1. Реакции нуклеофильного
присоединения.

2.2. Реакции по a -углеродному атому.

2.3. Реакции окисления и восстановления.

Альдегиды и кетоны содержат карбонильную группу
С=О. Общая формула:

1. Методы получения.

2. Химические
свойства.

Альдегиды и кетоны – один из наиболее реакционноспособных классов
органических соединений. Их химические свойства определяются присутствием
карбонильной группы. Вследствие большого различия в электроотрицательностях
углерода и кислорода и высокой поляризуемости p -связи связь С=О обладает значительной полярностью
(
m С=О =2,5-2,8 D). Атом углерода карбонильной
группы несет эффективный положительный заряд и является объектом для атаки
нуклеофилов. Основной тип реакций альдегидов и кетонов – реакции
нуклеофильного присоединения Ad
N . Кроме того, карбонильная группа оказывает влияние на
реакционную способность связи С-Н в
a -положении, повышая ее кислотность.

Таким образом, молекулы альдегидов и кетонов
содержат два основных реакционных центра – связь С=О и связь С-Н в a -положении:

2.1. Реакции нуклеофильного
присоединения.

Альдегиды и кетоны легко присоединяют нуклеофильные реагенты по С=О связи.
Процесс начинается с атаки нуклеофила по карбонильному атому углерода. Затем
образующийся на первой стадии тетраэдрический интермедиат присоединяет протон и
дает продукт присоединения:

Активность карбонильных соединений в
Ad N –реакциях зависит от величины
эффективного положительного заряда на карбонильном атоме углерода и объема
заместителей у карбонильной группы. Электронодонорные и объемистые заместители
затрудняют реакцию, электроноакцепторные заместители повышают реакционную
способность карбонильного соединения. Поэтому альдегиды в
Ad
N –реакциях активнее, чем
кетоны.

Активность карбонильных соединений повышается в
присутствии кислотных катализаторов, которые увеличивают положительный заряд на
карбонильном атоме углерода:

Альдегиды и кетоны присоединяют воду, спирты,
тиолы, синильную кислоту, гидросульфит натрия, соединения типа
NH 2 X. Все реакции присоединения
идут быстро, в мягких условиях, однако образующиеся продукты, как правило,
термодинамически не устойчивы. Поэтому реакции протекают обратимо, и содержание
продуктов присоединения в равновесной смеси может быть низким.

Присоединение воды.

Альдегиды и кетоны присоединяют воду с
образованием гидратов. Реакция протекает обратимо. Образующиеся гидраты
термодинамически не стабильны. Равновесие смещено в сторону продуктов
присоединения только в случае активных карбонильных соединений.

Продукт гидратации трихлоруксусного альдегида
хлоральгидрат – устойчивое кристаллическое соединение, которое используется в
медицине как успокаивающее и снотворное средство.

Присоединение спиртов и
тиолов.

Альдегиды присоединяют спирты с образованием полуацеталей . При избытке спирта и в присутствии кислотного катализатора
реакция идет дальше – до образования ацеталей

Реакция образования полуацеталя протекает как
нуклеофильное присоединение и ускоряется в присутствии кислот или
оснований.

Процесс образования ацеталя идет как
нуклеофильное замещение ОН группы в полуацетале и возможен только в условиях
кислотного катализа, когда группа ОН превращается в хорошую уходящую группу
(H 2 O).

Образование ацеталей – обратимый процесс. В
кислой среде полуацетали и ацетали легко гидролизуются. В щелочной среде
гидролиз не идет. Реакции образования и гидролиза ацеталей играют важную роль в
химии углеводов.

Кетоны в аналогичных условиях кеталей не
дают.

Тиолы как более сильные нуклеофилы, чем спирты,
образуют продукты присоединения и с альдегидами, и с кетонами.

Присоединение синильной
кислоты

Синильная кислота присоединяется к карбонильным соединением в условиях
основного катализа с образованием циангидринов.

Реакция имеет препаративное значение и
используется в синтезе a -гидрокси- и a -аминокислот (см. лек. № 14). Плоды некоторых растений
(например, горький миндаль) содержат циангидрины. Выделяющаяся при их
расщеплении синильная кислота оказывает отравляющее действие
.

Присоединение бисульфита
натрия.

Альдегиды и метилкетоны присоединяют бисульфит натрия NaHSO 3 c образованием бисульфитных производных.

Бисульфитные производные карбонильных соединений
кристаллические вещества, не растворимые в избытке раствора бисульфита натрия.
Реакция используется выделения карбонильных соединений из смесей. Карбонильное
соединение может быть легко регенерировано обработкой бисульфитного производного
кислотой или щелочью.

Взаимодействие с соединениями общей
формулы NH
2 X.

Реакции протекают по общей схеме как процесс
присоединения-отщепления. Образующийся на первой стадии продукт присоединения не
устойчив и легко отщепляет воду.

По приведенной схеме с карбонильными
соединениями реагируют аммиак, первичные амины, гидразин, замещенные гидразины,
гидроксиламин.

Образующиеся производные представляют собой
кристаллические вещества, которые используют для выделения и идентификации
карбонильных соединений.

Имины (основания Шиффа) являются промежуточными
продуктами во многих ферментативных процессах (трансаминирование под действием
кофермента пиридоксальфосфата; восстановительное аминирование кетокислот при
участии кофермента НАД Н). При каталитическом гидрировании иминов образуются
амины. Процесс используется для синтеза аминов из альдегидов и кетонов и
называется восстановительным аминированием.

Восстановительное аминирование протекает in vivo
в ходе синтеза аминокислот (см. лек. № 16)

2.2. Реакции по a -углеродному атому.

Кето-енольная таутомерия.

Водород в a -положении к карбонильной группе обладает кислотными
свойствами, так как образующийся при его отщеплении анион стабилизируется за
счет резонанса.

Результатом протонной подвижности атома водорода
в a -положении
является способность карбонильных соединений к образованию енольных форм за счет
миграции протона из
a -положения к атому кислорода карбонильной группы.

Кетон и енол являются таутомерами .
Таутомеры – это изомеры, способные быстро и обратимо превращаться друг в друга
за счет миграции какой-либо группы (в данном случае – протона). Равновесие между
кетоном и енолом называют кето-енольной таутомерией.

Процесс енолизации катализируется кислотами и
основаниями. Енолизация под действием основания может быть представлена
следующей схемой:

Большинство карбонильных соединений существуют
преимущественно в кетонной форме. Содержание енольной формы возрастает с
увеличением кислотности карбонильного соединения, а также в случае
дополнительной стабилизации енольной формы за счет водородной связи или за счет
сопряжения.

Таблица 8. Содержание енольных форм и
кислотность карбонильных соединений

Например, в 1,3-дикарбонильных соединениях
подвижность протонов метиленовой группы резко увеличивается за счет
электроноакцепторного влияния двух карбонильных групп. Кроме того, енольная
форма стабилизируется за счет наличия в ней системы сопряженных p -связей и внутримолекулярной
водородной связи.

Если соединение в енольной форме представляет
собой сопряженную систему с высокой энергией стабилизации, то енольная форма
преобладает. Например, фенол существует только в енольной форме.

Енолизация и образование енолят-анионов являются
первыми стадиями реакций карбонильных соединений, протекающих по a -углеродному атому. Важнейшими
из них являются галогенирование и альдольно-кротоновая
конденсация
.

Галогенирование.

Альдегиды и кетоны легко вступают в реакцию с галогенами (Cl 2 ,
Br 2 , I 2 ) с образованием
исключительно
a -галогенпроизводных.

Реакция катализируется кислотами или
основаниями. Скорость реакции не зависит от концентрации и природы галогена.
Процесс протекает через образование енольной формы (медленная стадия), которая
затем реагирует с галогеном (быстрая стадия). Таким образом, галоген не
участвует в скорость —определяющей стадии
процесса.

Если карбонильное соединение содержит несколько a -водородных
атомов, то замещение каждого последующего происходит быстрее, чем предыдущего,
вследствие увеличения их кислотности под действием электроноакцепторного влияния
галогена. В щелочной среде ацетальдегид и метилкетоны дают
тригалогенпроизводные, которые затем расщеплятся под действием избытка щелочи с
образованием тригалогенметанов (галоформная реакция)
.

Расщепление трииодацетона протекает как реакция
нуклеофильного замещения. группы CI 3 — гидроксид-анионом, подобно S N -реакциям в карбоксильной группе (см. лек. №12).

Иодоформ выпадает из реакционной смеси в виде
бледно-желтого кристаллического осадка с характерным запахом. Иодоформную
реакцию используют в аналитических целях для обнаружения соединений типа
СH 3 -CO-R, в том числе в
клинических лабораториях для диагностики сахарного диабета.

Реакции конденсации.

В присутствии каталитических количеств кислот
или щелочей карбонильные соединения, содержащие a -водородные атомы,
претерпевают конденсацию с образованием
b -гидроксикарбонильных соединений.

В образовании связи С-С участвуют карбонильный
атом углерода одной молекулы (карбонильной компоненты ) и a -углеродный атом другой
молекулы (метиленовой компоненты ). Эта реакция носит название альдольной конденсации (по названию продукта конденсации ацетальдегида –
альдоля).

При нагревании реакционной смеси продукт легко
дегидратируется с образованием a ,b -непредельного карбонильного
соединения.

Такой тип конденсации носит название кротоновой (по названию продукта конденсации ацетальдегида – кротонового
альдегида).

Рассмотрим механизм альдольной конденсации в
щелочной среде. На первой стадии гидроксид-анион отрывает протон из a -положения карбонильного
соединения с образованием енолят-аниона. Затем енолят анион как нуклеофил
атакует карбонильный атом углерода другой молекулы карбонильного соединения.
Образующийся тетраэдрический интермедиат (алкоксид-анион) является сильным
основанием и отрывает далее протон от молекулы воды.

При альдольной конденсации двух различных
карбонильных соединений (перекрестная альдольная конденсация) возможно
образование 4-х разных продуктов. Однако этого можно избежать, если одно из
карбонильных соединений не содержит a -водородных атомов (например, ароматические альдегиды
или формальдегид) и не может выступать в качестве метиленовой компоненты.

В качестве метиленовой компоненты в реакциях
конденсации могут выступать не только карбонильные соединения, но и другие
С-Н-кислоты. Реакции конденсации имеют препаративное значение, так как позволяют
наращивать цепь углеродных атомов. По типу альдольной конденсации и
ретроальдольного распада (обратный процесс) протекают многие биохимические
процессы: гликолиз, синтез лимонной кислоты в цикле Кребса, синтез нейраминовой
кислоты.

2.3. Реакции окисления и
восстановления

Восстановление

Карбонильные соединения восстанавливаются до
спиртов в результате каталитического гидрирования или под действием
восстановителей, которые являются донорами гидрид-анионов.

[H]: H 2 /кат., кат. – Ni, Pt,
Pd;

LiAlH 4 ; NaBH 4 .

Восстановление карбонильных соединений
комплексными гидридами металлов включает нуклеофильную атаку карбонильной группы
гидрид-анионом. При последующем гидролизе образуется спирт.

Аналогично происходит восстановление
карбонильной группы in vivo под действием кофермента НАД Н, который является
донором гидрид-иона (см. лек. №19).

Окисление

Альдегиды окисляются очень легко практически
любыми окислителями, даже такими слабыми, как кислород воздуха и соединения
серебра (I) и меди (II).

Две последние реакции используются как
качественные на альдегидную группу.

В присутствии щелочей альдегиды, не содержащие a -водородных атомов
диспропорционируют с образованием спирта и кислоты (реакция Канницаро).

2HCHO + NaOH ® HCOONa + CH 3 OH

Это является причиной того, что водный раствор
формальдегида (формалин) при длительном хранении приобретает кислую
реакцию.

Кетоны устойчивы к действию окислителей в
нейтральной среде. В кислой и щелочной средах под действием сильных
окислителей (KMnO 4 ) они
окисляются с разрывом связи С-С. Расщепление углеродного скелета происходит по
двойной углерод-углеродной связи енольных форм карбонильного соединения, подобно
окислению двойных связей в алкенах. При этом образуется смесь продуктов,
содержащая карбоновые кислоты или карбоновые кислоты и кетоны.