Formelen til forbindelsen er svovelsyre. Kjemiske elementer. Interaksjon med salter

Strukturformel

Sann, empirisk eller grov formel: H2SO4

Kjemisk sammensetning av svovelsyre

Molekylvekt: 98,076

Svovelsyre H 2 SO 4 er en sterk dibasisk syre, tilsvarende høyeste grad svoveloksidasjon (+6). Under normale forhold er konsentrert svovelsyre en tung, oljeaktig væske, fargeløs og luktfri, med en sur "kobber"-smak. I teknologi kalles svovelsyre dens blanding med både vann og svovelsyreanhydrid SO 3. Hvis molforholdet SO 3: H 2 O er mindre enn 1, så er det en vandig løsning av svovelsyre, hvis mer enn 1 er det en løsning av SO 3 i svovelsyre (oleum).

Navn

På 1700-1800-tallet ble svovel til krutt produsert av svovelkis (pyritt) i vitriolfabrikker. Svovelsyre på den tiden ble kalt "olje av vitriol" (som regel var det et krystallinsk hydrat, med en konsistens som minner om olje), åpenbart derav opprinnelsen til navnet på dens salter (eller rettere sagt, krystallinske hydrater) - vitriol .

Fremstilling av svovelsyre

Industriell (kontakt) metode

I industrien produseres svovelsyre ved oksidasjon av svoveldioksid (svoveldioksidgass dannet under forbrenning av svovel eller svovelkis) til trioksid (svovelsyreanhydrid), etterfulgt av reaksjonen av SO 3 med vann. Svovelsyren oppnådd ved denne metoden kalles også kontaktsyre (konsentrasjon 92-94%).

Nitrose (tårn) metode

Tidligere ble svovelsyre produsert utelukkende etter salpetermetoden i spesialtårn, og syren ble kalt tårnsyre (konsentrasjon 75%). Essensen av denne metoden er oksidasjon av svoveldioksid med nitrogendioksid i nærvær av vann.

Annen vei

I de sjeldne tilfellene når hydrogensulfid (H 2 S) fortrenger sulfat (SO 4 -) fra saltet (med metallene Cu, Ag, Pb, Hg), er biproduktet svovelsyre. Sulfider av disse metallene har den høyeste styrken, samt en særegen svart farge.

Fysisk og fysisk Kjemiske egenskaper

En meget sterk syre, ved 18 o C pK a (1) = -2,8, pK a (2) = 1,92 (K z 1,2 10 -2); bindingslengder i molekylet S=O 0,143 nm, S-OH 0,154 nm, HOSOH-vinkel 104°, OSO 119°; koker, og danner en azeotrop blanding (98,3 % H 2 SO 4 og 1,7 % H 2 O med et kokepunkt på 338,8 o C). Svovelsyre tilsvarende 100 % H 2 SO 4 innhold har sammensetningen (%): H 2 SO 4 99,5, HSO 4 - - 0,18, H 3 SO 4 + - 0,14, H 3 O + - 0,09, H 2 S 2 O 7, - 0,04, HS207 - - 0,05. Blandbar med vann og SO 3 i alle proporsjoner. I vandige løsninger dissosieres svovelsyre nesten fullstendig til H 3 O +, HSO 3 + og 2 HSO 4 -. Danner hydrater H 2 SO 4 · nH 2 O, hvor n = 1, 2, 3, 4 og 6,5.

Oleum

Løsninger av svovelsyreanhydrid SO 3 i svovelsyre kalles oleum de danner to forbindelser H 2 SO 4 · SO 3 og H 2 SO 4 · 2SO 3. Oleum inneholder også pyrosulfuric syrer. Kokepunktet for vandige løsninger av svovelsyre øker med økende konsentrasjon og når et maksimum ved et innhold på 98,3% H 2 SO 4. Kokepunktet til oleum synker med økende SO 3-innhold. Når konsentrasjonen av vandige løsninger av svovelsyre øker, synker det totale damptrykket over løsningene og når et minimum ved et innhold på 98,3 % H 2 SO 4. Når konsentrasjonen av SO 3 i oleum øker, øker det totale damptrykket over det. Damptrykk over vandige løsninger svovelsyre og oleum kan beregnes ved å bruke ligningen:

log p=A-B/T+2,126

Verdiene til koeffisientene A og B avhenger av konsentrasjonen av svovelsyre. Damp over vandige løsninger av svovelsyre består av en blanding av vanndamp, H 2 SO 4 og SO 3, og sammensetningen av dampen er forskjellig fra sammensetningen av væsken ved alle konsentrasjoner av svovelsyre, bortsett fra den tilsvarende azeotropiske blandingen. Når temperaturen øker, øker dissosiasjonen. Oleum H2SO4·SO3 har maksimal viskositet med økende temperatur, η synker. Elektrisk motstand svovelsyre er minimal ved en konsentrasjon på SO 3 og 92 % H 2 SO 4 og maksimal ved en konsentrasjon på 84 og 99,8 % H 2 SO 4. For oleum er minimum ρ ved en konsentrasjon på 10 % SO 3. Med økende temperatur øker ρ av svovelsyre. Dielektrisk konstant av 100 % svovelsyre 101 (298,15 K), 122 (281,15 K); kryoskopisk konstant 6,12, ebullioskopisk konstant 5,33; diffusjonskoeffisienten til svovelsyredamp i luft varierer avhengig av temperatur; D = 1,67·10⁻⁵T3/2 cm²/s.

Kjemiske egenskaper

Svovelsyre i konsentrert form ved oppvarming er et ganske sterkt oksidasjonsmiddel. Oksiderer HI og delvis HBr til frie halogener. Oksiderer mange metaller (unntak: Au, Pt, Ir, Rh, Ta.). I dette tilfellet reduseres konsentrert svovelsyre til SO 2. I kulde i konsentrert svovelsyre passiveres Fe, Al, Cr, Co, Ni, Ba og reaksjoner oppstår ikke. De kraftigste reduksjonsmidlene reduserer konsentrert svovelsyre til S og H 2 S. Konsentrert svovelsyre absorberer vanndamp, så den brukes til tørking av gasser, væsker og faste stoffer for eksempel i ekssikkatorer. Imidlertid reduseres konsentrert H 2 SO 4 delvis av hydrogen, som er grunnen til at det ikke kan brukes til å tørke det. Splitte av vann fra organiske forbindelser og etterlater svart karbon (kull), forårsaker konsentrert svovelsyre forkulling av tre, sukker og andre stoffer. Fortynnet H 2 SO 4 interagerer med alle metaller i elektrokjemisk serie spenninger til venstre for hydrogen med utgivelsen. De oksiderende egenskapene til fortynnet H 2 SO 4 er ukarakteristiske. Svovelsyre danner to serier av salter: medium - sulfater og sure - hydrosulfater, samt estere. Peroxomonosulfuric (eller Caro acid) H 2 SO 5 og peroxodisulfuric H 2 S 2 O 8 syrer er kjent. Svovelsyre reagerer også med basiske oksider for å danne sulfat og vann. I metallbearbeidingsanlegg brukes en løsning av svovelsyre for å fjerne et lag av metalloksid fra overflaten av metallprodukter som utsettes for høy varme under produksjonsprosessen. Således fjernes jernoksid fra overflaten av jernplate ved påvirkning av en oppvarmet løsning av svovelsyre. En kvalitativ reaksjon på svovelsyre og dens løselige salter er deres interaksjon med løselige bariumsalter, som resulterer i dannelsen av et hvitt bunnfall av bariumsulfat, uløselig i vann og syrer, for eksempel.

applikasjon

Svovelsyre brukes:

  • i malmbehandling, spesielt ved utvinning av sjeldne grunnstoffer, inkludert uran, iridium, zirkonium, osmium, etc.;
  • i produksjon mineralgjødsel;
  • som en elektrolytt i blybatterier;
  • for å oppnå forskjellige mineralsyrer og salter;
  • i produksjon kjemiske fibre, fargestoffer, røykdannende og eksplosiver;
  • i olje-, metall-, tekstil-, lær- og annen industri;
  • i næringsmiddelindustrien - registrert som mattilsetning E513 (emulgator);
  • i industri organisk syntese i reaksjoner:
    • dehydrering (produksjon av dietyleter, estere);
    • hydratisering (etanol fra etylen);
    • sulfonering (syntetiske vaskemidler og mellomprodukter i produksjon av fargestoffer);
    • alkylering (produksjon av isooktan, polyetylenglykol, kaprolaktam), etc.
    • For restaurering av harpiks i filtre ved produksjon av destillert vann.

Verdensproduksjonen av svovelsyre er ca. 160 millioner tonn per år. Den største forbrukeren av svovelsyre er produksjon av mineralgjødsel. P 2 O 5 fosforgjødsel forbruker 2,2-3,4 ganger mer masse av svovelsyre, og (NH 4) 2 SO 4 svovelsyre forbruker 75 % av massen av forbrukt (NH 4) 2 SO 4. Derfor har de en tendens til å bygge svovelsyreanlegg i forbindelse med fabrikker for produksjon av mineralgjødsel.

Historisk informasjon

Svovelsyre har vært kjent siden antikken, og forekommer i naturen i fri form, for eksempel i form av innsjøer nær vulkaner. Muligens den første omtale av sure gasser produsert ved kalsinering av alun eller jernsulfat"grønn stein", funnet i skrifter tilskrevet den arabiske alkymisten Jabir ibn Hayyan. På 900-tallet fikk den persiske alkymisten Ar-Razi, som kalsinerte en blanding av jern og kobbersulfat (FeSO 4 7H 2 O og CuSO 4 5H 2 O), også en løsning av svovelsyre. Denne metoden ble forbedret av den europeiske alkymisten Albert Magnus, som levde på 1200-tallet. Ordningen for fremstilling av svovelsyre fra jern(II)sulfat er termisk dekomponering av jern(II)sulfat etterfulgt av avkjøling av blandingen. Verkene til alkymisten Valentin (1200-tallet) beskriver en metode for å produsere svovelsyre ved å absorbere gass (svovelsyreanhydrid) som frigjøres ved å brenne en blanding av svovel- og nitratpulver med vann. Deretter dannet denne metoden grunnlaget for den såkalte. "kammer"-metoden, utført i små kammer foret med bly, som ikke løses opp i svovelsyre. I USSR eksisterte denne metoden til 1955. Alkymister på 1400-tallet kjente også til en metode for å produsere svovelsyre fra svovelkis – svovelkis, et billigere og mer vanlig råstoff enn svovel. Svovelsyre har blitt produsert på denne måten i 300 år, i små mengder i glassretorter. Deretter, i forbindelse med utviklingen av katalyse, erstattet denne metoden kammermetoden for syntese av svovelsyre. For tiden produseres svovelsyre ved katalytisk oksidasjon (på V 2 O 5) av svoveloksid (IV) til svoveloksid (VI), og påfølgende oppløsning av svoveloksid (VI) i 70 % svovelsyre for å danne oleum. I Russland ble produksjonen av svovelsyre først organisert i 1805 nær Moskva i Zvenigorod-distriktet. I 1913 rangerte Russland på 13. plass i verden i produksjon av svovelsyre.

tilleggsinformasjon

Små dråper av svovelsyre kan dannes i de midtre og øvre lag av atmosfæren som følge av reaksjonen av vanndamp og vulkansk aske som inneholder store mengder svovel. Den resulterende suspensjonen, på grunn av den høye albedoen av svovelsyreskyer, gjør det vanskelig for sollys å nå overflaten av planeten. Derfor (og også som et resultat av det store antallet små partikler av vulkansk aske i den øvre atmosfæren, som også hindrer tilgang av sollys til planeten) etter spesielt sterk vulkanutbrudd betydelige klimaendringer kan forekomme. For eksempel, som et resultat av utbruddet av Ksudach-vulkanen (Kamchatka-halvøya, 1907), forble en økt konsentrasjon av støv i atmosfæren i omtrent 2 år, og karakteristiske nattlysende skyer av svovelsyre ble observert selv i Paris. Eksplosjonen av Pinatubo-fjellet i 1991, som slapp ut 3 × 10 7 tonn svovel i atmosfæren, resulterte i at 1992 og 1993 ble betydelig kaldere enn 1991 og 1994.

Standarder

  • Teknisk svovelsyre GOST 2184-77
  • Batteri svovelsyre. Tekniske spesifikasjoner GOST 667-73
  • Svovelsyre av spesiell renhet. Tekniske spesifikasjoner GOST 1422-78
  • Reagenser. Svovelsyre. Tekniske spesifikasjoner GOST 4204-77

Fysiske egenskaper svovelsyre:
Tung oljeaktig væske ("olje av vitriol");
tetthet 1,84 g/cm3; ikke-flyktig, svært løselig i vann - med sterk oppvarming; t° pl. = 10,3°C, t°kok. = 296°C, svært hygroskopisk, har vannfjernende egenskaper (forkulling av papir, tre, sukker).

Hydratiseringsvarmen er så stor at blandingen kan koke, sprute og forårsake brannskader. Derfor er det nødvendig å tilsette syre til vann, og ikke omvendt, siden når vann tilsettes syre, vil lettere vann havne på overflaten av syren, hvor all varmen som genereres vil bli konsentrert.

Industriell produksjon av svovelsyre (kontaktmetode):

1) 4FeS 2 + 11O 2 → 2Fe 2 O 3 + 8SO 2

2) 2SO 2 + O 2 V 2 O 5 → 2SO 3

3) nSO 3 + H 2 SO 4 → H 2 SO 4 nSO 3 (oleum)

Knust, renset, våt svovelkis (svovelkis) helles i ovnen på toppen for brenning i " fluidisert sjikt". Luft beriket med oksygen føres nedenfra (motstrømsprinsipp).
Ovnsgass kommer ut av ovnen, hvis sammensetning er: SO 2, O 2, vanndamp (pyritten var våt) og bittesmå partikler av slagg (jernoksid). Gassen renses fra urenheter av faste partikler (i en syklon og elektrisk utskiller) og vanndamp (i et tørketårn).
I et kontaktapparat oksideres svoveldioksid ved å bruke en katalysator V 2 O 5 (vanadiumpentoksid) for å øke reaksjonshastigheten. Prosessen med oksidasjon av ett oksid til et annet er reversibel. Derfor velges optimale forhold for den direkte reaksjonen - økt trykk (siden den direkte reaksjonen skjer med en reduksjon i det totale volumet) og en temperatur ikke høyere enn 500 C (siden reaksjonen er eksoterm).

I absorpsjonstårnet absorberes svoveloksid (VI) av konsentrert svovelsyre.
Absorpsjon av vann brukes ikke, fordi svoveloksid oppløses i vann med frigjøring av en stor mengde varme, så den resulterende svovelsyren koker og blir til damp. For å forhindre dannelse av svovelsyretåke, bruk 98 % konsentrert svovelsyre. Svoveloksid løser seg veldig godt i en slik syre og danner oleum: H 2 SO 4 nSO 3

Kjemiske egenskaper til svovelsyre:

H 2 SO 4 er en sterk dibasisk syre, en av de sterkeste mineralsyrene på grunn av sin høye polaritet, brytes H – O-bindingen lett.

1) Svovelsyre dissosieres i vandig løsning , danner et hydrogenion og en syrerest:
H2SO4 = H+ + HSO4-;
HSO4- = H+ + SO42-.
Sammendragsligning:
H2SO4 = 2H+ + SO42-.

2) Interaksjon av svovelsyre med metaller:
Fortynnet svovelsyre løser bare metaller i spenningsserien til venstre for hydrogen:
Zn 0 + H 2 + 1 SO 4 (fortynnet) → Zn + 2 SO 4 + H 2

3) Reaksjon av svovelsyremed basiske oksider:
CuO + H 2 SO 4 → CuSO 4 + H 2 O

4) Reaksjon av svovelsyre medhydroksyder:
H 2 SO 4 + 2 NaOH → Na 2 SO 4 + 2H 2 O
H 2 SO 4 + Cu(OH) 2 → CuSO 4 + 2H 2 O

5) Utveksle reaksjoner med salter:
BaCl 2 + H 2 SO 4 → BaSO 4 ↓ + 2 HCl
Dannelsen av et hvitt bunnfall av BaSO 4 (uløselig i syrer) brukes til å påvise svovelsyre og løselige sulfater (kvalitativ reaksjon på sulfation).

Spesielle egenskaper for konsentrert H 2 SO 4:

1) Konsentrert svovelsyre er sterkt oksidasjonsmiddel ; ved interaksjon med metaller (unntatt Au, Pt), reduseres den til S +4 O 2, S 0 eller H 2 S -2 avhengig av aktiviteten til metallet. Uten oppvarming reagerer den ikke med Fe, Al, Cr - passivering. Når de interagerer med metaller med variabel valens, oksiderer de sistnevnte til høyere oksidasjonstilstander enn når det gjelder en fortynnet syreløsning: Fe 0 Fe 3+, Cr 0 Cr 3+ , Mn 0Mn 4+,Sn 0 Sn 4+

Aktivt metall

8 Al + 15 H 2 SO 4 (konsentrert) → 4Al 2 (SO 4) 3 + 12 H 2 O + 3 H2S
4│2Al 0 – 6 e— → 2Al 3+ — oksidasjon
3│ S 6+ + 8e → S 2– restitusjon

4Mg+ 5H 2 SO 4 → 4 MgSO 4 + H 2 S + 4 H 2 O

Middels aktivitet metall

2Cr + 4 H 2 SO 4 (konsentrert) → Cr 2 (SO 4) 3 + 4 H 2 O + S
1│ 2Cr 0 – 6e →2Cr 3+ - oksidasjon
1│ S 6+ + 6e → S 0 – restitusjon

Lavaktivt metall

2Bi + 6H 2 SO 4 (kons.) → Bi 2 (SO 4) 3 + 6H 2 O + 3 SO 2
1│ 2Bi 0 – 6e → 2Bi 3+ – oksidasjon
3│ S 6+ + 2e →S 4+ - utvinning

2Ag + 2H 2 SO 4 → Ag 2 SO 4 + SO 2 + 2H 2 O

2) Konsentrert svovelsyre oksiderer noen ikke-metaller, vanligvis til maksimal oksidasjonstilstand, og reduseres i seg selv tilS+4O2:

C + 2H 2 SO 4 (konsentrert) → CO 2 + 2SO 2 + 2H 2 O

S+ 2H2SO4 (konsentrert) → 3S02 + 2H2O

2P+ 5H 2 SO 4 (konsentrert) → 5SO 2 + 2H 3 PO 4 + 2H 2 O

3) Oksidasjon av komplekse stoffer:
Svovelsyre oksiderer HI og HBr til frie halogener:
2 KBr + 2H 2 SO 4 = K 2 SO 4 + SO 2 + Br 2 + 2H 2 O
2 KI + 2H 2 SO 4 = K 2 SO 4 + SO 2 + I 2 + 2H 2 O
Konsentrert svovelsyre kan ikke oksidere kloridioner til fritt klor, noe som gjør det mulig å oppnå HCl ved utvekslingsreaksjonen:
NaCl + H2SO4 (konsentrert) = NaHSO4 + HCl

Svovelsyre fjerner kjemisk bundet vann fra organiske forbindelser som inneholder hydroksylgrupper. Dehydrering av etylalkohol i nærvær av konsentrert svovelsyre produserer etylen:
C 2 H 5 OH = C 2 H 4 + H 2 O.

Forkulling av sukker, cellulose, stivelse og andre karbohydrater ved kontakt med svovelsyre forklares også av dehydrering:
C 6 H 12 O 6 + 12H 2 SO 4 = 18 H 2 O + 12 SO 2 + 6CO 2.

Nytt emne: Svovelsyre – H 2 SO 4

1. Elektronisk og strukturformel svovelsyre

*S - svovel er i eksitert tilstand 1S 2 2S 2 2P 6 3S 1 3P 3 3d 2

Elektronisk formel for et svovelsyremolekyl:

H-O-O

\\ //

// \\

H-O-O

Strukturformel for svovelsyremolekylet:

1H - -20 -20

\\ //

// \\

1H - -20 -20

2. Kvittering:

De kjemiske prosessene for produksjon av svovelsyre kan representeres som følgende diagram:

S+O2+O2+H2O

FeS 2 SO 2 SO 3 H 2 SO 4

H2S

Svovelsyre fremstilles i tre trinn:

1. stadie. Svovel, jernkis eller hydrogensulfid brukes som råstoff.

4 FeS 2 + 11 O 2 = 2Fe 2 O 3 + 8SO 2

Trinn 2. Oksidasjon av SO 2 til SO 3 oksygen ved bruk av katalysator V 2 O 5

V2O5

2SO2+O2=2SO3+Q

Trinn 3. For å konvertere SO 3 Det er ikke vann som brukes i svovelsyre pga sterk oppvarming oppstår, og en konsentrert løsning av svovelsyre.

SO 3 + H 2 O H 2 SO 4

Resultatet er oleum - en løsning av SO 3 i svovelsyre.

Enhetskretsskjema(se lærebok s. 105)

3. Fysiske egenskaper.

a) flytende b) fargeløs c) tung (olje av vitriol) d) ikke-flyktig

d) når det er oppløst i vann, oppstår sterk oppvarming (Derfor må svovelsyre absolutt helles i vann, og ikke omvendt!)

4. Kjemiske egenskaper til svovelsyre.

Fortynn H2SO4

Konsentrert H 2 SO 4

Har alle egenskapene til syrer

Har spesifikke egenskaper

1. Endrer fargen på indikatoren:

H 2 SO 4 H + + HSO 4 -

HSO 4 - H + + SO 4 2-

2. Reagerer med metaller som står foran hydrogen:

Zn+ H 2 SO 4 ZnSO 4 + H 2

3. Reagerer med basiske og amfotere oksider:

MgO+ H 2 SO 4 MgSO 4 + H 2 O

4. Interagerer med baser (nøytraliseringsreaksjon)

2NaOH+H2SO4Na2SO4 +2H2O

Når det er overskudd av syre, dannes det sure salter

NaOH+H 2 SO 4 NaHSO 4 + H 2 O

5. Reagerer med tørre salter og fortrenger andre syrer fra dem (dette er den sterkeste og mest ikke-flyktige syren):

2NaCl+H2SO4Na2SO4 +2HCl

6. Reagerer med saltløsninger hvis det dannes et uløselig salt:

BaCl 2 + H 2 SO 4 BaSO 4 + 2 HCl -

Hvitt sediment

kvalitativ reaksjon på SO-ion 4 2-

7. Ved oppvarming brytes det ned:

H2SO4H2O+SO3

1. Konsentrert H 2 SO 4 - et sterkt oksidasjonsmiddel når det oppvarmes, reagerer det med alle metaller (unntatt Au og Pt). I disse reaksjonene, avhengig av aktiviteten til metallet og forholdene, frigjøres S,SO 2 eller H2S

For eksempel:

0 +6 +2 +4

Cu+ kons 2H 2 SO 4 CuSO 4 + SO 2 + H 2 O

2.kons. H2SO4 passiverer jern og aluminium,

derfor kan den transporteres i stål og

aluminiumstanker.

3. kons. H2SO4 absorberer vann godt

H 2 SO 4 + H 2 O H 2 SO 4 * 2H 2 O

Derfor forkuller den organisk materiale

5. Søknad : Svovelsyre er et av de viktigste produktene som brukes i ulike bransjer. Hovedforbrukerne er produksjon av mineralgjødsel, metallurgi og raffinering av petroleumsprodukter. Svovelsyre brukes i produksjon av andre syrer, vaskemidler, eksplosiver, medisiner, maling og som elektrolytter for blybatterier. (Lærebok s. 103).

6.Salter av svovelsyre

Svovelsyre dissosieres trinnvis

H 2 SO 4 H + + HSO 4 -

HSO 4 - H + + SO 4 2-

derfor danner det to typer salter - sulfater og hydrosulfater

For eksempel: Na 2 SO 4 - natriumsulfat (middels salt)

NaHSO4 - natriumhydrogensulfat (syresalt)

De mest brukte er:

Na2S04*10H2 O-Glaubers salt (brukes i produksjon av brus, glass, i medisin og

Dyremedisin.

СaSO 4 *2H 2 O – gips

СuSO4 *5H 2 O – kobbersulfat (brukes i landbruket).

Laboratorieerfaring

Kjemiske egenskaper til svovelsyre.

Utstyr: Reagensrør.

Reagenser: svovelsyre, metyloransje, sink, magnesiumoksid, natriumhydroksid og fenolftalein, natriumkarbonat, bariumklorid.

b) Fyll ut observasjonstabellen


Svovelsyre

[redigere]

Materiale fra Wikipedia - gratis leksikon

Svovelsyre
Er vanlig
Systematisk navn svovelsyre
Kjemisk formel H2SO4
Rel. molekylær vekt 98.082 a. spise.
Molar masse 98,082 g/mol
Fysiske egenskaper
Tilstand (standard tilstand) væske
Tetthet 1,8356 g/cm³
Termiske egenskaper
Smeltepunkt -10,38*С °C
Koketemperatur 279,6*C °C
Flammepunkt ikke brennbar °C
Spesifikk fusjonsvarme 10,73 J/kg
Kjemiske egenskaper
pKa -3
Løselighet i vann blander g/100 ml
Optiske egenskaper
Brytningsindeks 1.397
Struktur
Dipolmoment 2,72 D
Klassifisering
Reg. CAS-nummer 7664-93-9
EC-registreringsnummer 231-639-5
RTECS WS5600000
Toksikologi
LD 50 510 mg/kg
Giftighet W

Svovelsyre H 2 SO 4 er en sterk dibasisk syre som tilsvarer den høyeste oksidasjonstilstanden til svovel (+6). Under normale forhold er konsentrert svovelsyre en tung, oljeaktig væske, fargeløs og luktfri. I teknologi kalles svovelsyre dens blanding med både vann og svovelsyreanhydrid SO 3. Hvis molforholdet SO 3:H 2 O< 1, то это водный раствор серной кислоты, если >1, - løsning av SO 3 i svovelsyre (oleum).

Fysiske og fysisk-kjemiske egenskaper

En meget sterk syre, ved 18 o C pK a (1) = -2,8, pK a (2) = 1,92 (K2 1,2 10 2); bindingslengder i molekylet S=O 0,143 nm, S-OH 0,154 nm, HOSOH-vinkel 104°, OSO 119°; koker, og danner en azeotrop blanding (98,3 % H 2 SO 4 og 1,7 % H 2 O med et kokepunkt på 338,8 o C). Svovelsyre tilsvarende 100 % H 2 SO 4 innhold har sammensetningen (%): H 2 SO 4 99,5, HSO 4 − - 0,18, H 3 SO 4 + - 0,14, H 3 O + - 0,09, H 2 S 2 O 7, - 0,04, HS 2 O 7 ⁻ ​​- 0,05. Blandbar med vann og SO 3 i alle proporsjoner. I vandige løsninger dissosieres svovelsyre nesten fullstendig til H+, HSO 4 − og SO₄ 2−. Danner H2SO4-hydrater n H 2 O, hvor n= 1, 2, 3, 4 og 6,5.

Oleum

Hovedartikkel: Oleum

Løsninger av svovelsyreanhydrid SO 3 i svovelsyre kalles oleum de danner to forbindelser H 2 SO 4 · SO 3 og H 2 SO 4 · 2SO 3.

Oleum inneholder også pyrosulfuric syrer, oppnådd ved reaksjonene:

Kokepunktet til oleum synker med økende SO 3-innhold. Når konsentrasjonen av vandige løsninger av svovelsyre øker, synker det totale damptrykket over løsningene og når et minimum ved et innhold på 98,3 % H 2 SO 4. Når konsentrasjonen av SO 3 i oleum øker, øker det totale damptrykket over det. Damptrykket over vandige løsninger av svovelsyre og oleum kan beregnes ved å bruke ligningen:

Verdiene til koeffisientene A og B avhenger av konsentrasjonen av svovelsyre. Damp over vandige løsninger av svovelsyre består av en blanding av vanndamp, H 2 SO 4 og SO 3, og sammensetningen av dampen skiller seg fra væskens sammensetning ved alle konsentrasjoner av svovelsyre, bortsett fra den tilsvarende azeotropiske blandingen.

Med økende temperatur øker dissosiasjonen:

Ligning for temperaturavhengigheten til likevektskonstanten:

Ved normalt trykk, grad av dissosiasjon: 10⁵ (373 K), 2,5 (473 K), 27,1 (573 K), 69,1 (673 K).

Tettheten til 100 % svovelsyre kan bestemmes ved ligningen:

Med økende konsentrasjon av svovelsyreløsninger reduseres deres varmekapasitet og når et minimum for 100 % svovelsyre, øker varmekapasiteten til oleum med økende SO³-innhold.

Med økende konsentrasjon og synkende temperatur reduseres termisk ledningsevne λ:

Hvor MED- konsentrasjon av svovelsyre, i %.

Oleum H2SO4·SO3 har maksimal viskositet med økende temperatur, η synker. Den elektriske motstanden til svovelsyre er minimal ved en konsentrasjon på SO3 og 92% H2SO4 og maksimal ved en konsentrasjon på 84 og 99,8% H2SO4 [ kilde ikke spesifisert 61 dager] . For oleum er minimum ρ ved en konsentrasjon på 10 % S03. Med økende temperatur øker ρ av svovelsyre. Dielektrisk konstant av 100 % svovelsyre 101 (298,15 K), 122 (281,15 K); kryoskopisk konstant 6,12, ebullioskopisk konstant 5,33; diffusjonskoeffisienten til svovelsyredamp i luft varierer avhengig av temperatur; D= 1,67·10⁻5 T 3/2 cm²/s.

Kjemiske egenskaper

Svovelsyre er et ganske sterkt oksidasjonsmiddel, spesielt ved oppvarming og i konsentrert form; oksiderer HI og delvis HBr til frie halogener, karbon til CO 2, S til SO 2, oksiderer mange metaller (Cu, Hg, etc.). I dette tilfellet reduseres svovelsyren til SO 2, og de kraftigste reduksjonsmidlene reduseres til S og H 2 S. Konsentrert H 2 SO 4 reduseres delvis av hydrogen, og derfor kan det ikke brukes til tørking. Fortynnet H 2 SO 4 interagerer med alle metaller som befinner seg i den elektrokjemiske spenningsserien til venstre for hydrogen med frigjøring. De oksiderende egenskapene til fortynnet H 2 SO 4 er ukarakteristiske. Svovelsyre danner to serier av salter: medium - sulfater og sure - hydrosulfater, samt estere. Peroxomonosulfuric (eller Caro acid) H 2 SO 5 og peroxodisulfuric H 2 S 2 O 8 syrer er kjent.

applikasjon

Svovelsyre brukes:

  • i produksjon av mineralgjødsel;
  • som en elektrolytt i blybatterier;
  • for å oppnå forskjellige mineralsyrer og salter;
  • i produksjon av kjemiske fibre, fargestoffer, røykdannende stoffer og eksplosiver;
  • i olje-, metall-, tekstil-, lær- og annen industri;
  • i næringsmiddelindustrien - registrert som tilsetningsstoff E513(emulgator);
  • i industriell organisk syntese i reaksjoner:
    • dehydrering (produksjon av dietyleter, estere);
    • hydratisering (etanol fra etylen);
    • sulfonering (syntetiske vaskemidler og mellomprodukter i produksjon av fargestoffer);
    • alkylering (produksjon av isooktan, polyetylenglykol, kaprolaktam), etc.
    • For restaurering av harpiks i filtre ved produksjon av destillert vann.

Verdensproduksjonen av svovelsyre er ca. 160 millioner tonn per år. Den største forbrukeren av svovelsyre er produksjon av mineralgjødsel. For 1 tonn P₂O₅-fosforgjødsel forbrukes 2,2-3,4 tonn svovelsyre, og for 1 tonn (NH4)2SO4 - 0,75 tonn svovelsyre. Derfor har de en tendens til å bygge svovelsyreanlegg i forbindelse med fabrikker for produksjon av mineralgjødsel.

Giftig effekt

Svovelsyre og oleum er svært etsende stoffer. De påvirker huden, slimhinnene, luftveiene (årsak kjemiske brannskader). Ved innånding av damper av disse stoffene forårsaker de pustevansker, hoste og ofte laryngitt, trakeitt, bronkitt osv. Maksimalt tillatt konsentrasjon av svovelsyreaerosol i luften i arbeidsområdet er 1,0 mg/m³, i atmosfærisk luft 0,3 mg /m³ (maksimalt engangs) og 0,1 mg/m³ (gjennomsnittlig daglig). Den skadelige konsentrasjonen av svovelsyredamp er 0,008 mg/l (eksponering 60 min), dødelig 0,18 mg/l (60 min). Fareklasse II. En aerosol av svovelsyre kan dannes i atmosfæren som følge av utslipp fra kjemisk og metallurgisk industri som inneholder S-oksider og falle i form av sur nedbør.

Historisk informasjon

Dalton svovelsyremolekyl

Svovelsyre har vært kjent siden antikken. Kanskje den første omtale av sure gasser produsert ved kalsinering av alun eller jernsulfat av den "grønne steinen" finnes i skrifter tilskrevet den arabiske alkymisten Jabir ibn Hayyan.

På 900-tallet fikk den persiske alkymisten Ar-Razi, som kalsinerte en blanding av jern og kobbersulfat (FeSO 4 7H 2 O og CuSO 4 5H 2 O), også en løsning av svovelsyre. Denne metoden ble forbedret av den europeiske alkymisten Albert Magnus, som levde på 1200-tallet.

På 1400-tallet oppdaget alkymister at svovelsyre kunne oppnås ved å brenne en blanding av svovel og salpeter, eller fra svovelkis – svovelkis, et billigere og mer rikelig råstoff enn svovel. Svovelsyre har blitt produsert på denne måten i 300 år, i små mengder i glassretorter. Og først på midten av 1700-tallet, da det ble slått fast at bly ikke løses opp i svovelsyre, gikk man over fra glasslaboratorieglass til store industrielle blykamre.

Mål: Gjør deg kjent med struktur, fysiske og kjemiske egenskaper og bruk av svovelsyre.

Utdanningsmål: Vurder de fysiske og kjemiske egenskapene (vanlig med andre syrer og spesifikke) til svovelsyre, preparat, vis veldig viktig svovelsyre og dens salter i nasjonal økonomi.

Pedagogiske oppgaver: Fortsette å utvikle en dialektisk-materialistisk naturforståelse hos elevene.

Utviklingsoppgaver: Utvikling av generelle pedagogiske ferdigheter og evner, arbeid med en lærebok og tilleggslitteratur, regler for arbeid på skrivebordet, evnen til å systematisere og generalisere, etablere årsak-virkningsforhold, uttrykke sine tanker konkludert og kompetent, trekke konklusjoner, trekke opp diagrammer, skisse.

I løpet av timene

1. Repetisjon av det som er dekket.

Frontal klasseundersøkelse. Sammenlign egenskapene til krystallinsk og plastisk svovel. Forklar essensen av allotropi.

2. Studere nytt materiale.

Etter å ha lyttet nøye til historien, vil vi på slutten av leksjonen forklare hvorfor svovelsyre oppførte seg rart med vann, tre og en gullring.

Et lydopptak spilles av.

Svovelsyrens eventyr.

I ett kjemisk rike bodde det en trollkvinne, hun het Svovelsyre. Utseendemessig var det ikke så ille: en fargeløs væske, viskøs som olje, luktfri. Svovelsyre Jeg ville bli berømt, så jeg dro på tur.

Hun hadde gått i 5 timer, og siden dagen var for varm, var hun veldig tørst. Og plutselig så hun en brønn. "Vann!" - utbrøt syren og løp opp til brønnen og rørte ved vannet. Vannet suset forferdelig. Med et skrik styrtet den redde trollkvinnen bort. Selvfølgelig visste ikke den unge syren det når den ble blandet svovelsyre skilles ut med vann et stort nummer av varme.

"Hvis vann kommer i kontakt med svovelsyre, da kan vannet, som ikke har tid til å blande seg med syren, koke og kaste ut sprut svovelsyre. Denne oppføringen dukket opp i dagboken til en ung reisende, og kom deretter inn i lærebøker.

Siden syren ikke slukket tørsten hennes, bestemte treet seg for å legge seg ned og hvile i skyggen. Men hun lyktes heller ikke med det. Så snart som Svovelsyre Jeg rørte ved veden, den begynte å forkulle. Uten å vite årsaken til dette, løp den skremte syren bort.

Snart kom hun til byen og bestemte seg for å gå til den første butikken hun kom over på veien. Det viste seg å være en smykkebutikk. Da syren nærmet seg montrene, så mange vakre ringer. Svovelsyre Jeg bestemte meg for å prøve en ring. Etter å ha spurt selgeren om en gullring, satte den reisende den på den lange, vakre fingeren. Trollkvinnen likte virkelig ringen og bestemte seg for å kjøpe den. Dette er hva hun kunne skryte av til vennene sine!

Etter å ha forlatt byen, dro syren hjem. På veien ble hun hjemsøkt av tanken på hvorfor vann og tre oppførte seg så rart når de rørte henne, men ingenting skjedde med denne gylne tingen? "Ja, fordi gull er inne svovelsyre oksiderer ikke." Dette var de siste ordene han skrev med syre i dagboken.

Lærerens forklaringer.

Elektroniske og strukturelle formler for svovelsyre.

Så svovel er i 3. periode periodiske tabell, da overholdes ikke oktettregelen (struktur med åtte elektroner) og svovelatomet kan tilegne seg opptil tolv elektroner. De elektroniske og strukturelle formlene for svovelsyre er som følger:

(Svovels seks elektroner er indikert med en stjerne)

Kvittering.

Svovelsyre dannes ved interaksjon av svoveloksid (5) med vann (SO 3 + H 2 O -> H 2 SO 4).

Fysiske egenskaper.

Svovelsyre er en fargeløs, tung, ikke-flyktig væske. Når det er oppløst i vann, oppstår det veldig sterk oppvarming. Husk at Ikke hell vann i konsentrert svovelsyre!

Konsentrert svovelsyre absorberer vanndamp fra luften. Dette kan verifiseres hvis et åpent kar med konsentrert svovelsyre er balansert på en skala: etter en tid vil koppen med karet falle.

Kjemiske egenskaper.

Fortynnet svovelsyre har generelle egenskaper, karakteristisk for alle syrer. I tillegg har svovelsyre spesifikke egenskaper.

Kjemiske egenskaper til svovel - applikasjon .

Lærer demonstrasjon av en underholdende opplevelse.

Kort sikkerhetsbriefing.

Popsicle (kull fra sukker)

Utstyr Opplevelsesplan Konklusjon
  1. Melis.
  2. Konsentrert svovelsyre.
  3. To beger à 100-150 ml hver.
  4. Glasstav.
  5. Vekter.
Hell 30 g melis i et beger. Mål 12 ml konsentrert svovelsyre med et begerglass. Bland sukker og syre til en grøtaktig masse i et glass med en glassstang (ta ut glassstangen og legg i et glass vann). Etter en tid blir blandingen mørkere, varmes opp, og snart begynner en porøs kullmasse å krype ut av glasset - kjærlighet på pinne Forkulling av sukker av svovelsyre (konsentrert) forklares av de oksiderende egenskapene til denne syren. Reduksjonsmidlet er karbon. Prosessen er eksoterm.
2H 2 SO 4 + C 12 O 11 + H22 -> 11 C + 2SO 2 +13 H 2 O + CO 2

Elever fyller ut tabellen med underholdende opplevelse i en notatbok.

Elevenes resonnement om hvorfor svovelsyre oppførte seg så rart med vann, tre og gull.

Applikasjon.

På grunn av egenskapene (evnen til å absorbere vann, oksiderende egenskaper, ikke-flyktighet), er svovelsyre mye brukt i den nasjonale økonomien. Det tilhører hovedproduktene i den kjemiske industrien.

  1. skaffe fargestoffer;
  2. skaffe mineralgjødsel;
  3. petroleumsprodukter rensing;
  4. elektrolytisk kobber produksjon;
  5. elektrolytt i batterier;
  6. innhenting av eksplosiver;
  7. skaffe fargestoffer;
  8. skaffe kunstsilke;
  9. oppnå glukose;
  10. oppnå salter;
  11. produksjon av syrer.

Svovelsyresalter er mye brukt, for eksempel

Na2S04*10H2O– natriumsulfat krystallinsk hydrat (Glaubers salt)- brukes i produksjon av brus, glass, medisin og veterinærmedisin.

CaS04*2H2O– Kalsiumsulfat krystallinsk hydrat (naturlig gips)- brukes til å oppnå semi-vandig gips, nødvendig i konstruksjon, og i medisin - for påføring av gipsavstøpninger.

CuS04*5H2O– kobbersulfat krystallinsk hydrat (2) (kobbersulfat)- brukes i kampen mot skadedyr og plantesykdommer.

Elevenes arbeid med den ekstratekstuelle komponenten i læreboka.

Dette er interessant

...i Kara-Bogaz-Gol-bukten inneholder vannet 30 % Glaubers salt ved en temperatur på +5°C, dette saltet faller ut i form av et hvitt sediment, som snø, og med begynnelsen av varmt vær , løses saltet opp igjen. Siden Glaubers salt dukker opp og forsvinner i denne bukta, ble det kalt mirabilitet, som betyr "utrolig salt."

3. Spørsmål for å forsterke undervisningsmateriell, skrevet på tavla.

  1. Om vinteren plasseres noen ganger et kar med konsentrert svovelsyre mellom vinduskarmene. For hvilket formål gjøres dette, hvorfor kan ikke karet fylles til toppen med syre?
  2. Hvorfor kalles svovelsyre kjemiens "brød"?

Lekser og instruksjoner om hvordan de skal fullføres.

Der det er nødvendig, skriv ligninger i ionisk form.

Konklusjon på timen, markering og kommentering.

Referanser.

  1. Rudzitis G.E. Feldman F.G., Chemistry: Opplæringen for trinn 7-11 kveld (skift) videregående ungdomsskolen på 2 timer Del 1-3 utgave - M.: Education, 1987.
  2. Kjemi ved skolen nr. 6, 1991.
  3. Strempler Genrikh Ivanovich, Kjemi på fritiden: Bok. for ungdomsskoleelever og gamle alder /fig. auto. med deltakelse av V.N. Rastopchiny.- F.: Ch. utg. KSE, 1990.